
Computer Programming
Concepts and Visual Basic

David I. Schneider
U N I V E R S I T Y O F P H O E N I X

C O L L E G E O F I N F O R M A T I O N S Y S T E M S A N D T E C H N O L O G Y

Cover Art: Copyright © Stock Illustration Source, Inc./Kelly Brother.

Excerpts taken from:

An Introduction to Programming Using Visual Basic 6.0, Fourth Edition,
by David I. Schneider
Copyright © 1999, 1998, 1997, 1995 by Prentice-Hall, Inc.
A Pearson Education Company
Upper Saddle River, New Jersey 07458

IBM is a registered trademark ® of International Business Machines Corporation
Hercules is a registered trademark ® of Hercules Computer Technology.
Visual Basic is a registered trademark ® of the Microsoft Corporation.

The information, illustrations, and/or software contained in this book, and regarding the above-
mentioned programs, are provided “As Is,” without warranty of any kind, express or implied,
including without limitation any warranty concerning the accuracy, adequacy, or completeness
of such information. Neither the publisher, the authors, nor the copyright holders shall be re-
sponsible for any claims attributable to errors, omissions, or other inaccuracies contained in
this book. Nor shall they be liable for direct, indirect, special, incidental, or consequential dam-
ages arising out of the use of such information or material.

All rights reserved. No part of this book may be repro-
duced, in any form or by any means, without permission
in writing from the publisher.

This special edition published in cooperation with
Pearson Custom Publishing

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Please visit our web site at www.pearsoncustom.com

ISBN 0–536–60446–0

BA 990807

PEARSON CUSTOM PUBLISHING
160 Gould Street/Needham Heights, MA 02494
A Pearson Education Company

CONTENTS
SECTION 1: PROBLEM SOLVING . 1

1.1 PROGRAM DEVELOPMENT CYCLE . 3
1.2 PROGRAMMING TOOLS . 5

SECTION 2: FUNDAMENTALS OF PROGRAMMING IN VISUAL BASIC 15
2.1 VISUAL BASIC OBJECTS . 17
2.2 VISUAL BASIC EVENTS . 27
2.3 NUMBERS . 34
2.4 STRINGS . 42
2.5 INPUT AND OUTPUT . 49
2.6 BUILT-IN FUNCTIONS . 58
SUMMARY . 67
PROGRAMMING PROJECTS . 68

SECTION 3: GENERAL PROCEDURES . 71
3.1 SUB PROCEDURES, PART I . 73
3.2 SUB PROCEDURES, PART II . 80
3.3 FUNCTION PROCEDURES . 87
3.4 MODULAR DESIGN . 93
SUMMARY . 97
PROGRAMMING PROJECTS . 97

SECTION 4: DECISIONS . 101
4.1 RELATIONAL AND LOGICAL OPERATORS . 103
4.2 IF BLOCKS . 106
4.4 SELECT CASE BLOCKS . 112
4.4 A CASE STUDY: WEEKLY PAYROLL . 119
SUMMARY . 126
PROGRAMMING PROJECTS . 126

SECTION 5: REPETITION . 129
5.1 DO LOOPS . 131
5.2 PROCESSING LISTS OF DATA WITH DO LOOPS . 135
5.3 FOR...NEXT LOOPS . 141
5.4 A CASE STUDY: ANALYZE A LOAN . 146
SUMMARY . 153
PROGRAMMING PROJECTS . 153

SECTION 6: ARRAYS . 159
6.1 CREATING AND ACCESSING ARRAYS . 161
6.2 USING ARRAYS . 171
6.3 CONTROL ARRAYS . 179
6.4 SORTING AND SEARCHING . 184
6.5 TWO-DIMENSIONAL ARRAYS . 196
6.6 A CASE STUDY: CALCULATING WITH A SPREADSHEET . 200

iii

SUMMARY . 209
PROGRAMMING PROJECTS . 209

SECTION 7: SEQUENTIAL FILES . 215
7.1 SEQUENTIAL FILES . 217
7.2 USING SEQUENTIAL FILES . 223
7.3 A CASE STUDY: RECORDING CHECKS AND DEPOSITS . 228
SUMMARY . 237
PROGRAMMING PROJECTS . 237

SECTION 8: RANDOM-ACCESS FILES . 243
8.1 USER DEFINED DATA TYPES . 245
8.2 RANDOM-ACCESS FILES . 251
SUMMARY . 255
PROGRAMMING PROJECTS . 255

SECTION 9: THE GRAPHICAL DISPLAY OF DATA . 257
9.1 INTRODUCTION TO GRAPHICS . 259
9.2 LINE CHARTS . 267
9.3 BAR CHARTS . 273
9.4 PIE CHARTS . 277
SUMMARY . 282
PROGRAMMING PROJECTS . 282

SECTION 10: ADDITIONAL CONTROLS AND OBJECTS . 285
10.1 LIST BOXES AND COMBO BOXES . 287
10.2 NINE ELEMENTARY CONTROLS . 294
10.3 FIVE ADDITIONAL OBJECTS . 303
SUMMARY . 316
PROGRAMMING PROJECTS . 317

SECTION 11: DATABASE MANAGEMENT . 321
11.1 AN INTRODUCTION TO DATABASES . 323
11.2 RELATIONAL DATABASES AND SQL . 330
11.3 THREE ADDITIONAL DATA-BOUND CONTROLS; CREATING AND DESIGNING DATABASES 338
SUMMARY . 350
PROGRAMMING PROJECTS . 350

SECTION 12: OBJECT-ORIENTED PROGRAMMING . 353
12.1 CLASSES AND OBJECTS . 355
12.2 COLLECTIONS AND EVENTS . 365
12.3 CLASS RELATIONSHIPS . 373
SUMMARY . 380
PROGRAMMING PROJECTS . 381

SECTION 13: COMMUNICATING WITH OTHER APPLICATIONS 383
13.1 OLE . 385
13.2 ACCESSING THE INTERNET WITH VISUAL BASIC . 392

iv

13.3 WEB PAGE PROGRAMMING WITH VBSCRIPT . 397
SUMMARY . 403

APPENDICES
A. ANSI VALUES . 407
B. HOW TO . 409
C. VISUAL BASIC STATEMENTS, FUNCTIONS, METHODS, PROPERTIES, EVENTS,

DATA TYPES, AND OPERATORS . 423
D. VISUAL BASIC DEBUGGING TOOLS . 457

INDEX . 465

v

CONGRATULATIONS…
You have just purchased access to a valuable website that will open many doors
for you! The University of Phoenix has chosen to enhance and expand your
course’s material with a dynamic website that contains an abundance of rich and
valuable online resources specifically designed to help you achieve success!

This website provides you with material selected and added to powerful
online tools that have been seamlessly integrated with this textbook, resulting in
a dynamic, course-enhancing learning system. These exciting tools include:

Online Study Guide
Online glossary
Links to selected, high-quality websites
And more!

You can begin to access these tremendous resources immediately!

www.pearsoncustom.com/uop: The opening screen of the University of
Phoenix website includes book covers of all the Pearson Custom Publishing
books in the BSBIS and BSIT programs. Click on the book cover representing
your course. This will launch the online study guide for the course in which you
are currently enrolled and the glossary of key terms for all the University of
Phoenix BSBIS and BSIT courses.

CD-ROM: The accompanying CD-ROM includes key terms underlined
within the online book that are linked to the World Wide Web. Use the enclosed
CD-ROM to launch websites selected to reinforce your learning experience.

TAKE THE FIRST STEP ON THE ROAD TO SUCCESS TODAY!

S E C T I O N

PROBLEM SOLVING

11

3

1.1 PROGRAM DEVELOPMENT CYCLE

Hardware refers to the machinery in a computer system (such as the monitor, keyboard, and
CPU) and software refers to a collection of instructions, called a program (or project), that
directs the hardware. Programs are written to solve problems or perform tasks on a comput-
er. Programmers translate the solutions or tasks into a language the computer can understand.
As we write programs, we must keep in mind that the computer will only do what we instruct
it to do. Because of this, we must be very careful and thorough with our instructions.

■ PERFORMING A TASK ON THE COMPUTER

The first step in writing instructions to carry out a task is to determine what the output should
be—that is, exactly what the task should produce. The second step is to identify the data, or
input, necessary to obtain the output. The last step is to determine how to process the input
to obtain the desired output, that is, to determine what formulas or ways of doing things can
be used to obtain the output.

This problem-solving approach is the same as that used to solve word problems in an
algebra class. For example, consider the following algebra problem:

How fast is a car traveling if it goes 50 miles in 2 hours?

The first step is to determine the type of answer requested. The answer should be a num-
ber giving the rate of speed in miles per hour (the output). The information needed to obtain
the answer is the distance and time the car has traveled (the input). The formula

rate distance / time

is used to process the distance traveled and the time elapsed in order to determine the
rate of speed. That is,

rate = 50miles / 2
= 25 miles / hour

A pictorial representation of this problem-solving process is

We determine what we want as output, get the needed input, and process the input to pro-
duce the desired output.

In the following chapters we discuss how to write programs to carry out the preceding
operations. But first we look at the general process of writing programs.

■ PROGRAM PLANNING

A recipe provides a good example of a plan. The ingredients and the amounts are determined
by what is to be baked. That is, the output determines the input and the processing. The recipe,
or plan, reduces the number of mistakes you might make if you tried to bake with no plan at
all. Although it’s difficult to imagine an architect building a bridge or a factory without a de-
tailed plan, many programmers (particularly students in their first programming course) fre-
quently try to write programs without first making a careful plan. The more complicated the
problem, the more complex the plan must be. You will spend much less time working on a
program if you devise a carefully thought out step-by-step plan and test it before actually writ-
ing the program.

Many programmers plan their programs using a sequence of steps, referred to as the pro-
gram development cycle. The following step-by-step process will enable you to use your
time efficiently and help you design error-free programs that produce the desired output.

1. Analyze: Define the problem.

Be sure you understand what the program should do, that is, what the output
should be. Have a clear idea of what data (or input) are given and the relation-
ship between the input and the desired output.

2. Design: Plan the solution to the problem.

Find a logical sequence of precise steps that solve the problem. Such a sequence
of steps is called an algorithm. Every detail, including obvious steps, should
appear in the algorithm. In the next section, we discuss three popular methods
used to develop the logic plan: flowcharts, pseudocode, and top-down charts.
These tools help the programmer break a problem into a sequence of small tasks
the computer can perform to solve the problem.

Planning also involves using representative data to test the logic of the algo-
rithm by hand to ensure that it is correct.

3. Choose the interface: Select the objects (text boxes, command buttons, etc.).

Determine how the input will be obtained and how the output will be displayed.
Then create objects to receive the input and display the output. Also, create
appropriate command buttons to allow the user to control the program.

4. Code: Translate the algorithm into a programming language.

Coding is the technical word for writing the program. During this stage, the
program is written in Visual Basic and entered into the computer. The pro-
grammer uses the algorithm devised in Step 2 along with a knowledge of Visu-
al Basic.

5. Test and debug: Locate and remove any errors in the program.

Testing is the process of finding errors in a program, and debugging is the
process of correcting errors that are found. (An error in a program is called a
bug.) As the program is typed, Visual Basic points out certain types of program
errors. Other types of errors will be detected by Visual Basic when the program
is executed; however, many errors due to typing mistakes, flaws in the algo-
rithm, or incorrect usages of the Visual Basic language rules only can be uncov-
ered and corrected by careful detective work. An example of such an error
would be using addition when multiplication was the proper operation.

4 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/interface.html
http://www.pearsoncustom.com/link/visualbasic/debugging.html
http://www.pearsoncustom.com/link/visualbasic/algorithms.html

6. Complete the documentation: Organize all the material that describes the pro-
gram.

Documentation is intended to allow another person, or the programmer at a
later date, to understand the program. Internal documentation consists of state-
ments in the program that are not executed, but point out the purposes of vari-
ous parts of the program. Documentation might also consist of a detailed
description of what the program does and how to use the program (for instance,
what type of input is expected). For commercial programs, documentation
includes an instruction manual. Other types of documentation are the flowchart,
pseudocode, and top-down chart that were used to construct the program.
Although documentation is listed as the last step in the program development
cycle, it should take place as the program is being coded.

1.2 PROGRAMMING TOOLS

This section discusses some specific algorithms and develops three tools used to convert al-
gorithms into computer programs: flowcharts, pseudocode, and hierarchy charts.

You use algorithms every day to make decisions and perform tasks. For instance, when-
ever you mail a letter, you must decide how much postage to put on the envelope. One rule
of thumb is to use one stamp for every five sheets of paper or fraction thereof. Suppose a
friend asks you to determine the number of stamps to place on an envelope. The following
algorithm will accomplish the task.

1. Request the number of sheets of paper; call it Sheets. (input)

2. Divide Sheets by 5. (processing)

3. Round the quotient up to the next highest whole number;
call it Stamps. (processing)

4. Reply with the number Stamps. (output)

The preceding algorithm takes the number of sheets (Sheets) as input, processes the
data, and produces the number of stamps needed (Stamps) as output. We can test the algo-
rithm for a letter with 16 sheets of paper.

1. Request the number of sheets of paper; Sheets = 16.

2. Dividing 5 into 16 gives 3.2.

3. Rounding 3.2 up to 4 gives Stamps = 4.

4. Reply with the answer, 4 stamps.

This problem-solving example can be pictured by

Of the program design tools available, the three most popular are the following:

Flowcharts: Graphically depict the logical steps to carry out a task and show how the steps
relate to each other.

Pseudocode: Uses English-like phrases with some Visual Basic terms to outline the task.

Hierarchy charts: Show how the different parts of a program relate to each other.

P r o g r a m m i n g T o o l s 5

http://www.pearsoncustom.com/link/visualbasic/hierarchychart.html
http://www.pearsoncustom.com/link/visualbasic/algorithms.html

■ FLOWCHARTS

A flowchart consists of special geometric symbols connected by arrows. Within each symbol
is a phrase presenting the activity at that step. The shape of the symbol indicates the type of
operation that is to occur. For instance, the parallelogram denotes input or output. The arrows
connecting the symbols, called flowlines, show the progression in which the steps take place.
Flowcharts should “flow” from the top of the page to the bottom. Although the symbols used
in flowcharts are standardized, no standards exist for the amount of detail required within each
symbol.

A table of the flowchart symbols adopted by the American National Standards Institute
(ANSI) follows. Figure 1-1 shows the flowchart for the postage stamp problem.

The main advantage of using a flowchart to plan a task is that it provides a pictorial rep-
resentation of the task, which makes the logic easier to follow. We can clearly see every step
and how each step is connected to the next. The major disadvantage with flowcharts is that
when a program is very large, the flowcharts may continue for many pages, making them dif-
ficult to follow and modify.

Symbol, Name, Meaning

Flowline Used to connect symbols and indicate the flow of
logic.

Terminal Used to represent the beginning (Start) or the end
(End) of a task.

Input/Output Used for input and output operations, such as read-
ing and printing. The data to be read or printed are
described inside.

Processing Used for arithmetic and data-manipulation opera-
tions. The instructions are listed inside the symbol.

Decision Used for any logic or comparison operations. Unlike
the input/output and processing symbols, which
have one entry and one exit flowline, the decision
symbol has one entry and two exit paths. The path
chosen depends on whether the answer to a ques-
tion is “yes” or “no.”

Connector Used to join different flowlines.

Offpage Used to indicate that the flowchart continuesto a
Connector second page.

Predefined Used to represent a group of statements that
Process perform one processing task.

Annotation Used to provide additional information about another
flowchart symbol.

6 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

FIGURE 1-1 Flowchart for the Postage Stamp Problem

■ PSEUDOCODE

Pseudocode is an abbreviated version of actual computer code (hence, pseudocode). The geo-
metric symbols used in flowcharts are replaced by English-like statements that outline the
process. As a result, pseudocode looks more like computer code than does a flowchart.
Pseudocode allows the programmer to focus on the steps required to solve a problem rather
than on how to use the computer language. The programmer can describe the algorithm in
Visual Basic-like form without being restricted by the rules of Visual Basic. When the
pseudocode is completed, it can be easily translated into the Visual Basic language.

The following is pseudocode for the postage stamp problem:

Program: Determine the proper number of stamps for a letter

Read Sheets (input)
Set the number of stamps to Sheets / 5 (processing)
Round the number of stamps up to the next whole number (processing)
Display the number of stamps (output)

P r o g r a m m i n g T o o l s 7

http://www.pearsoncustom.com/link/visualbasic/algorithms.html

Pseudocode has several advantages. It is compact and probably will not extend for many
pages as flowcharts commonly do. Also, the plan looks like the code to be written and so is
preferred by many programmers.

■ HIERARCHY CHART

The last programming tool we’ll discuss is the hierarchy chart, which shows the overall pro-
gram structure. Hierarchy charts are also called structure charts, HIPO (Hierarchy plus Input-
Process-Output) charts, top-down charts, or VTOC (Visual Table of Contents) charts. All these
names refer to planning diagrams that are similar to a company’s organization chart.

Hierarchy charts depict the organization of a program but omit the specific processing
logic. They describe what each part, or module, of the program does and they show how the
modules relate to each other. The details on how the modules work, however, are omitted.
The chart is read from top to bottom and from left to right. Each module may be subdivided
into a succession of submodules that branch out under it. Typically, after the activities in the
succession of submodules are carried out, the module to the right of the original module is
considered. A quick glance at the hierarchy chart reveals each task performed in the program
and where it is performed. Figure 1-2 shows a hierarchy chart for the postage stamp prob-
lem.

FIGURE 1-2 Hierarchy Chart for the Postage Stamp Problem

The main benefit of hierarchy charts is in the initial planning of a program. We break
down the major parts of a program so we can see what must be done in general. From this
point, we can then refine each module into more detailed plans using flowcharts or
pseudocode. This process is called the divide-and-conquer method.

The postage stamp problem was solved by a series of instructions to read data, perform
calculations, and display results. Each step was in a sequence; that is, we moved from one
line to the next without skipping over any lines. This kind of structure is called a sequence
structure. Many problems, however, require a decision to determine whether a series of
instructions should be executed. If the answer to a question is “Yes,” then one group of
instructions is executed. If the answer is “No,” then another is executed. This structure is
called a decision structure. Figure 1-3 contains the pseudocode and flowchart for a decision
structure.

8 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/hierarchychart.html

FIGURE 1-3 Pseudocode and Flowchart for a Decision Structure

The sequence and decision structures are both used to solve the following problem.

■ DIRECTION OF NUMBERED NYC STREETS ALGORITHM

Problem: Given a street number of a one-way street in New York, decide the direction of the
street, either eastbound or westbound.

Discussion: There is a simple rule to tell the direction of a one-way street in New York: Even
numbered streets run eastbound.

Input: Street number

Processing: Decide if the street number is divisible by 2.

Output: “Eastbound” or “Westbound”

Figures 1-4 through 1-6 show the flowchart, pseudocode, and hierarchy chart for the
New York numbered streets problem.

FIGURE 1-4 Flowchart for the New York Numbered Streets Problem

P r o g r a m m i n g T o o l s 9

http://www.pearsoncustom.com/link/visualbasic/hierarchychart.html

Program: Determine the direction of a numbered NYC street.

Get Street
If Street is even Then

Display Eastbound
Else

Display Westbound
End If

FIGURE 1-5 Pseudocode for the New York Numbered Streets Problem

FIGURE 1-6 Hierarchy Chart for the New York Numbered Streets Problem

The solution to the next problem requires the repetition of a series of instructions. A pro-
gramming structure that executes instructions many times is called a loop structure.

We need a test (or decision) to tell when the loop should end. Without an exit condition,
the loop would repeat endlessly (an infinite loop). One way to control the number of times a
loop repeats (often referred to as the number of passes or iterations) is to check a condition
before each pass through the loop and continue executing the loop as long as the condition
is true. See Figure 1-7.

FIGURE 1-7 Pseudocode and Flowchart for a Loop

10 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

Do While condition is true
Process step(s)

Loop

■ CLASS AVERAGE ALGORITHM

Problem: Calculate and report the grade-point average for a class.

Discussion: The average grade equals the sum of all grades divided by the number of stu-
dents. We need a loop to read and then add (accumulate) the grades for each student in the class.
Inside the loop, we also need to total (count) the number of students in the class. See Figures
1-8 to 1-10.

Input: Student grades

Processing: Find the sum of the grades; count the number of students; calculate average grade
= sum of grades / number of students.

Output: Average grade

P r o g r a m m i n g T o o l s 11

FIGURE 1-8 Flowchart for the Class Average Problem

FIGURE 1-10 Hierarchy Chart for the Class-Average Problem

COMMENTS

1. Tracing a flowchart is like playing a board game. We begin at the Start symbol
and proceed from symbol to symbol until we reach the End symbol. At any
time, we will be at just one symbol. In a board game, the path taken depends on
the result of spinning a spinner or rolling a pair of dice. The path taken through
a flowchart depends on the input.

2. The algorithm should be tested at the flowchart stage before being coded into a
program. Different data should be used as input, and the output checked. This
process is known as desk checking. The test data should include nonstandard
data as well as typical data.

3. Flowcharts, pseudocode, and hierarchy charts are universal problem-solving
tools. They can be used to construct programs in any computer language, not
just Visual Basic.

4. Flowcharts are used throughout this text to provide a visualization of the flow
of certain programming tasks and Visual Basic control structures. Major exam-
ples of pseudocode and hierarchy charts appear in the case studies.

5. There are four primary logical programming constructs: sequence, decision,
loop, and unconditional branch. Unconditional branch, which appears in some
languages as Goto statements, involves jumping from one place in a program to
another. Structured programming uses the first three constructs but forbids the
fourth. One advantage of pseudocode over flowcharts is that pseudocode has no
provision for unconditional branching and thus forces the programmer to write
structured programs.

6. Flowcharts are time-consuming to write and difficult to update. For this reason,
professional programmers are more likely to favor pseudocode and hierarchy
charts. Because flowcharts so clearly illustrate the logical flow of programming
techniques, however, they are a valuable tool in the education of programmers.

12 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

Program: Determine the average grade of a class
Initialize Counter and Sum to 0
Do While there are more data

Get the next Grade
Add the Grade to the Sum
Increment the Counter Loop

Compute Average = Sum / Counter
Display Average

FIGURE 1-9 Pseudocode for the Class Average Problem

http://www.pearsoncustom.com/link/visualbasic/structuredprogramming.html
http://www.pearsoncustom.com/link/visualbasic/hierarchychart.html
http://www.pearsoncustom.com/link/visualbasic/algorithms.html

7. There are many styles of pseudocode. Some programmers use an outline form,
whereas others use a form that looks almost like a programming language. The
pseudocode appearing in the case studies of this text focuses on the primary
tasks to be performed by the program and leaves many of the routine details to
be completed during the coding process. Several Visual Basic keywords, such
as, Print, If, Do, and While, are used extensively in the pseudocode appearing
in this text.

8. Many people draw rectangles around each item in a hierarchy chart. In this text,
rectangles are omitted to encourage the use of hierarchy charts by making them
easier to draw.

P r o g r a m m i n g T o o l s 13

http://www.pearsoncustom.com/link/visualbasic/hierarchychart.html

S E C T I O N

FUNDAMENTALS OF
PROGRAMMING IN VISUAL BASIC

22

17

2.1 VISUAL BASIC OBJECTS

Visual Basic programs display a Windows style screen (called a form) with boxes into which
users type (and edit) information and buttons that they click to initiate actions. The boxes and
buttons are referred to as controls. Forms and controls are called objects. In this section, we
examine forms and four of the most useful Visual Basic controls.

Note: If Visual Basic has not been installed on your computer, you can install it by fol-
lowing the steps outlined on the first page of Appendix B.

Invoking Visual Basic 6.0: To invoke Visual Basic, click the Start button, point to Pro-
grams, point to Microsoft Visual Basic 6.0, and click on Microsoft Visual Basic 6.0 in the
final list.

With all versions of Visual Basic 6.0, the center of the screen will contain the New Pro-
ject window of Figure 2-1. The main part of the window is a tabbed dialog box with three
tabs—New, Existing, and Recent. (If the New tab is not in the foreground, click on it to bring
it to the front.) The number of project icons showing are either three (with the Working
Model and Learning Editions) or thirteen (with the Professional and Enterprise Editions).

FIGURE 2-1 New Project Window from the Working Model Edition of VB 6.0

Double-click the Standard EXE icon to bring up the initial Visual Basic screen in Fig-
ure 2-2. The appearance of this screen varies slightly with the different versions of Visual
Basic.

FIGURE 2-2 The Initial Visual Basic Screen

The Menu bar of the Visual Basic screen displays the commands you use to work with
Visual Basic. Some of the menus, like File, Edit, View, and Window, are common to most
Windows applications. Others, such as Project, Format, and Debug, provide commands spe-
cific to programming in Visual Basic.

The Toolbar is a collection of icons that carry out standard operations when clicked. For
example, the fifth icon, which looks like a diskette, can be used to save the current program
to a disk. To reveal the function of a Toolbar icon, position the mouse pointer over the icon
for a few seconds.

The large stippled Form window, or form for short, becomes a Windows window when
a program is executed. Most information displayed by the program appears on the form. The
information usually is displayed in controls that have been placed on the form. The Form
Layout window allows you to position the location of the form at run time relative to the
entire screen using a small graphical representation of the screen.

The Project Explorer window is seldom needed for our purposes until Section 12. The
Properties window is used to change how objects look and react.

The icons in the Toolbox represent controls that can be placed on the form. The four
controls discussed in this section are text boxes, labels, command buttons, and picture boxes.

Text boxes: You use a text box primarily to get information, referred to as input, from the
user.

Labels: You place a label to the left of a text box to tell the user what type of informa-
tion to enter into the text box. You also use labels to display output.

Command buttons: The user clicks a command button to initiate an action.

Picture boxes: You use a picture box to display text or graphics output.

18 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

A TEXT BOX WALKTHROUGH

1. Double-click on the text box icon. (The text box icon consists of the letters ab
and a vertical bar cursor inside a rectangle and is the fourth icon in the Tool-
box.) A rectangle with eight small squares, called sizing handles, appears at the
center of the form. See Figure 2-3.

FIGURE 2-3 A Text Box with Sizing Handles

2. Click anywhere on the form outside the rectangle to remove the handles.

3. Click on the rectangle to restore the handles. An object showing its handles is
(said to be) selected. A selected object can have its size altered, location
changed, and other properties modified.

4. Move the mouse arrow to the handle in the center of the right side of the text
box. The cursor should change to a double arrow (). Hold down the left
mouse button, and move the mouse to the right. The text box is stretched to the
right. Similarly, grabbing the text box by one of the other handles and moving
the mouse stretches the text box in another direction. For instance, you use the
handle in the upper-left corner to stretch the text box up and to the left. Handles
also can be used to make the text box smaller.

5. Move the mouse arrow to any point of the text box other than a handle, hold
down the left mouse button, and move the mouse. You can now drag the text box
to a new location. Using Steps 4 and 5, you can place a text box of any size any-
where on the form.

Note: The text box should now be selected; that is, its sizing handles should be
showing. If not, click anywhere inside the text box to select it.

6. Press the delete key, Del, to remove the text box from the form. Step 7 gives an
alternative way to place a text box of any size at any location on the form.

7. Click on the text box icon in the Toolbox. Then move the mouse pointer to any
place on the form. (When over the form, the mouse pointer becomes a pair of
crossed thin lines.) Hold down the left mouse button, and move the mouse on a
diagonal to generate a rectangle. Release the mouse button to obtain a selected
text box. You can now alter the size and location as before.

Note: The text box should now be selected; that is, its sizing handles should be
showing. If not, click anywhere inside the text box to select it.

8. Press F4 to activate the Properties window. (You can also activate the properties
window by clicking on it or clicking on the Properties window icon in the Tool-
bar.) See Figure 2-4. The first line of the Properties window (called the Object
box) reads “Text1 TextBox”. Text1 is the current name of the text box. The two
tabs permit you to view the list of properties either alphabetically or grouped
into categories. Text boxes have 43 properties that can be grouped into 7 cate-
gories. Use the up- and down-arrow keys (or the up- and down-scroll arrows) to
glance through the list. The left column gives the property and the right column
gives the current setting of the property. We discuss four properties in this walk-
through.

V i s u a l B a s i c O b j e c t s 19

FIGURE 2-4 Text Box Properties Window

9. Move to the Text property with the up- and down-arrow keys. (Alternatively,
scroll until the property is visible and click on the property.) The Text property
is now highlighted. The Text property determines the words in the text box. Cur-
rently, the words are set to “Text1” in the Settings box on the right.

10. Type your first name. As you type, your name replaces “Text1” in both the Set-
tings box and the text box. See Figure 2-5. (Alternatively, you could have
clicked on the Settings box and edited its contents.)

FIGURE 2-5 Setting the Text Property to David

11. Click at the beginning of your name in the Settings box and add your title, such
as Mr., Ms., or The Honorable. (If you mistyped your name, you can easily cor-
rect it now.)

12. Press Shift+Ctrl+F to move to the first property that begins with the letter F.
Now use the down-arrow key or the mouse to highlight the property ForeColor.
The foreground color is the color of the text.

13. Click on the down arrow in the right part of the Settings box, and then click on
the Palette tab to display a selection of colors. See Figure 2-6. Click on one of
the solid colors, such as blue or red. Notice the change in the color of your
name.

Categorized viewAlphabetic view

Descriptive
pane

Object
box

20 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

FIGURE 2-6 Setting the ForeColor Property

14. Highlight the Font property with a single click of the mouse. The current font
is named MS Sans Serif.

15. Click on the ellipsis (...) box in the right part of the settings box to display a dia-
log box. See Figure 2-7. The three lists give the current name (MS Sans Serif),
current style (Regular), and current size (8) of the font. You can change any of
these attributes by clicking. Click on Bold in the style list,and click on 12 in the
size list. Now click on the OK button to see your name displayed in a larger
bold font.

16. Click on the text box and resize it to be about 3 inches wide and 1 inch high.

FIGURE 2-7 The Font Dialog Box

Visual Basic programs consist of three parts—interface, values of properties, and code.
Our interface consists of a form with a single object, a text box. We have set a few proper-
ties for the text box—the text (namely, your name), the foreground color, the font style, and
the font size. In Section 2.2, we see how to place code into a program. Visual Basic endows
certain capabilities to programs that are independent of any code. We will now run the exist-
ing codeless program and experience these capabilities.

V i s u a l B a s i c O b j e c t s 21

http://www.pearsoncustom.com/link/visualbasic/interface.html

17. Press F5 to run the program. (Alternatively, a program can be run from the
menu by pressing Alt/R/S or by clicking on the Start icon , the twelfth icon
on the Toolbar.) Notice that the dots have disappeared from the form.

18. The cursor is at the beginning of your name. Press the End key to move the cur-
sor to the end of your name. Now type in your last name, and then keep typing.
Eventually, the words will scroll to the left.

19. Press Home to return to the beginning of the text. You have a full-fledged word
processor at your disposal. You can place the cursor anywhere you like to add
or delete text. You can drag the cursor across text to create a block, place a copy
of the block in the clipboard with Ctrl+C, and then duplicate it anywhere with
Ctrl+V.

20. To terminate the program, press Alt+F4. Alternatively, you can end a program
by clicking on the End icon , the fourteenth icon on the Toolbar, or clicking

on the form’s close button .

21. Select the text box, activate the Properties window, select the MultiLine prop-
erty, click on the down-arrow button, and finally click on True. The MultiLine
property has been changed from False to True.

22. Run the program, and type in the text box. Notice that now words wrap around
when the end of a line is reached. Also, text will scroll up when it reaches the
bottom of the text box.

23. End the program.

24. Press Alt/F/V, or click on the Save Project icon to save the work done so far.
A Save File As dialog box appears. See Figure 2-8. Visual Basic creates two
disk files to store a program. The first, with the extension .frm, is entered into
the Save File As dialog box and the second, with the extension .vbp, into a Save
Project As dialog box. Visual Basic refers to programs as projects.

FIGURE 2-8 The Save File As Dialog Box

25. Type a file name, such as testprog into the “File name” box. The extension .frm
automatically will be appended to the name. Do not press the Enter key yet.
(Pressing the Enter key has the same effect as clicking Save.) The selection in
the “Save in” box tells where your program will be saved. Alter it as desired.
(Suggestion: If you are using a computer in a campus computer lab, you prob-
ably should use a diskette to save your work. If so, place the diskette in a drive,
say, the A drive, and select 3 1/2 Floppy (A:) in the “Save in” box.)

22 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/clipboard.html

26. Click the Save button when you are ready to go on. (Alternatively, press Tab
several times until the Save button is highlighted and then press Enter.) The
Save Project As dialog box appears.

27. Type a file name into the File name box. You can use the same name, such as
testprog, as before. Then proceed as in Steps 25 and 26. (The extension .vbp
will be added.)

28. Press Alt/F/N to begin a new program. (As before, select Standard EXE.)

29. Place three text boxes on the form. (Move each text box out of the center of the
form before creating the next.) Notice that they have the names Text1, Text2,
and Text3.

30. Run the program. Notice that the cursor is in Text1. We say that Text1 has the
focus. (This means that Text1 is the currently selected object and any keyboard
actions will be sent directly to this object.) Any text typed will display in that
text box.

31. Press Tab once. Now, Text2 has the focus. When you type, the characters appear
in Text2.

32. Press Tab several times and then press Shift+Tab a few times. With Tab, the
focus cycles through the objects on the form in the order the objects were cre-
ated. With Shift+Tab, the focus cycles in the reverse order.

33. End the program.

34. Press Alt/F/O, or click on the Open Project icon to reload your first pro-
gram. When a dialog box asks if you want to save your changes, click the No
button or press N. An Open Project dialog box appears on the screen. Click on
the Recent tab to see a list of the programs most recently opened or saved. Your
first program and its location should appear at the top of the list. (Note: You can
also find any program by clicking on the Existing tab and using the dialog box
to search for the program.)

35. Click on the name of your first program and then click on the Open button.
Alternatively, double-click on the name. (You also have the option of typing the
name into the File Name box and then clicking the Open button.)

A COMMAND BUTTON WALKTHROUGH

1. Press Alt/F/N and double-click on Standard EXE to start a new program. There
is no need to save anything.

2. Double-click on the command button icon to place a command button in the
center of the form. (The rectangular-shaped command button icon is the sixth
icon in the Toolbox.)

3. Activate the Properties window, highlight the Caption property, and type
“Please Push Me”. See Figure 2-9. Notice that the letters appear on the com-
mand button as they are typed. The button is too small.

FIGURE 2-9 Setting the Caption Property

V i s u a l B a s i c O b j e c t s 23

4. Click on the command button to select it, and then enlarge it to accommodate
the phrase “Please Push Me” on one line.

5. Run the program, and click on the command button. The command button
appears to move in and then out. In Section 2.2, we write code that is activated
when a command button is pushed.

6. End the program, and select the command button.

7. From the Properties window, edit the Caption setting by inserting an ampersand
(&) before the first letter, P. Notice that the ampersand does not show on the
button. However, the letter following the ampersand is now underlined. See Fig-
ure 2-10. Pressing Alt+P while the program is running executes the same code
as clicking the command button. Here, P is referred to as the access key for the
command button. (The access key is always specified by the character follow-
ing the ampersand.)

FIGURE 2-10 Designating P as an Access Key

A LABEL WALKTHROUGH

1. Press Alt/F/N and double-click on Standard EXE to start a new program. There
is no need to save anything.

2. Double-click on the label icon to place a label in the center of the form. (The
label icon, a large letter A, is the third icon in the Toolbox.)

3. Activate the Properties window, highlight the Caption property, and type “Enter
Your Phone Number”. Such a label would be placed next to a text box into
which the user will enter a phone number.

4. Click on the label to select it, and then widen it until all words are on the same
line.

5. Make the label narrower until the words occupy two lines.

6. Activate the Properties window, and double-click on the Alignment property.
Double-click two more times and observe the label’s appearance. The combina-
tion of sizing and alignment permits you to design a label easily.

7. Run the program. Nothing happens, even if you click on the label. Labels just
sit there. The user cannot change what a label displays unless you write code to
allow the change.

8. End the program.

A PICTURE BOX WALKTHROUGH

1. Press Alt/F/N and double-click on Standard EXE to start a new program. There
is no need to save anything.

24 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

2. Double-click on the picture box icon to place a picture box in the center of the
form. (The picture box icon is the second icon in the Toolbox. It contains a pic-
ture of the sun shining over a desert.)

3. Enlarge the picture box.

4. Run the program. Nothing happens and nothing will, no matter what you do.
Although picture boxes look like text boxes, you can’t type in them. However,
you can display text in them with statements discussed later in this section, you
can draw lines and circles in them with statements discussed in Section 9, and
you can insert pictures into them.

5. End the program and click the picture box to select it.

6. Activate the Properties window, and double-click on the Picture property. A
Load Picture dialog box appears. See Figure 2-11.

FIGURE 2-11 The Load Picture Dialog Box

7. Select the Windows folder and then double-click on one of the picture files.
Good candidates are Clouds.bmp, shown in Figure 2-12, and Setup.bmp. (Also,
the CD accompanying this textbook contains several picture files in the folder
Pictures.)

FIGURE 2-12 A Picture Box Filled with the Clouds.bmp Picture

8. Click on the picture box and press Del to remove the picture box.

V i s u a l B a s i c O b j e c t s 25

COMMENTS

1. When selecting from a list, double-clicking has the same effect as clicking once
and pressing Enter.

2. On a form, the Tab key cycles through the objects that can get the focus, and in
a dialog box, it cycles through the items.

3. The form itself is also an object and has properties. For instance, you can
change the text in the title bar with the Caption property. You can move the form
by dragging the title bar of its Project Container window.

4. The name of an object is used in code to refer to the object. By default, objects
are given names like Text1 and Text2. You can use the Properties window to
change the Name property of an object to a more suggestive name. (The Name
property is always the first property in the list of properties. An object’s Name
must start with a letter and can be a maximum of 40 characters. It can include
numbers and underline (_) characters, but can’t include punctuation or spaces.)
Also, Microsoft recommends that each name begin with a three-letter prefix
that identifies the type of the control. See the table below. Beginning with Sec-
tion 2.2, we will use suggestive names and these prefixes whenever possible.

Object Prefix Example

command button cmd cmdComputeTotal
form frm frmPayroll
label lbl blInstructions
picture box pic picClouds
text box txt txtAddress

5. The Name and Caption properties of a command button are both initially set to
something like Command1. However, changing one of these properties does not
affect the setting of the other property. Similarly for the Name and Caption
properties of forms and labels, and for the Name and Text properties of text
boxes.

6. The color settings appear as strings of digits and letters preceded by &H and
trailed with &. Don’t concern yourself with the notation.

7. Here are some fine points on the use of the Properties window.

(a) Press Shift+Ctrl+letterkey to highlight the first property that begins with
that letter. Successive pressings highlight successive properties that begin
with that letter.

(b) To change the selected object from the Properties window, click on the
down-arrow icon at the right of the Object box of the Properties window.
Then select the new object from the drop-down list.

8. Some useful properties that have not been discussed are the following:

(a) BorderStyle: Setting the BorderStyle to “0 – None” removes the border
from an object.

(b) Visible: Setting the Visible property to False hides an object when the pro-
gram is run. The object can be made to reappear with code.

(c) BackColor: Specifies the background color for a text box, label, picture
box, or form. Also specifies the background color for a command button
having the Style property set to “1 – Graphical.” (Such a command button
can display a picture.)

(d) BackStyle: The BackStyle property of a label is opaque by default. The rec-
tangular region associated with the label is filled with the label’s back-

26 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html

ground color and caption. Setting the background style of a label to trans-
parent causes whatever is behind the label to remain visible; the back-
ground color of the label essentially becomes “see through.”

(e) Font: Can be set to any of Windows’ fonts, such as Courier and Times New
Roman. Two unusual fonts are Symbol and Wingdings. For instance, with
the Wingdings font, pressing the keys for %, &, ‘, and J yield a bell, a book,
a candle, and a smiling face, respectively. To view the character sets for the
different Windows’ fonts, click on the Start button, and successively select
Programs, Accessories, and Character Map. Then click on Character Map
or press the Enter key. After selecting a font, hold down the left mouse but-
ton on any character to enlarge it and obtain the keystroke that produces
that character.

9. When you click on a property in the Properties window, a description of the
property appears just below the window. Additional information about many of
the properties can be found in Appendix C. With the Learning, Professional,
and Enterprise Editions of VB6.0 you can obtain very detailed (and somewhat
advanced) information about a property by clicking on the property and press-
ing F1 for Help.

10. Most properties can be set or altered with code as the program is running
instead of being preset from the Properties window. For instance, a command
button can be made to disappear with a line such as Command1.Visible = False.
See Section 2.2 for details.

11. The BorderStyle and MultiLine properties of a text box can be set only from the
Properties window. You cannot alter them during run time.

12. Of the objects discussed in this section, only command buttons have true access
keys.

13. If you inadvertently double-click an object in a form, a window containing two
lines of text will appear. (The first line begins Private Sub.) This is a code win-
dow and is discussed in the next section. To remove this window, click on its
Close button.

14. To enlarge (or decrease) the Project Container window, position the mouse cur-
sor anywhere on the right or bottom edge and drag the mouse. To enlarge (or
decrease) the form, select the form and drag one of its sizing handles. Alterna-
tively, you can enlarge either the Project Container window or the form by
clicking on its Maximize button.

15. We will always be selecting the Standard EXE icon from the New Project win-
dow.

2.2 VISUAL BASIC EVENTS

When a Visual Basic program is run, a form and its controls appear on the screen. Normally,
nothing happens until the user takes an action, such as clicking a control or pressing the Tab
key. Such an action is called an event.

The three steps to creating a Visual Basic program are as follows:

1. Create the interface; that is, generate, position, and size the objects.

2. Set properties; that is, set relevant properties for the objects.

3. Write the code that executes when the events occur.

This section is devoted to Step 3.

V i s u a l B a s i c E v e n t s 27

http://www.pearsoncustom.com/link/visualbasic/interface.html

Code consists of statements that carry out tasks. Visual Basic has a repertoire of over
200 statements and we will use many of them in this text. In this section, we limit ourselves
to statements that change properties of objects while a program is running.

Properties of an object are changed in code with statements of the form

objectName.property = setting

where objectName is the name of the form or a control, property is one of the properties of
the object, and setting is a valid setting for that object. Such statements are called assignment
statements. They assign values to properties. Here are three other assignment statements.

The statement

txtBox.Font.Size = 12

sets the size of the characters in the text box named txtBox to 12.
The statement

txtBox.Font.Bold = True

converts the characters in the text box to boldface.
The statement

txtBox.Text = “”

clears the contents of the text box; that is, it invokes the blank setting.
Most events are associated with objects. The event clicking cmdButton is different from

the event clicking picBox. These two events are specified cmdButton_Click and
picBox_Click. The statements to be executed when an event occurs are written in a block of
code called an event procedure. The structure of an event procedure is

Private Sub objectName_event()
statements

End Sub

The word Sub in the first line signals the beginning of the event procedure, and the first line
identifies the object and the event occurring to that object. The last line signals the termina-
tion of the event procedure. The statements to be executed appear between these two lines.
(Note: The word Private indicates that the event procedure cannot be invoked by an event from
another form. This will not concern us until much later in the text. The word Sub is an abbre-
viation of Subprogram.) For instance, the event procedure

Private Sub cmdButton_Click()
txtBox.Text = “”

End Sub

clears the contents of the text box when the command button is clicked.

■ AN EVENT PROCEDURE WALKTHROUGH

The form in Figure 2-13, which contains a text box and a command button, will be used to
demonstrate what event procedures are and how they are created. Three event procedures will
be used to alter the appearance of a phrase that is typed into the text box. The event procedures
are txtPhrase_LostFocus, txtPhrase_GotFocus, and cmdBold_Click.

Object Property Setting

frmWalkthrough Caption Demonstration
txtPhrase Text (blank)
cmdBold Caption Make Phrase Bold

FIGURE 2-13 The Interface for the Event Procedure Walkthrough

28 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

1. Create the interface in Figure 2-13. The Name properties of the form, text box,
and command button should be set as shown in the Object column. The Caption
property of the form should be set to Demonstration, the Text property of the
text box should be made blank, and the Caption property of the command but-
ton should be set to Make Phrase Bold.

2. Double-click on the text box. A window, called the Code window, appears. See
Figure 2-14. Just below the title bar are two drop-down list boxes. The left box
is called the Object box and the right box is called the Procedure box. (When
you position the mouse pointer over one of these list boxes, its type appears.)

FIGURE 2-14 A Code Window

3. Click on the down-arrow button to the right of the Procedure box. The drop-
down menu that appears contains a list of all possible event procedures associ-
ated with text boxes. See Figure 2-15.

FIGURE 2-15 Drop-Down Menu of Event Procedures

4. Scroll down the list of event procedures and click on LostFocus. (LostFocus is
the 14th event procedure.) The lines

Private Sub txtPhrase_LostFocus()

End Sub

appear in the code window with a blinking cursor poised at the beginning of the
blank line.

Object
box

Procedure
box

V i s u a l B a s i c E v e n t s 29

http://www.pearsoncustom.com/link/visualbasic/listbox.html
http://www.pearsoncustom.com/link/visualbasic/interface.html

5. Type the line

txtPhrase.Font.Size = 12

between the existing two lines. (We usually indent lines inside procedures.)
(After you type each period, the editor displays a list containing possible choic-
es of items to follow the period. See Figure 2-16. This feature is called “List
Properties/Methods.” In Figure 2-16, instead of typing the word “Size,” you can
double-click on “Size” in the displayed list or highlight the word “Size” and
press Tab.) The screen appears as in Figure 2-17. We have now created an event
procedure that is activated whenever the text box loses the focus.

FIGURE 2-16 A LostFocus Event Procedure

FIGURE 2-17 A LostFocus Event Procedure

6. Let’s create another event procedure for the text box. Click on the down-arrow
button to the right of the Procedure box, scroll up the list of event procedures,
and click on GotFocus. Then type the lines

txtPhrase.Font.Size = 8txtPhrase.Font.Bold = False

between the existing two lines. See Figure 2-18.

30 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

FIGURE 2-18 A GotFocus Event Procedure

7. The txtPhrase_Change event procedure in Figure 2-18 was not used and can be
deleted. To delete the procedure, highlight it by dragging the mouse across the
two lines of code, and then press the Del key.

8. Let’s now create an event procedure for the command button. Click on the
down-arrow button to the right of the Object box. The drop-down menu con-
tains a list of the objects, along with a mysterious object called (General). See
Figure 2-19. [We’ll discuss (General) in the next section.]

FIGURE 2-19 List of Objects

9. Click on cmdBold. The event procedure cmdBold_Click is displayed. Type in
the line

txtPhrase.Font.Bold = True

The screen appears as in Figure 2-20, and the program is complete.

V i s u a l B a s i c E v e n t s 31

FIGURE 2-20 The Three Event Procedures

10. Now run the program by pressing F5.

11. Type something into the text box. In Figure 2-21, the words “Hello Friend” have
been typed. (A text box has the focus whenever it is ready to accept typing; that
is, whenever it contains a blinking cursor.)

FIGURE 2-21 Text Box Containing Input

12. Press the Tab key. The contents of the text box will be enlarged as in Figure 2-
22. When Tab was pressed, the text box lost the focus; that is, the event Lost-
Focus happened to txtPhrase. Thus, the event procedure txtPhrase_ LostFocus
was called, and the code inside the procedure was executed.

FIGURE 2-22 Text Box After It Has Lost the Focus

13. Click on the command button. This calls the event procedure cmd Bold_Click,
which converts the text to boldface. See Figure 2-23.

FIGURE 2-23 Text Box After the Command Button Has Been Clicked

32 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

14. Click on the text box or press the Tab key to move the cursor (and, therefore,
the focus) to the text box. This calls the event procedure txtPhrase_GotFocus,
which restores the text to its original state.

15. You can repeat Steps 11 through 14 as many times as you like. When you are
finished, end the program by pressing Alt+F4, clicking the End icon on the
Toolbar, or clicking the Close button (X) on the form.

COMMENTS

1. To hide the code window, press the right mouse button and click on Hide. You
can also hide it by clicking on the icon at the left side of the title bar and click-
ing on Close. To view a hidden code window, press Alt/View/Code. To hide a
form, close its container. To view a hidden form, press Alt/View/Object.

2. The form is the default object in Visual Basic code. That is, code such as

Form1.property = setting

can be written as

property = setting

Also, event procedures associated with Form1 appear as

Form_event()

rather than

Form1_event()

3. Another useful command is SetFocus. The statement

object.SetFocus

moves the focus to the object.

4. We have ended our programs by clicking the End icon or pressing Alt+F4. A
more elegant technique is to create a command button, call it cmdQuit, with
caption Quit and the event procedure:

Private Sub cmdQuit_Click()
End

End Sub

5. Certain words, such as Sub, End, and False, have special meanings in Visual
Basic and are referred to as keywords or reserved words. The Visual Basic edi-
tor automatically capitalizes the first letter of a keyword and displays the word
in blue.

6. Visual Basic can detect certain types of errors. For instance, consider the line

txtPhrase.Font.Bold = False

from the walkthrough. Suppose you neglected to type the word False to the right
of the equal sign before leaving the line. Visual Basic would tell you something
was missing by displaying the left message box at the top of page 66. (Also, the
line would turn red.) On the other hand, suppose in the CmdBold_Click proce-
dure you misspell the keyword “Bold” as “bolt.” You might notice something is
wrong when the letter “b” is not capitalized. If not, you will certainly know
about the problem when the program is run because Visual Basic will display
the right message box at the top of page 66 when you click on the command

V i s u a l B a s i c E v e n t s 33

http://www.pearsoncustom.com/link/visualbasic/messagebox.html

button. After you click on Debug, the line containing the offending word will
be highlighted.

7. At design time, colors are selected from a palette. At run time, the eight most
common colors can be assigned with the color constants vbBlack, vbRed,
vbGreen, vbYellow, vbBlue, vbMagenta, vbCyan, and vbWhite. For instance,
the statement

picBox.BackColor = vbYellow

gives picBox a yellow background.

8. For statements of the form object.property = setting, with properties Caption,
Text, or Font.Name, the setting must be surrounded by quotes. (For instance,
lblTwo.Caption = “Name”, txtBox.Text = “Fore”, and picBox.Font.Name =
“Courier”.) When the words True or False appear to the right of the equal sign,
they should not be surrounded by quotation marks.

9. Code windows have many features of word processors. For instance, the opera-
tions cut, copy, paste, find, undo, and redo can be carried out with the sixth
through eleventh icons of the Toolbar. These operations, and several others, also
can be initiated from the Edit menu.

10. Names of existing event procedures associated with an object are not automat-
ically changed when you rename the object. You must change them yourself and
also must change any references to the object. Therefore, you should finalize
the names of your objects before you put any code into their event procedures.

11. If you find the automatic List Properties/Methods feature distracting, you can
turn it off by pressing Tools/Options, selecting the Editor page, and clicking on
Auto List Members. If you do so, you can still display a list manually at the
appropriate time by pressing Ctrl+J.

12. Earlier versions of Visual Basic used the property FontSize instead of
Font.Size. Although Font.Size is preferred, FontSize is allowed for compatibil-
ity. Similarly, properties such as FontBold, FontItalic, and FontName have been
included for compatibility with earlier versions of Visual Basic.

13. Assignment statements can be written preceded with the keyword Let. For
instance, txtBox.Text = “Hello” also can be written Let txtBox.Text =
“Hello”. Therefore, assignment statements are also known as Let statements.

2.3 NUMBERS

Much of the data processed by computers consists of numbers. In “computerese,” numbers are
often called numeric constants. This section discusses the operations that are performed with
numbers and the ways numbers are displayed.

34 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

■ ARITHMETIC OPERATIONS

The five arithmetic operations in Visual Basic are addition, subtraction, multiplication, divi-
sion, and exponentiation. (Because exponentiation is not as familiar as the others, it is re-
viewed in detail in Comment 10.) Addition, subtraction, and division are denoted in Visual
Basic by the standard symbols +, –, and /, respectively. However, the notations for multipli-
cation and exponentiation differ from the customary mathematical notations.

Mathematical Notation Visual Basic Notation
a � b or a � b a * b

ar a ^ r

(The asterisk [*] is the upper character of the 8 key. The caret [^] is the upper character of the
6 key.) Note: In this book, the proportional font used for text differs from the monospaced font
used for programs. In the program font, the asterisk appears as a five-pointed star (*).

One way to show a number on the screen is to display it in a picture box. If n is a num-
ber, then the instruction

picBox.Print n

displays the number n in the picture box. If the picBox.Print instruction is followed by a com-
bination of numbers and arithmetic operations, it carries out the operations and displays the
result. Print is a reserved word and the Print operation is called a method. Another important
method is Cls. The statement

picBox.Cls
erases all text and graphics from the picture box picBox.

EXAMPLE 1

The following program applies each of the five arithmetic operations to the numbers 3 and 2. Notice that
3/2 is displayed in decimal form. Visual Basic never displays numbers as common fractions. Note 1: The
star in the fifth and eighth lines is the computer font version of the asterisk. Note 2: The word “Run” in
the phrasing [Run ...] indicates that F5 should be pressed to execute the program. Note 3: All programs
appearing in examples and case studies are provided on the CD accompanying this book. See the discus-
sion on the next to last page of the book for details.
Below is the form design and a table showing the names of the objects on the form and the settings, if
any, for properties of these objects. This form design is also used in the discussion and examples in the
remainder of this section.

Object Property Setting

frm3_3_1 Caption, 3-3-1
picResults
cmdCompute Caption Compute

Private Sub cmdCompute_Click()
picResults.Cls
picResults.Print 3 + 2
picResults.Print 3 - 2
picResults.Print 3 * 2
picResults.Print 3 / 2
picResults.Print 3 ^ 2
picResults.Print 2 * (3 + 4)

End Sub

[Run and then click the command button.]

N u m b e r s 35

■ SCIENTIFIC NOTATION

Let us review powers of 10 and scientific notation. Our method of decimal notation is based
on a systematic use of exponents.

101 = 10 10–1 = 1/10 = .1
102 = 100 10–2 = .01
103 = 1000 10–3 = .001
.
.
.
10n = 1000...0 10–n = .001...01

n zeros n digits

Scientific notation provides a convenient way of writing numbers by using powers of 10
to stand for zeros. Numbers are written in the form b � 10r, where b is a number from 1 up
to (but not including) 10, and r is an integer. For example, it is much more convenient to
write the diameter of the sun (1,400,000,000 meters) in scientific notation: 1.4 � 109 meters.
Similarly, rather than write .0000003 meters for the diameter of a bacterium, it is simpler to
write 3 � 10–7 meters.

Any acceptable number can be entered into the computer in either standard or scientific
notation. The form in which Visual Basic displays a number depends on many factors, with
size being an important consideration. In Visual Basic, b � 10r is usually written as bEr. (The
letter E is an abbreviation for exponent.) The following forms of the numbers just mentioned
are equivalent.

1.4 * 10^9 1.4E+09 1 4E+9 1.4E9 1400000000
3 * 10^–7 3E–07 3E–7 .0000003

The computer displays r as a two-digit number, preceded by a plus sign if r is positive and a
minus sign if r is negative.

EXAMPLE 2

The following program illustrates scientific notation. The computer’s choice of whether to display a num-
ber in scientific or standard form depends on the magnitude of the number.

Private Sub cmdCompute_Click()

picResults.Cls

picResults.Print 1.2 * 10 ^ 34

picResults.Print 1.2 * 10 ^ 8

picResults.Print 1.2 * 10 ^ 3

picResults.Print 10 ^ -20

picResults.Print 10 ^ -2

End Sub

[Run and then click the command button.]

36 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

■ VARIABLES

In applied mathematics problems, quantities are referred to by names. For instance, consider
the following high school algebra problem. “If a car travels at 50 miles per hour, how far will
it travel in 14 hours? Also, how many hours are required to travel 410 miles?” The solution to
this problem uses the well-known formula

distance = speed × time elapsed

Here’s how this problem would be solved with a computer program.

Private Sub cmdCompute_Click()
picResults.Cls speed = 50
timeElapsed = 14
distance = speed * timeElapsed
picResults.Print distance
distance = 410
timeElapsed = distance / speed
picResults.Print timeElapsed

End Sub

[Run, and then click the command button. The following is displayed in the picture box.]

700
8.2

The third line of the event procedure sets the speed to 50, and the fourth line sets the time
elapsed to 14. The fifth line multiplies the value for the speed by the value for the time elapsed
and sets the distance to this product. The next line displays the answer to the first question. The
three lines before the End Sub statement answer the second question in a similar manner.

The names speed, timeElapsed, and distance, which hold numbers, are referred to as
variables. Consider the variable timeElapsed. In the fourth line, its value was set to 14. In
the eighth line, its value was changed as the result of a computation. On the other hand, the
variable speed had the same value, 50, throughout the program.

In general, a variable is a name that is used to refer to an item of data. The value assigned
to the variable may change during the execution of the program. In Visual Basic, variable
names can be up to 255 characters long, must begin with a letter, and can consist only of let-
ters, digits, and underscores. (The shortest variable names consist of a single letter.) Visual
Basic does not distinguish between uppercase and lowercase letters used in variable names.
Some examples of variable names are total, numberOfCars, taxRate_1999, and n. As a con-
vention, we write variable names in lowercase letters except for the first letters of addition-
al words (as in numberOfCars).

If var is a variable and num is a constant, then the statement

var = num

assigns the number num to the variable var. (Such a statement is called an assignment state-
ment.) Actually, the computer sets aside a location in memory with the name var and places
the number num in it. The statement

picBox.Print var

N u m b e r s 37

looks into this memory location for the value of the variable and displays the value in the pic-
ture box.

A combination of constants, variables, and arithmetic operations that can be evaluated
to yield a number is called a numeric expression. Expressions are evaluated by replacing
each variable by its value and carrying out the arithmetic. Some examples of expressions are
2 * distance + 7, n + 1, and (a + b) / 3.

EXAMPLE 3

The following program displays the value of an expression.

Private Sub cmdCompute_Click()

picResults.Cls

a = 5

b = 4

picResults.Print a * (2 + b)

End Sub

[Run, and then click the command button. The following is displayed in the picture box.]

30

If var is a variable, then the statement

var = expression

first evaluates the expression on the right and then assigns its value to the variable. For instance,
the event procedure in Example 3 can be written as

Private Sub cmdCompute_Click()

picResults.Cls

a = 5

b = 4

c = a * (2 + b)

picResults.Print c

End Sub

The expression a * (2 + b) is evaluated to 30 and then this value is assigned to the variable c.
Because the expression on the right side of an assignment statement is evaluated before

an assignment is made, a statement such as

n = n + 1

is meaningful. It first evaluates the expression on the right (that is, it adds 1 to the orig-
inal value of the variable n), and then assigns this sum to the variable n. The effect is to
increase the value of the variable n by 1. In terms of memory locations, the statement
retrieves the value of n from n’s memory location, uses it to compute n + 1, and then places
the sum back into n’s memory location.

■ PRINT METHOD

Consider the following event procedure.

Private Sub cmdDisplay_Click()

picResults.Cls

picResults.Print 3

picResults.Print -3

End Sub

[Run and then click the command button.]

38 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

Notice that the negative number –3 begins directly at the left margin, whereas the positive
number 3 begins one space to the right. The Print method always displays nonnegative num-
bers with a leading space. The Print method also displays a trailing space after every number.
Although the trailing spaces are not apparent here, we will soon see evidence of their presence.

The Print methods used so far display only one number per line. After displaying a num-
ber, the cursor moves to the leftmost position and down a line for the next display. Borrow-
ing from typewriter terminology, we say that the computer performs a carriage return and a
line feed after each number is displayed. The carriage return and line feed, however, can be
suppressed by placing a semicolon at the end of the number.

EXAMPLE 4

The following program illustrates the use of semicolons in Print methods. The output reveals the presence
of the space trailing each number. For instance, the space trailing –3 combines with the leading space of
99 to produce two spaces between the numbers.

Private Sub cmdDisplay_Click()
picResults.Cls
picResults.Print 3;
picResults.Print -3;
picResults.Print 99;
picResults.Print 100

End Sub

[Run, and then click the command button.]

Semicolons can be used to display several numbers with one Print method. If m, n, and
r are numbers, a line of the form

picBox.Print m; n; r

displays the three numbers, one after another, separated only by their leading and trail-
ing spaces. For instance, the Print methods in preceding Example 4 can be replaced by the
single line

picResults.Print 3; -3; 99; 100

N u m b e r s 39

COMMENTS

1. Numbers must not contain commas, dollar signs, or percent signs. Also, mixed
numbers, such as 8 1/2, are not allowed.

2. Some people think of the equal sign (=) in an assignment statement as an arrow
pointing to the left. This stresses the fact that the value on the right is assigned
to the variable on the left.

3. Parentheses should be used when necessary to clarify the meaning of an expres-
sion. When there are no parentheses, the arithmetic operations are performed in
the following order: (1) exponentiations; (2) multiplications and divisions;
(3) additions and subtractions. In the event of ties, the leftmost operation is car-
ried out first. Table 2-1 summarizes these rules.

TABLE 2-1
Level of Precedence for Arithmetic Operations

() Inner to outer, left to right
^ Left to right in expression
*/ Left to right in expression
+ – Left to right in expression

4. Restricted keywords cannot be used as names of variables. For instance, the
statements print = 99 and end = 99 are not valid. Some other common restrict-
ed keywords are Call, If, Let, Select, and Sub. If a keyword is used as a variable
name, you will soon be warned that something is wrong. As soon as the cursor
is moved from the line, an error message will appear, and the line will turn red.
The use of some other keywords (such as Error, Height, Name, Rate, Time, Val,
Width, and Year) as variable names does not trigger an immediate warning, but
generates an error message when the program is run. Although there is a way to
get Visual Basic to accept this last group of keywords as variable names, we
will never use keywords as variable names. Most of the items in Appendix C,
other than properties, are reserved words. You can tell immediately when you
inadvertently use a reserved word as a variable in an assignment statement
because Visual Basic automatically capitalizes the first letter of keywords. For
instance, if you type “rate = 50” and press the Enter key, the line will change to
“Rate = 50”.

5. Grammatical errors, such as misspellings or incorrect punctuations, are called
syntax errors. Certain types of syntax errors are spotted by the smart editor
when they are entered, whereas others are not detected until the program is exe-
cuted. When Visual Basic spots an error, it displays a dialog box. Some incor-
rect statements and their errors are given below.

Statement Reason for Error
picBox.Primt 3 Misspelling of keyword
picBox.Print 2 + No number follows the plus sign
9W = 5 9W is not a valid variable name

6. Errors detected while a program is running are called run-time errors.
Although some run-time errors are due to improper syntax, others result from
the inability of the computer to carry out the intended task. For instance, if the
value of numVar is 0, then the statement

numVarInv = 1/numVar

interrupts the program with the run-time error “Division by zero.” If the file
DATA.TXT is not in the root folder of the C drive, then a statement that refers

40 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

to the file by the filespec “C:\DATA.TXT” produces the run-time error “File
not found.”

The dialog box generated by a run-time error states the type of error and has a
row of four command buttons captioned Continue, End, Debug, and Help. If
you click on the Debug command button, Visual Basic will highlight in yellow
the line of code that caused the error. (Note: After a run-time error occurs, the
program is said to be in break mode. See the first page of Appendix D for a dis-
cussion of the three program modes.)

7. A third type of error is the so-called logical error. Such an error occurs when
a program does not perform the way it was intended. For instance, the line

ave = firstNum + secondNum / 2

is syntactically correct. However, the missing parentheses in the first line are
responsible for an incorrect value being generated. Appendix D discusses
debugging tools that can be used to detect and correct logical errors.

8. The omission of the asterisk to denote multiplication is a common error. For
instance, the expression a(b + c) is not valid. It should read a * (b + c).

9. The largest number that most of the numeric variables considered in this text
can represent is 3.402823E+38. Attempting to generate larger values produces
the message “Overflow.” The numbers generated by the programs in this text
usually have a maximum of seven digits.

10. A Review of Exponents. The expression 23 means 2 � 2 � 2, the product of three
2’s. The number 3 is called the exponent, and the number 2 is called the base.
In general, if r is a positive integer and a is a number, then a is defined as fol-
lows:

ar = a � a. . . a

r factors

The process of calculating ar is called raising a to the rth power. Some other
types of exponents are the following:

a1/2 = �a� 91\2 = 3
a1/n = n�a� n positive integer 161/4 = 2
am/n = (n�a�)m m, n positive integers 82/3 = (3�8�)2 = 4
a–r = 1/ar a ≠ 0 10–2 = .01

11. More than one statement can be placed on a single line of a program provided
the statements are separated by colons. For instance, the code inside the event
procedure in Example 3 can be written as

picResults.Cls: a = 5: b = 4: picResults.Print a * (2 + b)

In general, though, programs are much easier to follow if just one statement
appears on each line. In this text, we almost always use single-statement lines.

12. When you first open a program that has been saved on disk, the Code window
may not appear. If so, run and then terminate the program to see the Code win-
dow. To see the Form window, click on Object in the View menu or press
Shift+F7. To return to the Code window, click on Code in the View window or
press F7.

N u m b e r s 41

http://www.pearsoncustom.com/link/visualbasic/debugging.html

2.4 STRINGS

Two primary types of data can be processed by Visual Basic: numbers and strings. Sentences,
phrases, words, letters of the alphabet, names, telephone numbers, addresses, and social se-
curity numbers are all examples of strings. Formally, a string constant is a sequence of char-
acters that is treated as a single item. Strings can be assigned names with assignment statements,
can be displayed with Print methods, and can be combined by an operation called concatena-
tion (denoted by &).

■ VARIABLES AND STRINGS

A string variable is a name used to refer to a string. The allowable names of string variables
are identical to those of numeric variables. The value of a string variable is assigned or al-
tered with assignment statements and displayed with Print methods just like the value of a nu-
meric variable.

EXAMPLE 1

The following code shows how assignment statements and Print are used with strings. The string variable
today is assigned a value by the fourth line and this value is displayed by the fifth line. The quotation
marks surrounding each string constant are not part of the constant and are not displayed by the Print
method. (The form design for Examples 1 through 5 consists of a command button and picture box.)

Private Sub cmdButton_Click()
picBox.Cls
picBox.Print “hello”
today = “9/17/99”
picBox.Print today

End Sub

[Run, and then click the command button. The following is displayed in the picture box.]

hello
9/17/99

If x, y, ..., z are characters and strVar1 is a string variable, then the statement

strVar1 = “xy...z”

assigns the string constant xy...z to the variable, and the statement

picBox.Print “xy...z”

or

picBox.Print strVar1

displays the string xy...z in a picture box. If strVar2 is another string variable, then the state-
ment

strVar2 = strVar1

assigns the value of the variable strVar1 to the variable strVar2. (The value of strVar1 will re-
main the same.) String constants used in assignment or picBox.Print statements must be sur-
rounded by quotation marks, but string variables are never surrounded by quotation marks.

As with numbers, semicolons can be used with strings in picBox.Print statements to sup-
press carriage returns and line feeds. However, picBox.Print statements do not display lead-
ing or trailing spaces along with strings.

42 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/stringvariable.html
http://www.pearsoncustom.com/link/visualbasic/concatenation.html
http://www.pearsoncustom.com/link/visualbasic/concatenation.html

EXAMPLE 2

The following program illustrates the use of the assignment statement and Print method with text.

Private Sub cmdShow_Click()
picOutput.Cls
phrase = “win or lose that counts.”
picOutput.Print “It’s not whether you ”; phrase
picOutput.Print “It’s whether I ”; phrase

End Sub

[Run, and then click the command button. The following is displayed in the picture box.]

It’s not whether you win or lose that counts.
It’s whether I win or lose that counts.

EXAMPLE 3

The following program has strings and numbers occurring together in a picBalance.Print statement.

Private Sub cmdCompute_Click()
picBalance.Cls
interestRate = 0.0655
principal = 100
phrase = “The balance after a year is”
picBalance.Print phrase; (1 + interestRate) * principal

End Sub

[Run, and then click the command button. The following is displayed in the picture box.]

The balance after a year is 106.55

■ CONCATENATION

Two strings can be combined to form a new string consisting of the strings joined together. The
joining operation is called concatenation and is represented by an ampersand (&). For in-
stance, “good” & “bye” is “goodbye”. A combination of strings and ampersands that can be
evaluated to form a string is called a string expression. The assignment statement and Print
method evaluate expressions before assigning them to variables or displaying them.

EXAMPLE 4

The following program illustrates concatenation.

Private Sub cmdDisplay_Click()
picQuote.Cls
quote1 = “The ballgame isn’t over, ”
quote2 = “until it’s over.”
quote = quote1 & quote2
picQuote.Print quote & “ Yogi Berra”

End Sub

[Run, and then click the command button. The following is displayed in the picture box.]

The ballgame isn’t over, until it’s over. Yogi Berra

S t r i n g s 43

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/concatenation.html

■ DECLARING VARIABLE TYPES

So far, we have not distinguished between variables that hold strings and variables that hold
numbers. There are several advantages to specifying the type of values, string or numeric, that
can be assigned to a variable. A statement of the form

Dim variableName As String

specifies that only strings can be assigned to the named variable. A statement of the form

Dim variableName As Single

specifies that only numbers can be assigned to the named variable. The term Single derives from
single-precision real number. After you type the space after the word “As,” the editor displays
a list of all the possible next words. In this text we use only a few of the items from this list.

A Dim statement is said to declare a variable. From now on we will declare all variables.
However, all the programs will run correctly even if the Dim statements are omitted. Declar-
ing variables at the beginning of each event procedure is regarded as good programming
practice because it makes programs easier to read and helps prevent certain types of errors.

EXAMPLE 5

The following rewrite of Example 3 declares all variables.

Private Sub cmdCompute_Click()

Dim interestRate As Single

Dim principal As Single

Dim phrase As String

picBalance.Cls

interestRate = 0.0655

principal = 100

phrase = “The balance after a year is”

picBalance.Print phrase; (1 + interestRate) * principal

End Sub

Several Dim statements can be combined into one. For instance, the first three Dim
statements of Example 5 can be replaced by

Dim interestRate As Single, principal As Single, phrase As String

Visual Basic actually has several different types of numeric variables. So far, we have
used only single-precision numeric variables. Single-precision numeric variables can hold
numbers of magnitude from as small as 1.4 � 10-45 to as large as 3.4 � 1038. Another type
of numeric variable, called Integer, can hold only whole numbers from –32768 to 32767.
Integer-type variables are declared with a statement of the form

Dim intVar As Integer

The Integer data type uses less memory than the Single data type and statements using the
Integer type execute faster. (This is only useful in programs with many calculations, such as
the programs in later sections that use For...Next loops.) Of course, Integer variables are lim-
ited because they cannot hold decimals or large numbers. We will use Integer variables ex-
tensively with For...Next loops in Section 6 and occasionally when the data clearly consist of
small whole numbers.

Other types of numeric variables are Long, Double, and Currency. We do not use them
in this text. If you want to learn about them, consult Appendix C. Whenever we refer to a
numeric variable without mentioning a type, we mean Single or Integer.

44 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/fornextloop.html

■ USING TEXT BOXES FOR INPUT AND OUTPUT

The contents of a text box is always a string. Therefore, statements such as

strVar = txtBox.Text

and

txtBox.Text = strVar

can be used to assign the contents of the text box to the string variable strVar and vice versa.
Numbers are stored in text boxes as strings. Therefore, they should be converted to num-

bers before being assigned to numeric variables. If str is a string representation of a number,
then

Val(str)

is that number. Conversely, if num is a number, then

Str(num)

is a string representation of the number. Therefore, statements such as

numVar = Val(txtBox.Text)

and

txtBox.Text = Str(numVar)

can be used to assign the contents of the text box to the numeric variable numVar and vice versa.
Note: When a non-negative number is converted to a string with Str, its first character (but not
its last character) is a blank space.

EXAMPLE 6

The following program converts miles to furlongs and vice versa. Note: A furlong is 1/8th of a mile.

Object Property Setting

frm3_4_6 Caption, Convertor
lblMile Caption Miles
txtMile Text 0
lblFurlong Caption Furlongs
txtFurlong Text 0

The two text boxes have been named txtMile and txtFurlong. With the Event procedures shown, typing a
number into a text box and pressing Tab results in the converted number being displayed in the other text
box.

Private Sub txtMile_LostFocus()
txtFurlong.Text = Str(8 * Val(txtMile.Text))

End Sub

Private Sub txtFurlong_LostFocus()
txtMile.Text = Str(Val(txtFurlong.Text) / 8)

End Sub

■ ANSI CHARACTER SET

Each of the 47 different keys in the center typewriter portion of the keyboard can produce two
characters, for a total of 94 characters. Adding 1 for the space character produced by the space
bar makes 95 characters. These characters have numbers ranging from 32 to 126 associated with

S t r i n g s 45

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/stringvariable.html

them. These values, called the ANSI (or ASCII) values of the characters, are given in Appendix
A. Table 2-2 shows a few of the values.

TABLE 2-2
A Few ANSI Values

32 (space) 48 0 66 B 122 z
33 ! 49 1 90 Z 123 {
34 “ 57 9 97 a 125 }
35 # 65 A 98 b 126 ~

Most of the best-known fonts, such as Ariel, Courier, Helvetica, and Times New Roman,
are essentially governed by the ANSI standard, which assigns characters to the numbers from
32 to 255. Table 2-3 shows a few of the higher ANSI values.

TABLE 2-3
A Few Higher ANSI Values

162 ¢ 177 ± 181 µ 190 3/4
169 © 178 2 188 1/4 247 ÷
176 ° 179 3 189 1/2 248 Ø

If n is a number between 32 and 255, then

Chr(n)

is the string consisting of the character with ANSI value n. If str is any string, then

Asc(str)

is the ANSI value of the first character of str. For instance, the statement

txtBox.Text = Chr(65)

displays the letter A in the text box and the statement

picBox.Print Asc(“Apple”)

displays the number 65 in the picture box.
Concatenation can be used with Chr to obtain strings using the higher ANSI characters.

For instance, with one of the fonts that conforms to the ANSI standard, the statement

txtBox.Text = “32” & Chr(176) & ” Fahrenheit”

displays 32° Fahrenheit in the text box.

■ THE KEYPRESS EVENT PROCEDURE

When a text box has the focus and the user presses a key, the KeyPress event procedure iden-
tifies the key pressed. When a key is pressed, the event procedure assigns the ANSI value of
the key to an Integer variable called KeyAscii. The general form of the procedure is

Private Sub ControlName_KeyPress(KeyAscii As Integer)
statements

End Sub

The statements usually involve the variable KeyAscii. Also, a character does not appear in the
text box until End Sub is reached. At that time, the character with ANSI value KeyAscii is dis-
played.

EXAMPLE 7

The following program allows the user to determine the ANSI values of the standard (typewriter) keys of
the keyboard. The statement txtCharacter. Text = “” removes any previously typed character from the text
box.

46 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/keypressevent.html
http://www.pearsoncustom.com/link/visualbasic/concatenation.html

Object Property Setting

frm3_4_7 Caption, ANSI Values
lblPress Caption Press any key
txtCharacter Text (blank)
picOutput

Private Sub txtCharacter_KeyPress(KeyAscii As Integer)
txtCharacter.Text = “”
picOutput.Cls
picOutput.Print Chr(KeyAscii);
“ has ANSI value”; KeyAscii

End Sub

[Run, and then press a key. For instance, if A is pressed, the following is displayed in the picture box.]

A has ANSI value 65

The KeyPress event procedure can alter the character typed into the text box. For
instance, if the statement

KeyAscii = 65

is placed in a KeyPress event procedure, the letter A is displayed when any standard key is
pressed. In Section 4, we use a decision structure to prevent the user from typing unwanted keys.
For instance, if we want the user to enter a number into a text box, we can intercept and dis-
card any key presses that are not digits. The statement

KeyAscii = 0

placed in a KeyPress event procedure discards the key pressed. Finally, a program can be made
more friendly by letting the Enter key (ANSI value 13) move the focus in the same way that
the Tab key moves the focus. This requires having a KeyPress event procedure for each object
that is to respond to the Enter key and then setting the focus to the next object when the value
of KeyAscii is 13.

COMMENTS

1. The string “” contains no characters and is called the null string or the empty
string. It is different than the string containing a single space (“ ”). String vari-
ables that have not been assigned values initially have “” as their default values.
(Numeric variables have default value 0.)

2. The statement picBox.Print, with no string or number, simply skips a line in the
picture box.

3. Assigning a string value to a numeric variable can result in the error message
“Type mismatch.”

4. In Visual Basic 6.0, the maximum allowable number of characters in a string is
approximately 2 billion.

5. The quotation-mark character (“) can be placed into a string constant by using
Chr(34). For example, after the statement

txtBox.Text = “George ” & Chr(34) & “Babe” & Chr(34) & “ Ruth”

is executed, the text box contains

George “Babe” Ruth

S t r i n g s 47

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/stringvariable.html
http://www.pearsoncustom.com/link/visualbasic/keypressevent.html
http://www.pearsoncustom.com/link/visualbasic/stringvariable.html

6. Most major programming languages require that all variables be declared
before they can be used. Although declaring variables with Dim statements is
optional in Visual Basic, you can tell Visual Basic to make declaration manda-
tory. The steps are as follows:

(a) From any code window, click on the down-arrow to the right of the Object
box and click on (General).

(b) Type

Option Explicit

and press Enter.

Then, if you use a variable without first declaring it in a Dim statement, the
message “Variable not defined” will appear as soon as you attempt to run the
program. One big advantage of using Option Explicit is that mistypings of vari-
able names will be detected. Otherwise, malfunctions due to typing errors are
often difficult to detect.

7. You can have Visual Basic automatically place Option Explicit in every pro-
gram you write. The steps are as follows:

(a) Press Alt/T/O and click on the Editor tab to invoke the editor options.

(b) If the square to the left of “Require Variable Declaration” does not contain
a check mark, click on the square and press the OK button.

8. Variables that are not (explicitly) declared with Dim statements are said to be
implicitly declared. Such variables, which have a data type called Variant, can
hold strings, numbers, and several other kinds of information.

9. You can display the type of a variable with the following steps—position the
cursor over the word, press the right mouse button, and click on Quick Info.

10. Val can be applied to strings containing nonnumeric characters. If the beginning
of the string str represents a number, then Val(str) is that number; otherwise, it
is 0. For instance, Val(“123Blastoff ”) is 123, and Val(“ab3”) is 0.

11. The KeyPress event also applies to command buttons and picture boxes.

12. Concatenation of strings also can be represented by a plus sign (+). However,
restricting the plus sign to operations on numbers eliminates ambiguity and pro-
vides self-documenting code.

13. If Val is omitted from the statement

numVar = Val(txtBox.Text)

or Str is omitted from the statement

txtBox.Text = Str(numVar)

Visual Basic does not complain, but simply makes the conversion for you. How-
ever, errors can arise from omitting Val and Str. For instance, if the contents of
txtBox1.Text is 34 and the contents of txtBox2.Text is 56, then the statement

numVar = txtBox1.Text + txtBox2.Text

assigns the number 3456 rather than 90 to numVar. (This is because Visual
Basic does not perform the conversion until just before the assignment.) If
txtBox1 is empty, then the statement

3 * txtBox1.Text

will stop the program and produce the error message “Type mismatch.” We fol-
low the standards of good programming practice by always using Val and Str to
convert values between text boxes and numeric variables. Similar considera-
tions apply to conversions involving label captions.

48 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/keypressevent.html
http://www.pearsoncustom.com/link/visualbasic/concatenation.html

14. Variable names should describe the role of the variable. Also, some program-
mers use a prefix, such as sng or str, to identify the type of a variable. For exam-
ple, they would use names like sngInterestRate and strFirstName.

2.5 INPUT AND OUTPUT

So far we have relied on assignment statements to assign values to variables. Data also can be
stored in files and accessed through Input # statements, or data can be supplied by the user in
a text box or input box. The Print method, with a little help from commas and the Tab func-
tion, can spread out and align the display of data in a picture box or on a printer. Message
boxes grab the user’s attention and display temporary messages. Comment statements allow
the programmer to document all aspects of a program, including a description of the input
used and the output to be produced.

■ READING DATA FROM FILES

In Section 1, we saw how to create data files with Windows’ Notepad. (As a rule of thumb, and
simply as a matter of style, we enclose each string in quotation marks.) A file can have either
one item per line or many items (separated by commas) can be listed on the same line. Usually,
related items are grouped together on a line. For instance, if a file consisted of payroll infor-
mation, each line would contain the name of a person, that person’s hourly wage, and the num-
ber of hours that person worked during the week, as shown in Figure 2-24.

“Mike Jones”, 7.35, 35
“John Smith”, 6.75, 33

FIGURE 2-24 Contents of STAFF.TXT

The items of data will be assigned to variables one at a time in the order they appear in
the file. That is, “Mike Jones” will be the first value assigned to a variable. After all the items
from the first line have been assigned to variables, subsequent requests for values will be
read from the next line.

Data stored in a file can be read in order (that is, sequentially) and assigned to variables
with the following steps.

1. Choose a number from 1 to 255 to be the reference number for the file.

2. Execute the statement

Open “filespec” For Input As #n

where n is the reference number. This procedure is referred to as Opening a file
for input. It establishes a communications link between the computer and the
disk drive for reading data from the disk. Data then can be input from the spec-
ified file and assigned to variables in the program.

3. Read items of data in order, one at a time, from the file with Input # statements.
The statement

Input #n, var

causes the program to look in the file for the next available item of data and
assign it to the variable var. In the file, individual items are separated by com-
mas or line breaks. The variable in the Input # statement should be the same
type (that is, string versus numeric) as the data to be assigned to it from the file.

4. After the desired items have been read from the file, close the file with the
statement

Close #n

I n p u t a n d O u t p u t 49

http://www.pearsoncustom.com/link/visualbasic/tabfunction.html
http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/messagebox.html
http://www.pearsoncustom.com/link/visualbasic/inputbox.html
http://www.pearsoncustom.com/link/visualbasic/tabfunction.html
http://www.pearsoncustom.com/link/visualbasic/messagebox.html

EXAMPLE 1

Write a program that uses a file for input and produces the same output as the following code. (The form
design for all examples in this section consists of a command button and a picture box.)

Private Sub cmdDisplay_Click()

Dim houseNumber As Single, street As String

picAddress.Cls

houseNumber = 1600

street = “Pennsylvania Ave.”

picAddress.Print “The White House is located at”; houseNumber; street

End Sub

[Run and then click the command button. The following is displayed in the picture box.]

The White House is located at 1600 Pennsylvania Ave.

SOLUTION:
Use Windows’ Notepad to create the file DATA.TXT containing the following two lines:

1600
“Pennsylvania Ave.”

In the following code, the fifth line looks for the first item of data, 1600, and assigns it to the numeric
variable houseNumber. (Visual Basic records that this piece of data has been used.) The sixth line looks
for the next available item of data, “Pennsylvania Ave.”, and assigns it to the string variable street. Note:
You will have to alter the Open statement in the fourth line to tell it where the file DATA.TXT is located.
For instance, if the file is in the root directory (that is, folder) of a diskette in drive A, then the line should
read Open “A:\DATA.TXT” For Input As #1. If the file is located in the subdirectory (that is,
folder) VB6 of the C drive, then the statement should be changed to Open ”C:\VB6\DATA.TXT”
For Input As #1. See Comment 1 for another option.

Private Sub cmdReadFile_Click()

Dim houseNumber As Single, street As String

picAddress.Cls

Open “DATA.TXT” For Input As #1

Input #1, houseNumber

Input #1, street

picAddress.Print “The White House is located at”; houseNumber; street

Close #1

End Sub

A single Input # statement can assign values to several different variables. For instance,
the two Input # statements in the solution of Example 1 can be replaced by the single state-
ment

Input #1, houseNumber, street

In general, a statement of the form

Input #n, var1, var2, ..., varj

has the same effect as the sequence of statements

Input #n, var1

Input #n, var2

.

.

.

Input #n, varj

50 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

EXAMPLE 2

The following program uses the file STAFF.TXT in Figure 2-24 to compute weekly pay. Notice that the
variables in the Input # statement are the same types (String, Single, Single) as the constants in each line
of the file.

Private Sub cmdCompute_Click()
Dim nom As String, wage As Single, hrs As Single
picPay.Cls
Open “STAFF.TXT” For Input As #1
Input #1, nom, wage, hrs
picPay.Print nom; hrs * wage
Input #1, nom, wage, hrs
picPay.Print nom; hrs * wage
Close #1

End Sub

[Run, and then click the command button. The following will be displayed in the picture box.]

Mike Jones 257.25
John Smith 222.75

In certain situations, we must read the data in a file more than once. This is accom-
plished by closing the file and reopening it. After a file is closed and then reopened, subse-
quent Input # statements begin reading from the first entry of the file.

EXAMPLE 3

The following program takes the average annual amounts of money spent by single-person households for
several categories and converts these amounts to percentages. The data are read once to compute the total
amount of money spent and then read again to calculate the percentage for each category. Note: These
figures were compiled for the year 1995 by the Bureau of Labor Statistics.

COSTS.TXT consists of the following four lines:

“Transportation”, 3887
“Housing”, 7643
“Food”, 3017
“Other”, 7804

Private Sub cmdCompute_Click()
Dim total As Single, category As String, amount As Single
Open “COSTS.TXT” For Input As #1
picPercent.Cls
total = 0
Input #1, category, amount
total = total + amount
Input #1, category, amount
total = total + amount
Input #1, category, amount
total = total + amount
Input #1, category, amount
total = total + amount
Close #1
Open “COSTS.TXT” For Input As #1
Input #1, category, amount
picPercent.Print category; amount / total
Input #1, category, amount
picPercent.Print category; amount / total
Input #1, category, amount

I n p u t a n d O u t p u t 51

picPercent.Print category; amount / total
Input #1, category, amount
picPercent.Print category; amount / total
Close #1

End Sub

[Run and then click the command button. The following is displayed in the picture box.]

Transportation 0.1739072
Housing 0.3419534
Food 0.1349828
Other 0.3491566

■ INPUT FROM AN INPUT BOX

Normally, a text box is used to obtain input described by a label. Sometimes, we want just
one piece of input and would rather not have a text box and label stay on the screen forever.
The problem can be solved with an input box. When a statement of the form

stringVar = InputBox(prompt, title)

is executed, an input box similar to the one shown in Figure 2-25 pops up on the screen. After
the user types a response into the text box at the bottom of the screen and presses Enter (or
clicks OK), the response is assigned to the string variable. The title argument is optional and
gives the caption to appear in the Title bar. The prompt argument is a string that tells the user
what information to type into the text box.

FIGURE 2-25 Sample Input Box

When you type the parenthesis following the word InputBox, the editor displays a line
containing the general form of the InputBox statement. See Figure 2-26. This feature, which
was added in Visual Basic 5.0, is called Quick Info. Optional parameters are surrounded by
brackets. All the parameters in the general form of the InputBox statement are optional
except for prompt.

FIGURE 2-26 Quick Info Feature

52 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/stringvariable.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/inputbox.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html

EXAMPLE 4

In the following solution to Example 1, the file name is provided by the user in an input box.

Private Sub cmdDisplay_Click()
Dim fileName As String, prompt As String, title As String
Dim houseNumber As Single, street As String
picAddress.Cls
prompt = “Enter the name of the file containing the information.”
title = “Name of File”
fileName = InputBox(prompt, title)
Open fileName For Input As #1
Input #1, houseNumber
Input #1, street
picAddress.Print “The White House is located at”; houseNumber; street
Close #1

End Sub

[Run, and then click the command button. The input box of Figure 2-25 appears on the screen. Type
DATA.TXT (possibly preceded with a path) into the input box and click on OK. The input box disappears
and the following appears in the picture box.]

The White House is located at 1600 Pennsylvania Ave.

The response typed into an input box is treated as a single string value, no matter what
is typed. (Quotation marks are not needed and, if included, are considered as part of the
string.) Numeric data typed into an input box should be converted to a number with Val
before it is assigned to a numeric variable or used in a calculation.

■ FORMATTING OUTPUT WITH PRINT ZONES

Each line in a picture box can be thought of as being subdivided into zones, as shown in Figure
2-27. Each zone contains 14 positions, where the width of a position is the average width of
the characters in the font.

FIGURE 2-27 Print Zones

We have seen that when the Print method is followed by several items separated by semi-
colons, the items are displayed one after another. When commas are used instead of semi-
colons, the items are displayed in consecutive zones. For instance, if the Font property of
picBox is set to Courier, when the motto of the state of Alaska is displayed with the state-
ments

picBox.Print “North”, “to”, “the”, “future.”
picBox.Print “12345678901234567890123456789012345678901234567890”

the resulting picture box is

where each word is in a separate print zone. This same output can be achieved with the code

I n p u t a n d O u t p u t 53

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/inputbox.html

Dim a As String, b As String, c As String, d As String
a = “North”
b = “to”
c = “the”
d = “future.”
picBox.Print a, b, c, d

picBox.Print “12345678901234567890123456789012345678901234567890”

EXAMPLE 5

The following program uses Print zones to organize expenses for public and private schools into columns
of a table. The data represent the average expenses for 1995–96. (The Font setting for picTable is the
default font MS Sans Serif.)

Private Sub cmdDisplay_Click()
picTable.Cls
picTable.Print “ ”, “Pb 2-yr”, “Pr 2-yr”, “Pb 4-yr”, “Pr 4-yr”
picTable.Print
picTable.Print “Tuit & Fees”, 1387, 6350, 2860, 12432
picTable.Print “Bks & Suppl”, 577, 567, 591, 601
picTable.Print “Board”, 1752, 1796, 1721, 1845
picTable.Print “Trans”, 894, 902, 929, 863
picTable.Print “Other Exp”, 1142, 1220, 1348, 1169
picTable.Print “ ”, “-------”, “-------”, “-------”, “-------”
picTable.Print “Total”, 5752, 10835, 7449, 16910

End Sub

[Run and then click the command button. The following is displayed in the picture box.]

Pb 2-yr Pr 2-yr Pb 4-yr Pr 4-yr
Tuit & Fees 1387 6350 2860 12432
Bks & Suppl 577 567 591 601
Board 1752 1796 1721 1845
Trans 894 902 929 863
Other Exp 1142 1220 1348 1169

------ ------ ------ ------
Total 5752 10835 7449 16910

■ TAB FUNCTION

If an item appearing in a Print statement is preceded by

Tab(n);

where n is a positive integer, that item will be displayed (if possible) beginning at the nth po-
sition of the line. (Exceptions are discussed in Comment 10.)

EXAMPLE 6

The following program uses the Tab function to organize data into columns of a table. The data represent
the number of bachelor’s degrees conferred (in units of 1000). (Source: National Center of Educational
Statistics.)

Private Sub cmdDisplay_Click()
picTable.Cls
picTable.Print Tab(10); “1970-71”; Tab(20); ”1980-81”; Tab(30); “1990-91”
picTable.Print
picTable.Print ”Male”; Tab(10); 476; Tab(20); 470; Tab(30); 490

54 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

picTable.Print “Female”; Tab(10); 364; Tab(20); 465; Tab(30); 560
picTable.Print “Total”; Tab(10); 840; Tab(20); 935; Tab(30); 1050

End Sub

[Run and then click the command button. The resulting picture box is shown.]

■ USING A MESSAGE BOX FOR OUTPUT

Sometimes you want to grab the user’s attention with a brief message such as “Correct” or “Nice
try, but no cigar.” You want this message only to appear on the screen until the user has read
it. This mission is easily accomplished with a message box such as the one shown in Figure
2-28. When a statement of the form

MsgBox prompt, , title

is executed, where prompt and title are strings, a message box with prompt displayed and the
title bar caption title appears, and stays on the screen until the user presses Enter or clicks
OK. For instance, the statement MsgBox “Nice try, but no cigar.”, , “Consolation” produces
Figure 2-28. If you use double quotation marks (“”) for title, the title bar will be blank.

FIGURE 2-28 Sample Message Box

■ LINE CONTINUATION CHARACTER

Up to 1023 characters can be typed in a line of code. If you use a line with more characters
than can fit in the window, Visual Basic scrolls the window toward the right as needed.
However, most programmers prefer having lines that are no longer than the width of the code
window. This can be achieved with the underscore character (_) preceded by a space. Make sure
the underscore doesn’t appear inside quotation marks though. For instance, the line

msg = “640K ought to be enough for anybody. (Bill Gates, 1981)”

can be written as

msg = “640K ought to be enough for ” & _
“anybody. (Bill Gates, 1981)”

■ OUTPUT TO THE PRINTER

You print text on a sheet of paper in the printer in much the same way you display text in a pic-
ture box. Visual Basic treats the printer as an object named Printer. If expr is a string or nu-
meric expression, then the statement

Printer.Print expr

I n p u t a n d O u t p u t 55

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/messagebox.html

sends expr to the printer in exactly the same way picBox.Print sends output to a picture box.
You can use semicolons, commas for print zones, and Tab.

Font properties can be set with statements like

Printer.Font.Name = “Script”

Printer.Font.Bold = True

Printer.Font.Size = 12

Another useful printer command is

Printer.NewPage

which starts a new page.
Windows’ print manager usually waits until an entire page has been completed before

starting to print. To avoid losing information, execute the statement

Printer.EndDoc

when you are finished printing.
The statement

PrintForm

prints the content of the form.

■ INTERNAL DOCUMENTATION

Now that we have the capability to write more complicated programs, we must concern our-
selves with program documentation. Program documentation is the inclusion of comments
that specify the intent of the program, the purpose of the variables, the nature of the data in
the files, and the tasks performed by individual portions of the program. To create a comment
line, just begin the line with an apostrophe. Such a line is completely ignored when the pro-
gram is executed. (The keyword Rem can be used instead of an apostrophe. Rem is an abbre-
viation of Remark.) Program documentation appears whenever the program is displayed or
printed. Also, a line of code can be documented by adding an apostrophe, followed by the de-
sired information, to the end of the line. Comments (also known as Rem statements) appear
green on the screen.

EXAMPLE 7

Document the program in Example 2.

SOLUTION
In the following program, the first comment describes the entire program, the next three comments give
the meanings of the variables, and the final comment describes the items in each line of the file.

Private Sub cmdCompute_Click()

‘Compute weekly pay

Dim nom As String ‘Employee name

Dim wage As Single ‘Hourly pay

Dim hrs As Single ‘Number of hours worked during week

picPay.Cls

Open “STAFF.TXT” For Input As #1

‘Get person’s name, hourly pay, and hours worked

Input #1, nom, wage, hrs

picPay.Print nom; hrs * wage Input #1, nom, wage,

hrs picPay.Print nom; hrs * wage

Close #1

End Sub

56 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

Some of the benefits of documentation are as follows:

1. Other people can easily comprehend the program.

2. The program can be understood when read later.

3. Long programs are easier to read because the purposes of individual pieces can
be determined at a glance.

COMMENTS

1. Visual Basic provides a convenient device for accessing a file that resides in the
same folder as the (saved) program. After a program has been saved in a fold-
er, the value of App.Path is the string containing the name of the folder. There-
fore, if a program contains a line such as

Open App.Path & “\DATA.TXT” For Input As #1

Visual Basic will look for the file DATA.TXT in the folder containing the pro-
gram.

The programs from this book, as well as the data files they use, all are con-
tained in the folder Programs on the CD accompanying this book. On the CD,
App.Path is used in every Open statement. Therefore, even after you copy the
contents of the Programs folder onto a hard drive or diskette, the programs will
continue to execute properly without your having to alter any paths.

2. The text box and input box provide a whole new dimension to the capabilities
of a program. The user, rather than the programmer, can provide the data to be
processed.

3. A string used in a file does not have to be enclosed by quotation marks. The
only exceptions are strings containing commas or leading and trailing spaces.

4. If an Input # statement looks for a string and finds a number, it will treat the
number as a string. Suppose the first two entries in the file DATA.TXT are the
numbers 2 and 3.

Private Sub cmdButton_Click()
Dim a As String, b As String
picBox.Cls
Open “DATA.TXT” For Input As #1
Input #1, a, b
picBox.Print a + b
Close #1

End Sub

[Run and then click the command button. The following is displayed in the pic-
ture box.]

23

5. If an Input # statement looks for a number and finds a string, the Input # state-
ment will assign the value 0 to the numeric variable. For instance, suppose the
first two entries in the file DATA.TXT are “ten” and 10. Then after the state-
ment

Input #1, num1, num2

is executed, where um1 and num2 are numeric variables, the values of these
variables will be 0 and 10.

I n p u t a n d O u t p u t 57

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/inputbox.html

6. If all the data in a file have been read by Input # statements and another item is
requested by an Input # statement, a box will appear displaying the message
“Input past end of file.”

7. Numeric data in a text box, input box, or file must be a constant. It cannot be a
variable or an expression. For instance, num, 1 / 2, and 2 + 3 are not acceptable.

8. To skip a Print zone, just include two consecutive commas.

9. Print zones are usually employed to align information into columns. Since most
fonts have proportionally-spaced characters, wide characters occupy more than
one fixed-width column and narrow characters occupy less. The best and most
predictable results are obtained when a fixed-pitch font (such as Courier) is
used with print zones.

10. The Tab function cannot be used to move the cursor to the left. If the position
specified in a Tab function is to the left of the current cursor position, the cur-
sor will move to that position on the next line. For instance, the line

picBox.Print “hello”; Tab(3); “good-bye”

results in the output

hello
good-bye

11. The statement Close, without any reference number, closes all open files.

12. Windows allows you to alternate between Visual Basic and Notepad without
exiting either application. To invoke Notepad with Windows, click on the Start
button; successively select Programs, Accessories, and Notepad; and then click
on Notepad or press the Enter key. Now that both Visual Basic and Notepad
have been invoked, you can go from one application to the other by holding
down the Alt key and repeatedly pressing the Tab key until the name of the other
application appears. When the Alt key is released, the named application
becomes active.

2.6 BUILT-IN FUNCTIONS

Visual Basic has a number of built-in functions that greatly extend its capability. These func-
tions perform such varied tasks as taking the square root of a number, counting the number of
characters in a string, and capitalizing letters. Functions associate with one or more values,
called the input, a single value, called the output. The function is said to return the output value.
The three functions considered in what follows have numeric input and output.

■ NUMERIC FUNCTIONS: SQR, INT, ROUND

The function Sqr calculates the square root of a number. The function Int finds the greatest in-
teger less than or equal to a number. Therefore, Int discards the decimal part of positive num-
bers. The value of Round (n, r) is the number n rounded to r decimal places. The parameter r
can be omitted. If so, n is rounded to a whole number. Some examples follow:

Sqr(9) is 3. Int(2.7) is 2. Round(2.7) is 3.
Sqr(0) is 0. Int(3) is 3. Round(2.317, 2) is 2.32.

Sqr(2) is 1.414214. Int(-2.7) is -3. Round(2.317, 1) is 2.3.

The terms inside the parentheses can be either numbers (as shown), numeric variables, or nu-
meric expressions. Expressions are first evaluated to produce the input.

58 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/tabfunction.html
http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/inputbox.html

EXAMPLE 1

The following program evaluates each of the functions for a specific input given by the value of the vari-
able n.

Private Sub cmdEvaluate_Click()
Dim n As Single, root As Single
‘Evaluate functions at a variable
picResults.Cls
n = 6.76
root = Sqr(n)
picResults.Print root; Int(n); Round(n,1)

End Sub

[Run and then click the command button. The following is displayed in the picture box.]

2.6 6 6.8

EXAMPLE 2

The following program evaluates each of the preceding functions at an expression.

Private Sub cmdEvaluate_Click()
Dim a As Single, b As Single
‘Evaluate functions at expressions
picResults.Cls
a = 2
b = 3
picResults.Print Sqr(5 * b + 1); Int(a ^ b); Round(a / b, 3)

End Sub

[Run and then click the command button. The following is displayed in the picture box.]

4 8 0.667

EXAMPLE 3

The following program shows an application of the Sqr function.

Private Sub cmdComputeHyp_Click()
Dim leg1 As Single, leg2 As Single, hyp As Single
‘Find the length of the hypotenuse of a right triangle
picHyp.Cls
leg1 = Val(txtFirst.Text)
leg2 = Val(txtSecond.Text)
hyp = Sqr(leg1 ^ 2 + leg2 ^ 2)
picHyp.Print “The length of the hypotenuse is”; hyp

End Sub

[Run, type 3 and 4 into the text boxes, and then click the command button.]

B u i l t - I n F u n c t i o n s 59

EXAMPLE 4

The following program shows how Int is used to carry out long division. When the integer m is divided
into the integer n with long division, the result is a quotient and a remainder. See Figure 2-29.

FIGURE 2-29 Long Division

Private Sub cmdDivide_Click()
Dim divisor As Single, dividend As Single
Dim quotient As Single, remainder As Single
‘Long division
picResult.Cls
divisor = Val(txtDivisor.Text)
dividend = Val(txtDividend.Text)
quotient = Int(dividend / divisor)
remainder = dividend - quotient * divisor
picResult.Print “The quotient is”; quotient
picResult.Print “The remainder is”; remainder

End Sub

[Run, type 14 and 256 into the text boxes, and then click the command button.]

■ STRING FUNCTIONS: LEFT, MID, RIGHT, UCASE, TRIM

The functions Left, Mid, and Right are used to extract characters from the left end, middle, and
right end of a string. Suppose str is a string and m and n are positive integers. Then Left(str,
n) is the string consisting of the first n characters of str and Right(str, n) is the string consist-
ing of the last n characters of str. Mid(str, m, n) is the string consisting of n characters of str,
beginning with the mth character. UCase(str) is the string str with all of its lowercase letters
capitalized. Trim(str) is the string str with all leading and trailing spaces removed. Some ex-
amples are as follows:

Left(“fanatic”, 3) is “fan”. Right(“fanatic”, 3) is “tic”.
Left(“12/15/99”, 2) is ”12”. Right(“12/15/99”, 2) is ”99”.
Mid(“fanatic”, 5, 1) is “t”. Mid(“12/15/99”, 4, 2) is ”15”.
UCase(“Disk”) is “DISK”. UCase(“12three”) is “12THREE”.
Trim(“ 1 2 ”) is “1 2”. Trim(”-12 “) is ”-12”.

The strings produced by Left, Mid, and Right are referred to as substrings of the strings
from which they were formed. For instance, “fan” and “t” are substrings of “fanatic”. The
substring “fan” is said to begin at position 1 of “fanatic” and the substring “t” is said to begin
at position 5.

60 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html

Like the numeric functions discussed before, Left, Mid, Right, UCase, and Trim also can
be evaluated for variables and expressions.

EXAMPLE 5

The following program evaluates the functions above for variables and expressions. Note that spaces are
counted as characters.

Private Sub cmdEvaluate_Click()
Dim str1 As String, str2 As String
‘Evaluate functions at variables and expressions.
picResults.Cls
str1 = “Quick as ”
str2 = “a wink”
picResults.Print Left(str1, 7)
picResults.Print Mid(str1 & str2, 7, 6)
picResults.Print UCase(str1 & str2)
picResults.Print “The average ”; Right(str2, 4); “ lasts .1 second.”
picResults.Print Trim(str1); str2

End Sub

[Run and then click the command button. The following is displayed in the picture box.]

Quick a
as a w
QUICK AS A WINK
The average wink lasts .1 second.

Quick asa wink

■ STRING-RELATED NUMERIC FUNCTIONS: LEN, INSTR

The functions Len and InStr operate on strings but produce numbers. The function Len gives
the number of characters in a string. The function InStr searches for the first occurrence of one
string in another and gives the position at which the string is found. Suppose str1 and str2 are
strings. The value of Len(str1) is the number of characters in str1. The value of InStr(str1, str2)
is 0 if str2 is not a substring of str1. Otherwise, its value is the first position of str2 in str1.
Some examples of Len and InStr follow:

Len(“Shenandoah”) is 10. InStr(“Shenandoah”, “nand”) is 4.
Len(“Just a moment”) is 13. InStr(“Just a moment”, “ ”) is 5.
Len(“ ”) is 1. InStr(“Croissant”, “ist”) is 0.

EXAMPLE 6

The following program evaluates functions at variables and expressions. The ninth line locates the posi-
tion of the space separating the two names. The first name will end one position to the left of this posi-
tion and the last name will consist of all but the first n characters of the full name.

Private Sub cmdAnalyze_Click()
Dim nom As String ‘Name
Dim n As Integer ‘Location of space
Dim first As String ‘First name
Dim last As String ‘Last name ‘
Evaluate functions at variables and expressions.
picResults.Cls
nom = txtFullName.Text
n = InStr(nom, “ ”)
first = Left(nom, n - 1)

B u i l t - I n F u n c t i o n s 61

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/numericfunctions.html

last = Right(nom, Len(nom) - n)
picResults.Print “Your first name is ”; first
picResults.Print “Your last name has”; Len(last); “letters.”

End Sub

[Run, type John Doe into the text box, and then click the command button.]

■ FORMAT FUNCTIONS

The Format functions are used to display numbers and dates in familiar forms and to right-jus-
tify numbers. Here are some examples of how numbers are converted to strings with Format
functions.

Function String Value
FormatNumber(12345.628, 1) 12,345.6
FormatCurrency(12345.628, 2) $12,345.63
FormatPercent(.185, 2) 18.50%

The value of FormatNumber(n, r) is the string containing the number n rounded to r dec-
imal places and displayed with commas every three digits to the left of the decimal point. The
value of FormatCurrency(n, r) is the string consisting of a dollar sign followed by the value
of FormatNumber(n, r). FormatCurrency uses the accountant’s convention of using sur-
rounding parentheses to denote negative amounts. The value of FormatPercent(n, r) is the
string consisting of the number n displayed as a percent and rounded to r decimal places.

With all three functions, r can be omitted. If so, the number is rounded to 2 decimal
places. Strings corresponding to numbers less than 1 in magnitude have a zero to the left of
the decimal point. Also, n can be a either a number, a numeric expression, or even a string
corresponding to a number.

Function String Value
FormatNumber(1 + Sqr(2), 3) 2.414
FormatCurrency(-1000) ($1,000.00)
FormatPercent(“.005”) 0.50%

If dateString represents a date in a form such as “7-4-1999”, “7-4-99”, or “7/4/99”, then
the value of FormatDateTime(dateString, vbLongDate) is a string giving the date as Sunday,
July 04, 1999.

Function String Value
FormatDateTime(“9-15-99”, vbLongDate) Wednesday, September 15, 1999
FormatDateTime(“10-23-00”, vbLongDate) Monday, October 23, 2000

The value of Format(expr, “@@ . . . @”), where “@@ . . . @” is a string of n “at” sym-
bols, is the string consisting of the value of expr right-justified in a field of n spaces. This
function is used with fixed-width fonts, such as Courier or Terminal, to display columns of
numbers so that the decimal points and commas are lined up or to display right-justified lists
of words. The following examples use a string of 10 “at” symbols.

Function String Value
Format(1234567890, “@@@@@@@@@@”) 1234567890
Format(FormatNumber(1234.5), “@@@@@@@@@@”) 1,234.50
Format(FormatNumber(12345.67), “@@@@@@@@@@”) 12,345.67
Format(FormatCurrency(13580.17), “@@@@@@@@@@”) $13,580.17

62 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/formatfunctions.html

EXAMPLE 7

The following program produces essentially the first two columns of the table in Example 5 of Section
2.5. However, Format is used to right-justify the expense categories and to align the numbers.

Object Property Setting
frmExpenses Caption Public 2-year College Expenses
cmdDisplay Caption Display Expenses
picTable Font.Name Courier

Private Sub cmdDisplay_Click()
Dim fmt1 As String, fmt2 As String
Dim col1 As String, col2 As String
‘Average expenses of commuter students (1995-96)
picTable.Cls
picTable.Print Tab(19); “Pb 2-yr”
picTable.Print
fmt1 = “@@@@@@@@@@@@@@@@@” ‘17 @ symbols
fmt2 = “@@@@@@” ‘6 @ symbols
col1 = Format(“Tuition & Fees”, fmt1)
col2 = FormatNumber(1387, 0)
col2 = Format(col2, fmt2)
picTable.Print col1; Tab(19); col2
col1 = Format(“Books & Supplies”, fmt1)
col2 = FormatNumber(577, 0)
col2 = Format(col2, fmt2)
picTable.Print col1; Tab(19); col2
col1 = Format(“Board”, fmt1)
col2 = FormatNumber(1752, 0)
col2 = Format(col2, fmt2)
picTable.Print col1; Tab(19); col2
col1 = Format(“Transportation”, fmt1)
col2 = FormatNumber(894, 0)
col2 = Format(col2, fmt2)
picTable.Print col1; Tab(19); col2
col1 = Format(“Other Expenses”, fmt1)
col2 = FormatNumber(1142, 0)
col2 = Format(col2, fmt2)
picTable.Print col1; Tab(19); col2
picTable.Print Tab(19); “———”
col1 = Format(“Total”, fmt1)
col2 = FormatNumber(5752, 0)
col2 = Format(col2, fmt2)
picTable.Print col1; Tab(19);
col2

End Sub

[Run, and then click the command button.]

Pb 2-Yr
Tuition & Fees 1,387

Books & Supplies 577
Board 1,752

Transportation 894
Other Expenses 1,142

Total 5,752

B u i l t - I n F u n c t i o n s 63

■ GENERATING RANDOM NUMBERS: RND

Consider a specific collection of numbers. We say that a process selects a number at random
from this collection if any number in the collection is just as likely to be selected as any other
and the number cannot be predicted in advance. Some examples follow:

Collection Process

1, 2, 3, 4, 5, 6 toss a die
0 or 1, toss a coin: 0 = tails, 1 = heads
–1, 0, 1, . . . , 36 spin a roulette wheel (interpret –1 as 00)
1, 2, . . . , n write numbers on slips of paper, pull one from hat
numbers from 0 to 1 flip the spinner in Figure 2-30

FIGURE 2-30 Spinner to Randomly Select a Number Between 0 and 1

The function Rnd, which acts like the spinner in Figure 2-30, returns a random number.
The statement

picBox.Print Rnd

randomly displays a number from 0 up to (but not including) 1. The statement

numVar = Rnd

randomly assigns a number between 0 and 1 to the variable numVar. A different number will
be assigned each time Rnd is called in the program, and any number greater than or equal to
0 and less than 1 is just as likely to be generated as any other. Therefore, although Rnd looks
like a numeric variable, it does not act at all like a variable.

With appropriate scaling, the Rnd function can generate random numbers from other
collections. The statement

picBox.Print Int(6 * Rnd) + 1;

displays a number from the set 1, 2, 3, 4, 5, 6. Because Rnd always has a value from 0 to 1,
excluding 1, 6 * Rnd has a value from 0 to 6 (excluding 6), and Int(6 * Rnd) has one of the
values 0, 1, 2, 3, 4, 5. Adding 1 shifts the resulting number into the desired range.

Suppose the preceding statement is repeated many times. The integers generated should
exhibit no apparent pattern. They should look very much like a sequence of integers obtained
from successively rolling a die. For instance, each of the six integers should appear about
one-sixth of the time and be reasonably spread out in the sequence. The longer the sequence,
the more likely this is to occur.

Rnd normally generates the same sequence of numbers each time a program is run.
However, Visual Basic has another function, Randomize, that changes the sequence of num-
bers generated by Rnd. This statement will be used in all programs in this text.

64 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

EXAMPLE 8

The DC Lottery number is obtained by selecting a Ping-Pong ball from each of three separate bowls. Each
ball is numbered with an integer from 0 through 9. Write a computer program to produce a lottery num-
ber. (Such a program is said to simulate the selection of Ping-Pong balls.)

SOLUTION:
The value of Int(10 * Rnd) will be an integer from 0 through 9, and each of these integers has the same
likelihood of occurring. Repeating the process three times produces the requested digits.

Private Sub cmdDisplayANumber_Click()
‘Display a lottery number
picNumber.Cls
Randomize
picNumber.Print Int(10 * Rnd);
picNumber.Print Int(10 * Rnd);
picNumber.Print Int(10 * Rnd)

End Sub

[Run and then click the command button. One possible output to be displayed in the picture box is as fol-
lows.]

8 3 9

Note: Run the program in Example 8 several times and notice that the output changes each
time. Then delete the Randomize statement and run the program several times.

COMMENTS

1. Requesting the square root of a negative number terminates the execution of the
program and gives the error message “Invalid procedure call or argument.”

2. If n is greater than the length of str, then the value of Left(str, n) will be the
entire string str. A similar result holds for Mid and Right.

3. Visual Basic has a function called LCase that is analogous to UCase. LCase
converts all uppercase letters in a string to lowercase letters.

4. Because the values of the functions Left, Mid, Right, UCase, and the Format
functions are strings, they are referred to as string-valued functions.

5. Mid is an important function. It will be used several times in this book to exam-
ine each letter of a string.

6. Trim is useful when reading data from a text box. Sometimes users type spaces
at the end of input. Unless the spaces are removed, they can cause havoc else-
where in the program. Also, Trim is useful in trimming the leading spaces from
numbers that have been converted to strings with Str.

7. The InStr function has a useful extension. The value of InStr(n, str1, str2) is the
position of the first occurrence of str2 in str1 in position n or greater. For
instance, InStr(5, “Mississippi”, “ss”) is 6.

8. In Example 4, we found that 4 is the remainder when 256 is divided by 14.
Mathematicians say “4 = 256 modulo 14.” Visual Basic has an operation, Mod,
that performs this calculation directly. If m and n are positive integers, then n
Mod m is the remainder when n is divided by m. Visual Basic also has an oper-
ation called integer division, denoted by \, which gives the quotient portion of
a long division problem. For instance, 14/4 is 3.5 whereas 14\4 is the integer 3.

9. Recall that the function Mid has the form Mid(str, m, n) and returns the sub-
string of str starting with position m and having length n. Visual Basic does its
best to please for unexpected values of m and n. If m is greater than the length

B u i l t - I n F u n c t i o n s 65

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/formatfunctions.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/formatfunctions.html

of the string or n is 0, then the empty string is returned. If m + n is greater than
the length of the string, then Mid(str, m, n) is the right part of the string begin-
ning with the mth character. The same is true for Mid(str, m). For instance, the
values of Mid(“abcdef ”, 3, 9) and Mid(“abcdef ”, 3) are both “cdef ”.

10. With FormatCurrency(n, r), fractional values are preceded by a leading zero,
and negative values are surrounded by parentheses instead of beginning with a
minus sign. The function has additional optional parameters. FormatCurren-
cy(exp, , vbFalse) suppresses leading zeros for fractional values. FormatCur-
rency(exp, , , vbFalse) uses minus signs for negative numbers. For instance, the
value of FormatCurrency(–3/4, 3, vbFalse, vbFalse) is –$.750.

11. With FormatNumber(n, r), fractional values are preceded by a leading zero. The
function has additional optional parameters. FormatNumber(exp, , vbFalse)
suppresses leading zeros for fractional values. For instance, the value of For-
matNumber(3/4, 3) is 0.750 and the value of FormatNumber(3/4, 3, vbFalse) is
.750. FormatNumber(exp, , , , vbFalse) suppresses commas.

12. When n is a number that is halfway between two whole numbers (such as 1.5,
2.5, 3.5, and 4.5), then n is rounded by Round(n) to the nearest even number.
That is, half the time n is rounded up and half the time is rounded down. For
instance, Round(2.5) is 2 and Round(3.5) is 4. Similar results hold for any num-
ber whose decimal part ends in 5. For instance, Round(3.65, 1) is 3.6 and
Round(3.75, 1) is 3.8. On the other hand, FormatNumber, FormatCurrency, and
FormatPercent always round 5’s up. For instance, FormatNumber(2.5) is “3.00”.

13. The value of FormatDateTime(Now, vbLongDate) is today’s date. For any
positive number n, FormatDateTime(Now + n, vbLongDate) is the date n
days from today and FormatDateTime(Now - n, vbLongDate) is the date
n days ago.

14. The functions FormatNumber, FormatCurrency, FormatPercent, and
FormatDateTime were added to Visual Basic in VB6.0. The same results can be
obtained with the Format function alone. However, these new functions execute
faster than Format and are easier to use. In addition, they can be placed in
VBScript programs that are used to make Web pages interactive.

15. Each time the function Rnd appears in a program, it will be reassigned a value.
For instance, the task attempted (but not accomplished) by the first set of lines
that follows is achieved by the second set of lines. Because each of the Rnd’s in
the first set of lines will assume a different value, it is highly unlikely that the
square of the first one will equal the product of the last two.

‘Generate the square of a randomly chosen number
Randomize
picBox.Print “The square of”; Rnd; “is”; Rnd * Rnd’

Generate the square of a randomly chosen number
Randomize
numVar = Rnd
picBox.Print “The square of”; numVar; “is”; numVar * numVar

16. Additional information about the keywords, functions, methods, and properties
discussed in this section appear in Appendix C. With the Learning, Profession-
al, and Enterprise Editions of Visual Basic you can obtain a detailed (and some-
what advanced) discussion about an item appearing in code by clicking on the
item and pressing F1. Other ways of obtaining help with these editions are pre-
sented in Appendix B.

66 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/vbscript.html
http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/formatfunctions.html

SUMMARY

1. The Visual Basic screen consists of a collection of objects for which various
properties can be set. Some examples of objects are text boxes, labels, com-
mand buttons, picture boxes, and the form itself. Objects placed on the form are
called controls. Some useful properties are Text (set the text displayed by a text
box), Caption (set the title of a form, the contents of a label, or the words on a
command button), Font.Size (set the size of the characters displayed), Align-
ment (set the placement of the contents of a label), MultiLine (text box to dis-
play text on several lines), Picture (display drawing in picture box), ForeColor
(set foreground color), BackColor (set background color), Visible (show or hide
object), BorderStyle (alter and possibly remove border), Font.Bold (display
boldface text), and Font.Italic (display italic text).

2. An event procedure is called when a specific event occurs to a specified object.
Some event procedures are object_Click (object is clicked), object_LostFocus
(object loses the focus), object_GotFocus (object receives the focus), and
object_KeyPress (a key is pressed while object has the focus).

3. Visual Basic methods such as Print and Cls are applied to objects and are coded
as object.Print and object.Cls.

4. Two types of constants that can be stored and processed by computers are num-
bers and strings.

5. The arithmetic operations are +, –, *, /, and ^. The only string operation is &,
concatenation. An expression is a combination of constants, variables, func-
tions, and operations that can be evaluated.

6. A variable is a name used to refer to data. Variable names can be up to 255 char-
acters long, must begin with a letter, and may contain letters, digits, and under-
scores. Dim statements explicitly declare variables and specify the types of the
variables. In this book, variables have types Single, Integer, and String.

7. Values are assigned to variables by assignment and Input # statements. The val-
ues appearing in assignment statements can be constants, variables, or expres-
sions. Input # statements look to data files for constants. String constants used
in assignment statements must be surrounded by quotation marks, whereas quo-
tation marks are optional for string constants input with Input #. InputBox can
be used to request that the user type in data.

8. The Print method displays information in a picture box or on the printer. Semi-
colons, commas, and Tab control the placement of the items on a particular line.
A temporary message can be displayed on the screen using the MsgBox state-
ment.

9. You control the printer with the Printer object and write to it with statements of
the form Printer.Print expression. You set properties with statements of the form
Printer.property = setting. Printer.NewPage starts a new page and PrintForm
does a screen dump. A series of commands to the Printer object must end with
EndDoc, which actually produces the final printed page.

10. Comment statements are used to explain formulas, state the purposes of vari-
ables, and articulate the purposes of various parts of a program.

11. The Format functions provide detailed control of how numbers, dates, and
strings are displayed. Numbers can be made to line up uniformly and be dis-
played with dollar signs, commas, and a specified number of decimal places.
Dates can be converted to a long form. Strings can be right-justified.

P r o g r a m m i n g P r o j e c t s 67

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/formatfunctions.html
http://www.pearsoncustom.com/link/visualbasic/concatenation.html

12. Functions can be thought of as accepting numbers or strings as input and
returning numbers or strings as output.

Function Input Output

Asc string number
Chr number string
InStr string, string number
Int number number
LCase string string
Left string, number string
Len string number
Mid string, number, number string
Right string,, number string
Rnd number
Round number, number number
Sqr number number
Str number string
Trim string string
UCase string string
Val string number

PROGRAMMING PROJECTS

1. Write a program that allows the user to specify two numbers and then adds, sub-
tracts, or multiplies them when the user clicks on the appropriate command but-
ton. The output should give the type of arithmetic performed and the result.

2. Suppose automobile repair customers are billed at the rate of $35 per hour for
labor. Also, costs for parts and supplies are subject to a 5 percent sales tax.
Write a program to print out a simplified bill. The customer's name, the num-
ber of hours of labor, and the cost of parts and supplies should be entered into
the program via text boxes. When a command button is clicked, the customer's
name (indented) and the three costs should be displayed in a picture box, as
shown in the sample run in Figure 2-31.

FIGURE 2-31 Sample Run for Programming Project 2

3. Write a program to generate the following personalized form letter. The per-
son's name and address should be read from text boxes.

Mr. John Jones
123 Main Street
Juneau, Alaska 99803

Dear Mr. Jones,

68 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html

The Jones family has been selected as the
first family on Main Street to have the opportunity
to purchase an Apex solar-powered flashlight. Due to limited
supply, only 1000 of these amazing inventions will be available
in the entire state of Alaska. Don't delay. Order today.

Sincerely,
Cuthbert J. Twillie

4. At the end of each month, a credit card company constructs the table in Figure
2-32 to summarize the status of the accounts. Write a program to produce this
table. The first four pieces of information for each account should be read from
a data file. The program should compute the finance charges (1.5 percent of the
unpaid past due amount) and the current amount due. Format the last column to
be aligned right.

FIGURE 2-32 Status of Credit Card Accounts

5. Table 2-11 gives the distribution of the U.S. population (in thousands) by age
group and sex. Write a program to produce the table shown in Figure 2-33. For
each age group, the column labeled %Males gives the percentage of the people
in that age group that are male, similarly for the column labeled %Females. The
last column gives the percentage of the total population in each age group.
Note: Store the information in Table 2-11 in a data file. For instance, the first
line in the file should be “Under 20”, 39168, 37202. Read and add up the data
once to obtain the total population, and then read the data again to produce the
table.)

TABLE 2-11
U.S. Resident Population in Thousands (1996)

Age Group Males Females

Under 20 39,168 37,202
20–64 76,761 78,291
Over 64 13,881 19,980

U.S. Population (in thousands)

Age group Males Females %Males %Females %Total

Under 20 39,168 37,202 51.29% 48.71% 28.79%
20-64 76,761 78,291 49.51% 50.49% 58.45%
Over 64 13,881 19,980 40.99% 59.01% 12.76%

FIGURE 2-33 Output of Programming Project 5

6. Write a program to convert a U.S. Customary System length in miles, yards,
feet, and inches to a Metric System length in kilometers, meters, and centime-
ters. A sample run is shown in Figure 2-34. After the number of miles, yards,
feet, and inches are read from the text boxes, the length should be converted
entirely to inches and then divided by 39.37 to obtain the value in meters. The
Int function should be used to break the total number of meters into a whole

P r o g r a m m i n g P r o j e c t s 69

number of kilometers and meters. The number of centimeters should be dis-
played to one decimal place. Some of the needed formulas are as follows:

total inches = 63360 * miles + 36 * yards + 12 * feet + inches

total meters = total inches / 39.37

kilometers = Int(meters / 1000)

FIGURE 2-34 Sample Run for Programming Project 6

70 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

S E C T I O N

GENERAL PROCEDURES

33

73

3.1 SUB PROCEDURES, PART I

Structured program design requires that problems be broken into small problems to be solved
one at a time. Visual Basic has two devices, Sub procedures and Function procedures, that
are used to break problems into manageable chunks. To distinguish them from event procedures,
Sub and Function procedures are referred to as general procedures. General procedures also
eliminate repetitive code, can be reused in other programs, and allow a team of programmers
to work on a single program.

In this section we show how Sub procedures are defined and used. The programs in this
section are designed to demonstrate the use of Sub procedures rather than to accomplish
sophisticated programming tasks. Later chapters of the book use them for more substantial
programming efforts.

A Sub procedure is a part of a program that performs one or more related tasks, has its
own name, is written as a separate part of the program. The simplest type of Sub procedure
has the form

Private Sub ProcedureName()
statement(s)

End Sub

A Sub procedure is invoked with a statement of the form

Call ProcedureName

The rules for naming general procedures are identical to the rules for naming variables.
The name chosen for a Sub procedure should describe the task it performs. Sub procedures
can be either typed directly into the code window, or into a template created with the fol-
lowing steps:

1. Press Alt/T/P to select Add Procedure from the Tools menu.

2. Type in the name of the procedure. (Omit parentheses.)

3. Select Sub from the Type box.

4. Select Private from the Scope box. Note: Actually either Public or Private is
OK. A Public procedure is available to all forms, whereas a Private procedure
is only available to the form in which it is defined.

5. Press the Enter key or click on OK.

Consider the following program that calculates the sum of two numbers. This program
will be revised to incorporate Sub procedures.

Object Property Setting

frmArithmetic Caption Arithmetic
cmdAdd Caption Add Numbers
picResult

Private Sub cmdAdd_Click()
Dim num1 As Single, num2 As Single
‘Display the sum of two numbers
picResult.Cls
picResult.Print “This program displays a sentence “
picResult.Print “identifying two numbers and their sum.”
picResult.Print num1 = 2 num2 = 3
picResult.Print “The sum of”; num1; “and”; num2; “is”; num1 + num2

End Sub

[Run, and then click the command button. The following is displayed in the picture box.]

This program displays a sentence
identifying two numbers and their sum.

The sum of 2 and 3 is 5

The tasks performed by this program can be summarized as follows:
Explain purpose of program.

Display numbers and their sum.

Sub procedures allow us to write and read the program in such a way that we first focus on
the tasks and later on how to accomplish each task.

EXAMPLE 1

The following program uses a Sub procedure to accomplish the first task of the preceding program. When
the statement Call ExplainPurpose is reached, execution jumps to the Sub ExplainPurpose statement. The
lines between Sub ExplainPurpose and End Sub are executed, and then execution continues with the line
following the Call statement.

Private Sub cmdAdd_Click()
Dim num1 As Single, num2 As Single
‘Display the sum of two numbers
picResult.Cls
Call ExplainPurpose
picResult.Print
num1 = 2
num2 = 3
picResult.Print “The sum of”; num1; “and”; num2; “is”; num1 + num2

End Sub

Private Sub ExplainPurpose()
‘Explain the task performed by the program
picResult.Print “This program displays a sentence”
picResult.Print “identifying two numbers and their sum.”

End Sub

74 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

The second task performed by the addition program also can be handled by a Sub pro-
cedure. The values of the two numbers, however, must be transmitted to the Sub procedure.
This transmission is called passing.

EXAMPLE 2

The following revision of the program in Example 1 uses a Sub procedure to accomplish the second task.
The statement Call Add(2, 3) causes execution to jump to the Private Sub Add(num1 As Single, num2 As
Single) statement, which assigns the number 2 to num1 and the number 3 to num2.

Call Add(2, 3)

Private Sub Add(num1 As Single, num2 As Single)

After the lines between Private Sub Add (num1 As Single, num2 As Single) and End Sub are executed,
execution continues with the line following Call Add(2, 3), namely, the End Sub statement in the event
procedure. Note 1: When you create the Sub procedure Add, you must type in “(num1 As Single, num2
As Single)” after leaving the Add Procedure dialog box.

Private Sub cmdAdd_Click()

‘Display the sum of two numbers

picResult.Cls

Call ExplainPurpose

picResult.Print

Call Add(2, 3)

End Sub

Private Sub Add(num1 As Single, num2 As Single)

‘Display numbers and their sum

picResult.Print “The sum of”; num1; “and”; num2; “is”; num1 + num2

End Sub

Private Sub ExplainPurpose()

‘Explain the task performed by the program

picResult.Print “This program displays a sentence”

picResult.Print “identifying two numbers and their sum.”

End Sub

Sub procedures make a program easy to read, modify, and debug. The event procedure
gives a description of what the program does and the Sub procedures fill in the details.
Another benefit of Sub procedures is that they can be called several times during the execu-
tion of the program. This feature is especially useful when there are many statements in the
Sub procedure.

EXAMPLE 3

The following extension of the program in Example 2 displays several sums.

Private Sub cmdAdd_Click()

‘Display the sums of several pairs of numbers

picResult.Cls

Call ExplainPurpose

picResult.Print

Call Add(2, 3)

Call Add(4, 6)

Call Add(7, 8)

End Sub

S u b P r o c e d u r e s , P a r t I 75

Private Sub Add(num1 As Single, num2 As Single)
‘Display numbers and their sum picResult.Print “The sum of”; num1; “and”;
num2; “is”; num1 + num2

End Sub

Private Sub ExplainPurpose()
‘Explain the task performed by the program
picResult.Print “This program displays sentences”
picResult.Print “identifying pairs of numbers and their sums.”

End Sub

[Run and then click the command button. The following is displayed in the picture box.]

This program displays sentences
identifying pairs of numbers and their sums.

The sum of 2 and 3 is 5
The sum of 4 and 6 is 10
The sum of 7 and 8 is 15

The variables num1 and num2 appearing in the Sub procedure Add are called parame-
ters. They are merely temporary place holders for the numbers passed to the Sub procedure;
their names are not important. The only essentials are their type, quantity, and order. In this
Add Sub procedure, the parameters must be numeric variables and there must be two of
them. For instance, the Sub procedure could have been written

Private Sub Add(this As Single, that As Single)
‘Display numbers and their sum
picResult.Print “The sum of”; this; “and”; that; “is”; this + that

End Sub

A string also can be passed to a Sub procedure. In this case, the receiving parameter in
the Sub procedure must be followed by the declaration As String.

EXAMPLE 4

The following program passes a string and two numbers to a Sub procedure. When the Sub procedure is
first called, the string parameter state is assigned the string constant “Hawaii”, and the numeric parame-
ters pop and area are assigned the numeric constants 1184000 and 6471, respectively. The Sub procedure
then uses these parameters to carry out the task of calculating the population density of Hawaii. The sec-
ond Call statement assigns different values to the parameters.

Object Property Setting

frmStates Caption State Demographics
cmdDisplay Caption Display Demographics
picDensity

Private Sub cmdDisplay_Click()
‘Calculate the population densities of states
picDensity.Cls
Call CalculateDensity(“Hawaii”, 1184000, 6471)
Call CalculateDensity(“Alaska”, 607000, 591000)

End Sub

Private Sub CalculateDensity(state As String, pop As Single, area As Single)
Dim rawDensity As Single, density As Single

76 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html

‘The density (number of people per square mile)

‘will be displayed rounded to a whole number

rawDensity = pop / area

density = Round(rawDensity) ‘round to whole number

picDensity.Print “The density of “; state; “ is”; density;

picDensity.Print “people per square mile.”

End Sub

[Run, and then click the command button. The following is displayed in the picture box.]

The density of Hawaii is 183 people per square mile.

The density of Alaska is 1 people per square mile.

The parameters in the density program can have any names, as with the parameters in
the addition program of Example 3. The only restriction is that the first parameter be a string
variable and that the last two parameters be numeric variables. For instance, the Sub proce-
dure could have been written

Private Sub CalculateDensity(x As String, y As Single, z As Single)

Dim rawDensity As Single, density As Single

‘The density (number of people per square mile)

‘will be rounded to a whole number

rawDensity = y / z

density = Round(rawDensity)

picDensity.Print “The density of “; x; “ is”; density;

picDensity.Print “people per square mile.”

End Sub

When nondescriptive names are used for parameters, the Sub procedure should contain
comments giving the meanings of the variables. Possible comments for the preceding pro-
gram are

‘x name of the state’

y population of the state’

z area of the state

■ VARIABLES AND EXPRESSIONS AS ARGUMENTS

The items appearing in the parentheses of a Call statement are called arguments. These should
not be confused with parameters, which appear in the heading of a Sub procedure. In Example
3, the arguments of the Call Add statements were constants. These arguments also could have
been variables or expressions. For instance, the event procedure could have been written as fol-
lows. See Figure 3-1.

Private Sub cmdAdd_Click()

Dim x As Single, y As Single, z As Single

‘Display the sum of two numbers

picResult.Cls

Call ExplainPurpose

picResult.Print

x = 2

y = 3

Call Add(x, y)

Call Add(x + 2, 2 * y) z = 7

Call Add(z, z + 1)

End Sub

S u b P r o c e d u r e s , P a r t I 77

http://www.pearsoncustom.com/link/visualbasic/stringvariable.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/stringvariable.html

FIGURE 3-1 Passing Arguments to Parameters

This feature allows values obtained as input from the user to be passed to a Sub procedure.

EXAMPLE 5

The following variation of the addition program requests the two numbers as input from the user. Notice
that the names of the arguments, x and y, are different from the names of the parameters. The names of
the arguments and parameters may be the same or different; what matters is that the order, number, and
types of the arguments and parameters match.

Object Property Setting

frmAdd Caption Add Two Numbers
lblFirstNum Caption First Number
txtFirstNum Text (blank)
lblSecondNum Caption Second Number
txtSecondNum Text (blank)
cmdCompute Caption Compute Sum
picResult

Private Sub cmdCompute_Click()
Dim x As Single,, y As Single
‘This program requests two numbers and
‘displays the two numbers and their sum.
x = Val(txtFirstNum.Text)
y = Val(txtSecondNum.Text)
Call Add(x,, y)

End Sub

Private Sub Add(num1 As Single,, num2 As Single)
‘Display numbers and their sum
picResult.Cls
picResult.Print “The sum of”; num1; “and”; num2; “is”; num1 + num2

End Sub

[Run, type 23 and 67 into the text boxes, and then click the command button.]

EXAMPLE 6

The following variation of Example 4 obtains its input from the file DEMOGRAP.TXT. The second Call
statement uses different variable names for the arguments to show that using the same argument names is
not necessary. See Figure 3-2.

DEMOGRAP.TXT contains the following two lines:

78 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

"Hawaii", 1184000, 6471
"Alaska", 607000, 591000

Private Sub cmdDisplay_Click()

Dim state As String, pop As Single, area As Single

Dim s As String, p As Single, a As Single

'Calculate the population densities of states

picDensity.Cls Open "DEMOGRAP.TXT" For Input As #1

Input #1, state, pop, area

Call CalculateDensity(state, pop, area)

Input #1, s, p, a

Call CalculateDensity(s, p, a)

Close #1

End Sub

Private Sub CalculateDensity(state As String, pop As Single, area As Single)

Dim rawDensity As Single, density As Single

'The density (number of people per square mile)

'will be rounded to a whole number

rawDensity = pop / area density = Round(rawDensity)

picDensity.Print "The density of "; state; " is "; density;

picDensity.Print "people per square mile."

End Sub

[Run, and then click the command button. The following is displayed in the picture box.]

The density of Hawaii is 183 people per square mile.

The density of Alaska is 1 people per square mile.

FIGURE 3-2 Passing Arguments to Parameters in Example 6

Arguments and parameters also can be used to pass values from Sub procedures back to
event procedures or other Sub procedures. This important property is explored in detail in the
next section.

COMMENTS

1. In this text, Sub procedure names begin with uppercase letters in order to dis-
tinguish them from variable names. Like variable names, however, they can be
written with any combination of upper- and lowercase letters. To improve read-
ability, the Visual Basic editor will automatically ensure that the capitalization
of a Sub procedure name is consistent throughout a program. For instance, if
you type Private Sub PROCEDURENAME and also type Call ProcedureName,
the second name will be changed to match the first. Note: Parameters appear-
ing in a Sub statement are not part of the Sub procedure name.

S u b P r o c e d u r e s , P a r t I 79

http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html

2. To obtain a list of the general procedures in a program, select (General) from
the Code window's Object box and then click on the down-arrow at the right
side of the Procedure box.

3. Sub procedures allow programmers to focus on the main flow of the program
and defer the details of implementation. Modern programs use them liberally.
An event procedure acts as a supervisor, delegating tasks to the Sub procedures.
This method of program construction is known as modular or top-down
design.

4. As a rule, a Sub procedure should perform only one task, or several closely
related tasks, and should be kept relatively small.

5. After a Sub procedure has been defined, Visual Basic automatically reminds
you of the Sub procedure’s parameters when you type in Call statements. As
soon as you type in the left parenthesis of a Call statement, a banner appears
giving the names and types of the parameters. The help feature is called Para-
meter Info. See Figure 3-3.

FIGURE 3-3 The Parameter Info Help Feature

6. In this text, the first line inside a Sub procedure is often a comment statement
describing the task performed by the Sub procedure. If necessary, several com-
ment statements are devoted to this purpose. Conventional programming prac-
tice also recommends that all variables used by the Sub procedure be listed in
comment statements with their meanings. In this text, we give several examples
of this practice but only adhere to it when the variables are especially numerous
or lack descriptive names.

7. Although both constants and expressions can be used as arguments in Call
statements, only variables can be used as parameters in Sub statements.

8. A Sub procedure can call another Sub procedure. If so, after the End Sub of the
called Sub procedure is reached, execution continues with the line in the call-
ing Sub procedure that follows the Call statement.

9. When you write a Sub procedure without parameters, Visual Basic automati-
cally adds a pair of empty parentheses at the end of the Sub procedure name.
However, Call statements should not use the empty parentheses.

10. The first lines of event procedures and Sub procedures end with a pair of paren-
theses. With the event procedures we have discussed, the parentheses are usual-
ly empty, whereas with Sub procedures, the parentheses often contain
parameters.

3.2 SUB PROCEDURES, PART II
The previous section introduced the concept of a Sub procedure but left some questions unan-
swered. Why can’t the value of a variable be passed from an event procedure to a Sub proce-

80 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/topdowndesign.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/topdowndesign.html

dure by just using the variable in the Sub procedure? How do Sub procedures pass values back
to an event procedure? The answers to these questions provide a deeper understanding of the
workings of Sub procedures and reveal their full capabilities.

■ PASSING VALUES BACK FROM SUB PROCEDURES

Suppose a variable, call it arg, appears as an argument in a Call statement, and its corre-
sponding parameter in the Sub statement is par. After the Sub procedure is executed, arg will
have whatever value par had in the Sub procedure. Hence, not only is the value of arg passed
to par, but the value of par is passed back to arg.

EXAMPLE 1

The following program illustrates the transfer of the value of a parameter to its calling argument.

Private Sub cmdDisplay_Click()

Dim amt As Single

‘Illustrate effect of value of parameter on value of argument

picResults.Cls

amt = 2

picResults.Print amt;

Call Triple(amt)

picResults.Print amt

End Sub

Private Sub

Triple(num As Single)

‘Triple a number picResults.Print num;

num = 3 * num

picResults.Print num;

End Sub

[Run and then click the command button. The following is displayed in the picture box.]

2 2 6 6

Although this feature may be surprising at first glance, it provides a vehicle for passing
values from a Sub procedure back to the place from which the Sub procedure was called. Dif-
ferent names may be used for an argument and its corresponding parameter, but only one
memory location is involved. Initially, the cmdDisplay_Click() event procedure allocates a
memory location to hold the value of amt (Figure 3-4(a)). When the Sub procedure is called,
the parameter num becomes the Sub procedure’s name for this memory location
(Figure 3-4(b)). When the value of num is tripled, the value in the memory location becomes
6 (Figure 3-4(c)). After the completion of the procedure, the parameter name num is forgot-
ten; however, its value lives on in amt (Figure 3-4(d)). The variable amt is said to be passed
by reference.

FIGURE 3-4 Passing a Variable by Reference to a Sub Procedure

Passing by reference has a wide variety of uses. In the next example, it is used as a vehi-
cle to transport a value from a Sub procedure back to an event procedure.

S u b P r o c e d u r e s , P a r t I I 81

http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html

EXAMPLE 2

The following variation of the addition program from the previous section uses a Sub procedure to acquire
the input. The variables x and y are not assigned values prior to the execution of the first Call statement.
Therefore, before the Call statement is executed, they have the value 0. After the Call statement is exe-
cuted, however, they have the values 2 and 3. These values then are passed by the second Call statement
to the Sub procedure Add.

Object Property Setting

frmAdd Caption Add Two Numbers
lblFirstNum Caption First Number
txtFirstNum Text (blank)
lblSecondNum Caption Second Number
txtSecondNum Text (blank)
cmdCompute Caption Compute Sum
picResult

Private Sub cmdCompute_Click()
Dim x As Single, y As Single
‘Display the sum of the two numbers
Call GetNumbers(x, y)
Call Add(x, y)

End Sub

Private Sub Add(num1 As Single, num2 As Single)
Dim sum As Single
‘Display numbers and their sum
picResult.Cls
sum = num1 + num2
picResult.Print “The sum of”; num1; “and”; num2; “is”; sum

End Sub

Private Sub GetNumbers(num1 As Single, num2 As Single)
‘Record the two numbers in the text boxes
num1 = Val(txtFirstNum.Text)
num2 = Val(txtSecondNum.Text)

End Sub

[Run, type 2 and 3 into the text boxes, and then click the command button.]

In most situations, a variable with no preassigned value is used as an argument of a Call
statement for the sole purpose of carrying back a value from the Sub procedure.

EXAMPLE 3

The following variation of Example 2 allows the cmdCompute_Click event procedure to be written in the
input-process-output style.

Private Sub cmdCompute_Click()
Dim x As Single, y As Single, s As Single
‘Display the sum of two numbers
Call GetNumbers(x, y)

82 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html

Call CalculateSum(x, y, s)

Call DisplayResult(x, y, s)

End Sub

Private Sub CalculateSum(num1 As Single, num2 As Single, sum As Single)

‘Add the values of num1 and num2

‘and assign the value to sum

sum = num1 + num2

End Sub

Private Sub DisplayResult(num1 As Single, num2 As Single, sum As Single)

‘Display a sentence giving the two numbers and their sum

picResult.Cls

picResult.Print “The sum of”; num1; “and”; num2; “is”; sum

End Sub

Private Sub GetNumbers(num1 As Single, num2 As Single)

‘Record the two numbers in the text boxes

num1 = Val(txtFirstNum.Text)

num2 = Val(txtSecondNum.Text)

End Sub

■ PASSING BY VALUE

Sometimes you want to pass a variable to a Sub procedure, but you want to ensure that the vari-
able will retain its original value after the Sub procedure terminates—regardless of what was
done to the corresponding parameter inside the Sub procedure. Such a variable is said to be
passed by value. There are two ways to pass a variable by value.

1. In the Call statement, enclose the variable in an extra pair of parentheses.

2. In the Private Sub statement, precede the corresponding parameter with the
word ByVal.

For instance, in Example 1, if you change the Call statement to

Call Triple((amt))

then the output will be

2 2 6 2

The same output results if you change the Private Sub statement to

Private Sub Triple(ByVal num As Single)

When a variable is passed by value, two memory locations are involved. At the time the
Sub procedure is called, a temporary second memory location for the parameter is set aside
for the Sub procedure’s use and the value of the argument is copied into that location. After
the completion of the Sub procedure, the temporary memory location is released and the
value in it is lost.

■ LOCAL VARIABLES

When the same variable name appears in two different Sub procedures or in a Sub procedure
and an event procedure, Visual Basic gives the variables separate identities and treats them as
two different variables. A value assigned to a variable in one part of the program will not af-
fect the value of the like-named variable in the other part of the program, unless, of course,
the values are passed by a Call statement. Also, each time a Sub procedure is called, all de-
clared variables that are not parameters assume their default values. (Numeric variables have

S u b P r o c e d u r e s , P a r t I I 83

http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html

default value 0, and string variables default to the empty string.) The variables in a Sub pro-
cedure are said to be local to the Sub procedure in which they reside.

EXAMPLE 4

The following program illustrates the fact that each time a Sub procedure is called, its variables are set to
their default values; that is, numerical variables are set to 0 and string variables are set to the empty string.

Private Sub cmdDisplay_Click()
‘Demonstrate that variables in a Sub procedure do
‘not retain their values in subsequent calls
picResults.Cls
Call Three
Call Three

End Sub

Private Sub Three()
Dim num As Single
‘Display the value of num and assign it the value 3
picResults.Print num;
num = 3

End Sub

[Run, and then click the command button. The following is displayed in the picture box.]

0 0

EXAMPLE 5

The following program illustrates the fact that variables are local to the part of the program in which they
reside. The variable x in the event procedure and the variable x in the Sub procedure are treated as differ-
ent variables. Visual Basic handles them as if their names were separate, such as xcmdDisplay_Click and
xTrivial. Also, each time the Sub procedure is called, the value of variable x inside the Sub procedure is
reset to 0.

Private Sub cmdDisplay_Click()
Dim x As Single
‘Demonstrate the local nature of variables
picResults.Cls
x = 2
picResults.Print x;
Call Trivial
picResults.Print x;
Call Trivial
picResults.Print x;

End Sub

Private Sub Trivial()
Dim x As Single
‘Do something trivial
picResults.Print x;
x = 3
picResults.Print x;

End Sub

[Run and then click the command button. The following is displayed in the picture box.]

2 0 3 2 0 3 2

84 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/stringvariable.html

■ FORM-LEVEL VARIABLES

Visual Basic provides a way to make a variable visible to every procedure in a form’s code with-
out being passed. Such a variable is called a form-level variable. Form-level variables appear
at the top of the code window and are separated from the rest of the code by a horizontal sep-
arator line. Inside the code window, you can move to them either by pressing Ctrl+Home or
clicking on General in the Object list box. Form-level variables are said to reside in the
(Declarations) section of (General) and are declared with the following steps.

1. Invoke a code window if one is not already active.

2. Click on the down-arrow to the right of the Object list box.

3. Click on (General).

4. Click on (Declarations) in the Procedure list box.

5. Type in a declaration statement, such as Dim strVar As String, and press the
Enter key.

When a form-level variable is assigned a value by a procedure, it retains that value when
the procedure is exited. In this text, we rarely use form-level variables until Section 6.

EXAMPLE 6

The following program contains the form-level variables num1 and num2. Their Dim statement does not
appear inside a procedure.

Dim num1 As Single, num2 As Single ‘In (Declarations) section of (General)

Private Sub cmdDisplay_Click()

‘Display the sum of two numbers

num1 = 2

num2 = 3

picResults.Cls

Call AddAndIncrement

picResults.Print

picResults.Print “num1 = “; num1

picResults.Print “num2 = “; num2

End Sub

Private Sub AddAndIncrement()

‘Display numbers and their sum

picResults.Print “The sum of”; num1; “and”; num2; “is”; num1 + num2

num1 = num1 + 1

num2 = num2 + 1

End Sub

[Run, and click the command button. The following is displayed in the picture box.]

The sum of 2 and 3 is 5

num1 = 3

num2 = 4

In the preceding example, we had to click a command button to assign values to the
form-level variables. In some situations, we want to assign a value immediately to a form-
level variable, without requiring the user to perform some specific action. Visual Basic has
a special event procedure called Form_Load that is automatically activated as soon as the
program is run, even before the form is created. The Form_Load template is invoked by dou-
ble-clicking on the form itself.

S u b P r o c e d u r e s , P a r t I I 85

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/listbox.html
http://www.pearsoncustom.com/link/visualbasic/formlevelvariable.html

EXAMPLE 7

The following program demonstrates the use of Form_Load.

Dim pi As Single ‘In (Declarations) section of (General)

Private Sub Form_Load()
‘Assign a value to pi
pi = 3.14159

End Sub

Private Sub cmdCompute_Click()
‘Display the area of a circle of radius 5
picArea.Cls
picArea.Print “The area of a circle of radius 5 is”; pi * 5 * 5

End Sub

[Run, and then click the command button. The following is displayed in the picture box.]

The area of a circle of radius 5 is 78.53975

COMMENTS

1. In addition to the reasons presented earlier, some other reasons for using Sub
procedures follow:

(a) Programs with Sub procedures are easier to debug. Each Sub procedure can
be checked individually before being placed into the program.

(b) The task performed by a Sub procedure might be needed in another pro-
gram. The Sub procedure can be reused with no changes. Programmers refer
to the collection of their most universal Sub procedures as a library of Sub
procedures. (The fact that variables appearing in Sub procedures are local to
the Sub procedures is quite helpful when reusing Sub procedures in other
programs. There is no need to worry if a variable name in the Sub procedure
is used for a different purpose in another part of the program.)

(c) Often, programs are written by a team of programmers. After a problem has
been broken into distinct and manageable tasks, each programmer is
assigned a single Sub procedure to write.

(d) Sub procedures make large programs easier to understand. Some program-
ming standards insist that each Sub procedure be at most two pages long.

(e) Sub procedures permit the following program design, which provides a
built-in outline of an event procedure. A reader can focus on the main flow
first, and then go into the specifics of accomplishing the secondary tasks.

Private Sub Object_Event()
‘An event procedure written entirely as Sub procudures
Call FirstSubprocedure ‘Perform first task
Call SecondSubprocedure ‘Perform second task
Call ThirdSubprocedure ‘Perform third task

End Sub

2. Sub procedures can call other Sub procedures. In such cases, the calling Sub
procedure plays the role of the event procedure with respect to the called Sub
procedure. Complex problems are thereby broken into simpler tasks, which are
then broken into still more elementary tasks. This approach to problem solving
is called top-down design.

86 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/topdowndesign.html

3. In Appendix D, the section “Stepping Through a Program Containing a Proce-
dure: Section 3” uses the Visual Basic debugger to trace the flow through a pro-
gram and observe the interplay between arguments and parameters.

4. You can use the Print method in a Form_Load event procedure. If so, you must
set the AutoRedraw property of the picture box to True. Otherwise the contents
of the picture box will be erased when the event procedure terminates.

3.3 FUNCTION PROCEDURES

Visual Basic has many built-in functions. In one respect, functions are like miniature pro-
grams. They use input, they process the input, and they have output. Some functions we en-
countered earlier are listed in Table 3.1.

TABLE 3.1
Some Visual Basic Built-In Functions

Function Example Input Output

Int Int(2.6) is 2 number number
Chr Chr(65) is “A” number string
Len Len(“perhaps”) is 7 string number
Mid Mid(“perhaps”,4,2) is “ha” string, string

number,
number

InStr InStr(“to be”,“ ”) is 3 string,string number

Although the input can involve several values, the output always consists of a single
value. The items inside the parentheses can be constants (as in Table 3.1), variables, or
expressions.

In addition to using built-in functions, we can define functions of our own. These new
functions, called Function procedures or user-defined functions, are defined in much the
same way as Sub procedures and are used in the same way as built-in functions. Like built-
in functions, Function procedures have a single output that can be string or numeric. Func-
tion procedures can be used in expressions in exactly the same way as built-in functions.
Programs refer to them as if they were constants, variables, or expressions. Function proce-
dures are defined by function blocks of the form

Private Function FunctionName(var1 As Type1, var2 As Type2, ...) As dataType
statement(s)
FunctionName = expression

End Function

The variables in the top line are called parameters, and variables inside the function block that
are not parameters have local scope. Function names should be suggestive of the role per-
formed and must conform to the rules for naming variables. The type dataType, which speci-
fies the type of the output, will be one of String, Integer, Single, and so on. In the preceding
general code, the next-to-last line assigns the output, which must be of type dataType, to the
function name. Two examples of Function procedures are as follows:

Private Function FtoC(t As Single) As Single
‘Convert Fahrenheit temperature to Celsius
FtoC = (5 / 9) * (t - 32)

End Function

Private Function FirstName(nom As String) As String
Dim firstSpace As Integer
‘Extract the first name from the full name nom
firstSpace = InStr(nom, “ “)

F u n c t i o n P r o c e d u r e s 87

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html

FirstName = Left(nom, firstSpace - 1)
End Function

The value of each of the preceding functions is assigned by a statement of the form
FunctionName = expression. The variables t and nom appearing in the preceding functions
are parameters. They can be replaced with any variable of the same type without affecting the
function definition. For instance, the function FtoC could have been defined as

Private Function FtoC(temp As Single) As Single
‘Convert Fahrenheit temperature to Celsius
FtoC = (5 / 9) * (temp - 32)

End Function

Like Sub procedures, Function procedures can be created from a code window with Alt/T/P.
The only difference is that the circle next to the word Function should be selected. After the
name is typed and the OK button is clicked, the lines Private Function FunctionName() and
End Function will be placed automatically (separated by a blank line) in the code window.

EXAMPLE 1

The following program uses the function FtoC.

Object Property Setting

frm4_3_1 Caption Convert Fahrenheit to
Celsius

lblTempF Caption Temperature
(Fahrenheit)

txtTempF Text (blank)
cmdConvert Caption Convert to Celsius
lblTempC Caption Temperature (Celsius)
picTempC

Private Sub cmdConvert_Click()
picTempC.Cls
picTempC.Print FtoC(Val(txtTempF.Text))

End Sub

Private Function FtoC(t As Single) As Single
‘Convert Fahrenheit temperature to Celsius
FtoC = (5 / 9) * (t - 32)

End Function

[Run, type 212 into the text box, and then click the command button.]

EXAMPLE 2

The following program uses the function FirstName.

Object Property Setting

frm4_3_2 Caption Extract First Name
lblName Caption Name
txtFullName Text (blank)
cmdDetermine Caption Determine First Name
picFirstName

88 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html

Private Sub cmdDetermine_Click()

Dim nom As String

‘Determine a person’s first name

nom = txtFullName.Text

picFirstName.Cls

picFirstName.Print “The first name is “; FirstName(nom)

End Sub

Private Function FirstName(nom As String) As String

Dim firstSpace As Integer

‘Extract the first name from a full name

firstSpace = InStr(nom, “ “)

FirstName = Left(nom, firstSpace - 1)

End Function

[Run, type Thomas Woodrow Wilson into the text box, and then click the command button.]

The input to a user-defined function can consist of one or more values. Two examples of func-
tions with several parameters follow. One-letter variable names have been used so the mathe-
matical formulas will look familiar and be readable. Because the names are not descriptive,
the meanings of these variables are carefully stated in comment statements.

Private Function Hypotenuse(a As Single, b As Single) As Single

‘Calculate the hypotenuse of a right triangle

‘having sides of lengths a and b

Hypotenuse = Sqr(a ^ 2 + b ^ 2)

End Function

Private Function FV(p As Single,r As Single,c As Single,n As Single)

As Single Dim i As Single, m As Single

‘Find the future value of a bank savings account

‘p principal, the amount deposited

‘r annual rate of interest

‘c number of times interest is compounded per year

‘n number of years

‘i interest rate per period

‘m total number of times interest is compounded

i = r / c

m = c * n

FV = p * ((1 + i) ^ m)

End Function

EXAMPLE 3

The following program uses the Hypotenuse function.

F u n c t i o n P r o c e d u r e s 89

http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html

Object Property Setting

frm4_3_3 Caption Right Triangle
lblSideOne Caption Length of one side
txtSideOne Text (blank)
lblSideTwo Caption Length of other side
txtSideTwo Text (blank)
cmdCalculate Caption Calculate Hypotenuse
lblHyp Caption Length of hypotenuse
picHyp

Private Sub cmdCalculate_Click()
Dim a As Single, b As Single
‘Calculate length of the hypotenuse of a right triangle
a = Val(txtSideOne.Text)
b = Val(txtSideTwo.Text)
picHyp.Cls
picHyp.Print Hypotenuse(a, b)

End Sub

Private Function Hypotenuse(a As Single, b As Single) As Single
‘Calculate the hypotenuse of a right triangle
‘having sides of lengths a and b
Hypotenuse = Sqr(a ^ 2 + b ^ 2)

End Function

[Run, type 3 and 4 into the text boxes, and then click the command button.]

EXAMPLE 4

The following program uses the future value function. With the responses shown, the program computes
the balance in a savings account when $100 is deposited for 5 years at 4% interest compounded quarter-
ly. Interest is earned 4 times per year at the rate of 1% per interest period. There will be 4 * 5 or interest
periods.

Object Property Setting

frm4_3_4 Caption Bank Deposit
lblAmount Caption Amount of bank deposit
txtAmount Text (blank)
lblRate Caption Annual rate of interest
txtRate Text (blank)
lblNumComp Caption Number of times interest is

compounded per year
txtNumComp Text (blank)
lblNumYrs Caption Number of years
txtNumYrs Text (blank)
cmdCompute Caption Compute Balance
lblBalance Caption Balance
picBalance

90 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

Private Sub cmdCompute_Click()

Dim p As Single, r As Single, c As Single, n As Single

‘Find the future value of a bank deposit

Call InputData(p, r, c, n)

Call DisplayBalance(p, r, c, n)

End Sub

Private Sub DisplayBalance(p As Single,r As Single,c As Single,n As Single)

Dim balance As Single

‘Display the balance in the picture box

picBalance.Cls

balance = FV(p, r, c, n)

picBalance.Print FormatCurrency(balance)

End Sub

Private Function FV(p As Single,r As Single,c As Single,n As Single) As Single

Dim i As Single, m As Single

‘Find the future value of a bank savings account

‘p principal, the amount deposited

‘r annual rate of interest

‘c number of times interest is compounded per year

‘n number of years

‘i interest rate per period

‘m total number of times interest is compounded

i = r / c

m = c * n

FV = p * ((1 + i) ^ m)

End Function

Private Sub InputData(p As Single, r As Single, c As Single, n As Single)

‘Get the four values from the text boxes

p = Val(txtAmount.Text)

r = Val(txtRate.Text)

c = Val(txtNumComp.Text)

n = Val(txtNumYrs.Text)

End Sub

[Run, type 100, .04, 4, and 5 into the text boxes, then click the command button.]

EXAMPLE 5

Some computer languages have a useful built-in function called Ceil that is similar to the function Int,
except that it rounds noninteger numbers up to the next integer. For instance, Ceil(3.2) is 4 and Ceil(–1.6)
is –1. The following program creates Ceil in Visual Basic as a user-defined function.

F u n c t i o n P r o c e d u r e s 91

Object Property Setting

frm4_3_5 Caption Ceil Function
lblNumber Caption Enter a number
txtNumber Text (blank)
cmdCalculate Caption Calculate Ceil
picResults

Private Function Ceil(x As Single) As Single
‘Round nonintegers up
Ceil = -Int(-x)

End Function

Private Sub cmdCalculate_Click()
‘Demonstrate the Ceil function
picResults.Print “Ceil(“; txtNumber.Text; “) =”; Ceil(Val(txtNumber.Text))
txtNumber.Text = “”
txtNumber.SetFocus

End Sub

[Run, type 4.3 into the text box, click the command button, type 4 into the text box, and then click the
command button again.]

There are many reasons for employing user-defined functions.

1. User-defined functions are consistent with the modular approach to program
design. Once we realize a particular function is needed, we can give it a name
but save the task of figuring out the computational details until later.

2. Sometimes a single formula must be used several times in a program. Specify-
ing the formula as a function saves repeated typing of the same formula,
improves readability, and simplifies debugging.

3. Functions written for one program can be used in other programs. Programmers
maintain a collection, or library, of functions that might be needed.

COMMENTS

1. By default, variables passed to a Function procedure are passed by reference;
that is, their values are subject to being changed by the Function procedure.
Variables also can be passed by value to Function procedures and thereby have
their values persist. As with Sub procedures, a variable is passed by value if the
variable is enclosed in an extra pair of parentheses when the function is
invoked, or if the corresponding parameter in the Private Function statement is

92 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/debugging.html

preceded with the word ByVal. Built-in functions have all their arguments
passed by value. Some programmers feel that “by value” should have been the
default for Function procedures, rather than “by reference.”

2. Function procedures can perform the same tasks as Sub procedures. For
instance, they can request input and display text; however, they are primarily
used to calculate a single value. Normally, Sub procedures are used to carry out
other tasks.

3. Function procedures differ from Sub procedures in the way they are accessed.
Sub procedures are invoked with Call statements, whereas functions are
invoked by placing them where you would otherwise expect to find a constant,
variable, or expression. Unlike a Function procedure, a Sub procedure can’t be
used in an expression.

4. Function procedures can invoke other Function procedures or Sub procedures.

5. Function procedures, like Sub procedures need not have any parameters. Unlike
Sub procedures, when a parameterless function is used, the function name may
be followed by an empty set of parentheses. The following program uses a
“parameterless” function.

Private Sub cmdButton_Click()
‘Request and display a saying
picBox.Cls
picBox.Print Saying() ‘() is optional

End Sub

Private Function Saying() As String
‘Retrieve a saying from the user
Saying = InputBox(“What is your favorite saying?”)

End Function

[Run, click the command button, and then type Less is more. into the message
box.]

The saying Less is more. is displayed in the picture box.

6. An alternative method of creating a Function procedure is to move the cursor to
a blank line outside of any procedure, type Private Function FunctionName, and
press the Enter key.

3.4 MODULAR DESIGN

■ TOP-DOWN DESIGN

Large problems usually require large programs. One method programmers use to make a large
problem more understandable is to divide it into smaller, less complex subproblems. Repeatedly
using a “divide-and-conquer” approach to break up a large problem into smaller subproblems
is called stepwise refinement. Stepwise refinement is part of a larger methodology of writ-
ing programs known as top-down design. The term top-down refers to the fact that the more
general tasks occur near the top of the design and tasks representing their refinement occur
below. Top-down design and structured programming emerged as techniques to enhance pro-
gramming productivity. Their use leads to programs that are easier to read and maintain. They
also produce programs containing fewer initial errors, with these errors being easier to find
and correct. When such programs are later modified, there is a much smaller likelihood of in-
troducing new errors.

The goal of top-down design is to break a problem into individual tasks, or modules, that
can easily be transcribed into pseudocode, flowcharts, or a program. First, a problem is
restated as several simpler problems depicted as modules. Any modules that remain too com-
plex are broken down further. The process of refining modules continues until the smallest

M o d u l a r D e s i g n 93

http://www.pearsoncustom.com/link/visualbasic/topdowndesign.html
http://www.pearsoncustom.com/link/visualbasic/structuredprogramming.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/messagebox.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/messagebox.html

modulnes can be coded directly. Each stage of refinement adds a more complete specifica-
tion of what tasks must be performed. The main idea in top-down design is to go from the
general to the specific. This process of dividing and organizing a problem into tasks can be
pictured using a hierarchy chart. When using top-down design, certain criteria should be met:

1. The design should be easily readable and emphasize small module size.

2. Modules proceed from general to specific as you read down the chart.

3. The modules, as much as possible, should be single-minded. That is, they
should only perform a single well-defined task.

4. Modules should be as independent of each other as possible, and any relation-
ships among modules should be specified.

This process is illustrated with the following example.

EXAMPLE 1

Write a hierarchy chart for a program that gives certain information about a car loan. The amount of the
loan, the duration (in years), and the interest rate should be input. The output should consist of the month-
ly payment and the amount of interest paid during the first month.

SOLUTION:
In the broadest sense, the program calls for obtaining the input, making calculations, and displaying the
output. Figure 3-5 shows these tasks as the first row of a hierarchy chart.

FIGURE 3-5 Beginning of a Hierarchy Chart for the Car Loan Program

Each of these tasks can be refined into more specific subtasks. (See Figure 3-6 for the
final hierarchy chart.) Most of the subtasks in the second row are straightforward and so do
not require further refinement. For instance, the first month’s interest is computed by multi-
plying the amount of the loan by one-twelfth of the annual rate of interest. The most com-
plicated subtask, the computation of the monthly payment, has been broken down further.
This task is carried out by applying a standard formula found in finance books; however, the
formula requires the number of payments.

FIGURE 3-6 Hierarchy Chart for the Car Loan Program

94 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/topdowndesign.html
http://www.pearsoncustom.com/link/visualbasic/hierarchychart.html

It is clear from the hierarchy chart that the top modules manipulate the modules beneath
them. While the higher-level modules control the flow of the program, the lower-level mod-
ules do the actual work. By designing the top modules first, specific processing decisions
can be delayed.

■ STRUCTURED PROGRAMMING

A program is said to be structured if it meets modern standards of program design. Although
there is no formal definition of the term structured program, computer scientists are in uni-
form agreement that such programs should have modular design and use only the three types
of logical structures discussed in Section 1: sequences, decisions, and loops.

Sequences: Statements are executed one after another.

Decisions: One of two blocks of program code is executed based on a test for some condition.

Loops (iteration): One or more statements are executed repeatedly as long as a specified con-
dition is true.

Sections 4 and 5 are devoted to decisions and loops, respectively.
One major shortcoming of the earliest programming languages was their reliance on the

GoTo statement. This statement was used to branch (that is, jump) from one line of a pro-
gram to another. It was common for a program to be composed of a convoluted tangle of
branchings that produced confusing code referred to as spaghetti code. At the heart of struc-
tured programming is the assertion of E. W. Dijkstra that GoTo statements should be elimi-
nated entirely because they lead to complex and confusing programs. Two Italians, C. Bohm
and G. Jacopini, were able to prove that GoTo statements are not needed and that any pro-
gram can be written using only the three types of logic structures discussed before.

Structured programming requires that all programs be written using sequences, deci-
sions, and loops. Nesting of such statements is allowed. All other logical constructs, such as
GoTos, are not allowed. The logic of a structured program can be pictured using a flowchart
that flows smoothly from top to bottom without unstructured branching (GoTos). The por-
tion of a flowchart shown in Figure 3-7(a) contains the equivalent of a GoTo statement and,
therefore, is not structured. A correctly structured version of the flowchart in which the logic
flows from the top to the bottom appears in Figure 3-7(b).

FIGURE 3-7 Flowcharts Illustrating the Removal of a GoTo Statement

M o d u l a r D e s i g n 95

http://www.pearsoncustom.com/link/visualbasic/structuredprogramming.html
http://www.pearsoncustom.com/link/visualbasic/hierarchychart.html
http://www.pearsoncustom.com/link/visualbasic/structuredprogramming.html

■ ADVANTAGES OF STRUCTURED PROGRAMMING

The goal of structured programming is to create correct programs that are easy to write, un-
derstand, and change. Let us now take a closer look at the way modular design, along with a
limited number of logical structures, contributes to attaining these goals.

1. Easy to write.

Modular design increases the programmer’s productivity by allowing him or her
to look at the big picture first and focus on the details later. During the actual
coding, the programmer works with a manageable chunk of the program and
does not have to think about an entire complex program.

Several programmers can work on a single large program, each taking respon-
sibility for a specific module.

Studies have shown structured programs require significantly less time to write
than standard programs.

Often, procedures written for one program can be reused in other programs
requiring the same task. Not only is time saved in writing a program, but relia-
bility is enhanced, because reused procedures will already be tested and
debugged. A procedure that can be used in many programs is said to be
reusable.

2. Easy to debug.

Because each procedure is specialized to perform just one task, a procedure can
be checked individually to determine its reliability. A dummy program, called a
driver, is set up to test the procedure. The driver contains the minimum defin-
itions needed to call the procedure to be tested. For instance, if the procedure to
be tested is a function, the driver program assigns diverse values to the argu-
ments and then examines the corresponding function value. The arguments
should contain both typical and special-case values.

The program can be tested and debugged as it is being designed with a tech-
nique known as stub programming. In this technique, the key event procedures
and perhaps some of the smaller procedures are coded first. Dummy proce-
dures, or stubs, are written for the remaining procedures. Initially, a stub pro-
cedure might consist of a Print method to indicate that the procedure has been
called, and thereby confirm that the procedure was called at the right time.
Later, a stub might simply display values passed to it in order to confirm not
only that the procedure was called, but also that it received the correct values
from the calling procedure. A stub also can assign new values to one or more of
its parameters to simulate either input or computation. This provides greater
control of the conditions being tested. The stub procedure is always simpler
than the actual procedure it represents. Although the stub program is only a
skeleton of the final program, the program’s structure can still be debugged and
tested. (The stub program consists of some coded procedures and the stub pro-
cedures.)

Old-fashioned unstructured programs consist of a sequence of instructions that
are not grouped for specific tasks. The logic of such a program is cluttered with
details and therefore difficult to follow. Needed tasks are easily left out and cru-
cial details easily neglected. Tricky parts of the program cannot be isolated and
examined. Bugs are difficult to locate because they might be present in any part
of the program.

3. Easy to understand.

The interconnections of the procedures reveal the modular design of the
program.

96 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/structuredprogramming.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html

The meaningful procedure names, along with relevant comments, identify the
tasks performed by the modules.

The meaningful variable names help the programmer to recall the purpose of
each variable.

4. Easy to change.

Because a structured program is self-documenting, it can easily be deciphered
by another programmer.

Modifying a structured program often amounts to inserting or altering a few
procedures rather than revising an entire complex program. The programmer
does not even have to look at most of the program. This is in sharp contrast to
the situation with unstructured programs that require an understanding of the
entire logic of the program before any changes can be made with confidence.

SUMMARY

1. A general procedure is a portion of a program that is accessed by event proce-
dures or other general procedures. The two types of general procedures are Sub
procedures and Function procedures.

2. Sub procedures are defined in blocks beginning with Sub statements and end-
ing with End Sub statements. They are accessed by Call statements.

3. Function procedures are defined in blocks beginning with Function statements
and ending with End Function statements. A function is activated by a reference
in an expression and returns a value.

4. In any procedure, the arguments appearing in the calling statement must match
the parameters of the Sub or Function statement in number, type, and order.
They need not match in name.

5. A variable declared in the (Declarations) section of (General) is form-level.
Such a variable is available to every procedure in the form’s code and retains its
value from one procedure invocation to the next. Form-level variables are often
initialized in the Form_Load event procedure.

6. A variable appearing inside a procedure is local to the procedure if it is declared
in a Dim statement within the procedure or if it is not a form-level variable and
does not appear in the parameter list. The values of these variables are reini-
tialized each time the procedure is called. A variable with the same name
appearing in another part of the program is treated as a different variable.

7. Structured programming uses modular design to refine large problems into
smaller subproblems. Programs are coded using the three logical structures of
sequences, decisions, and loops.

PROGRAMMING PROJECTS

1. The numbers of calories per gram of carbohydrate, fat, and protein are 4, 9, and
4, respectively. Write a program that requests the nutritional content of a 1-
ounce serving of food and displays the number of calories in the serving. The
input and output should be handled by Sub procedures and the calories com-
puted by a function. A sample run for a typical breakfast cereal is shown in
Figure 3-8.

P r o g r a m m i n g P r o j e c t s 97

http://www.pearsoncustom.com/link/visualbasic/structuredprogramming.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/formlevelvariable.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html

FIGURE 3-8 Sample Run for Programming Project 1

2. About seven million notebook computers were sold during 1997. Table 3.2
gives the market share for the four largest vendors. Write a program that dis-
plays the number of computers sold by each of the Big Four. The input and out-
put should be handled by Sub procedures and the number of computers
calculated by a Function procedure.

TABLE 3.2
1997 Market Shares of the Top Notebook Vendors

Company Market Share

Toshiba 20%
IBM 11%
Compaq 9%
Dell 6%

Source: PC Magazine, January 20, 1998.

3. Table 3.3 gives the advertising expenditures (in millions of dollars) for the four
most advertised soft drink brands during the first nine months of 1995 and
1996. Write a program that displays the percentage change in advertising for
each brand. Sub procedures should be used for input and output and the per-
centage change should be computed with a Function procedure. Note: The per-
centage change is 100 * ([1996 expenditure] – [1995 expenditure]) / [1995
expenditure].

TABLE 3.3
Most Advertised Soft Drinks

Brand 1995 Expenditure 1996 Expenditure

Coca-Cola classic 60.7 121.6
Pepsi-Cola 94.8 83.0
Diet Coke 43.7 70.0
Dr. Pepper 46.3 51.8

Source: Beverage World, March 1997.

4. A fast-food vendor sells pizza slices ($1.25), fries ($1.00), and soft drinks
($.75). Write a program to compute a customer’s bill. The program should
request the quantity of each item ordered in a Sub procedure, calculate the total
cost with a Function procedure, and use a Sub procedure to display an itemized
bill. A sample output is shown in Figure 3-9.

98 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

FIGURE 3-9 Sample Run for Programming Project 4

5. Write a program to generate a Business Travel Expense attachment for an
income tax return. The program should request as input the name of the orga-
nization visited, the date and location of the visit, and the expenses for meals
and entertainment, airplane fare, lodging, and taxi fares. (Only 50% of the
expenses for meals and entertainment are deductible.) A possible form layout
and run are shown in Figures 3.10 and 3.11, respectively. Sub procedures
should be used for the input and output.

FIGURE 3-10 Form with Sample Data for Programming Project 5

Business Travel Expense
Trip to attend meeting of
Association for Computing Machinery
February 25–28 in Atlanta

Meals and entertainment $190.10
Airplane fare $210.15
Lodging $475.35
Taxi fares $35.00

Total other than Meals and Entertainment: $720.50
50% of Meals and Entertainment: $95.05

FIGURE 3-11 Output on Printer for Sample Run of Programming Project 5

P r o g r a m m i n g P r o j e c t s 99

S E C T I O N

DECISIONS

44

103

4.1 RELATIONAL AND LOGICAL OPERATORS

A condition is an expression involving relational operators (such as < and =) that is either
true or false. Conditions also may incorporate logical operators (such as And, Or, and Not).

The relational operator less than (<) can be applied to both numbers and strings. The
number a is said to be less than the number b if a lies to the left of b on the number line. For
instance, 2 < 5, –5 < –2, and 0 < 3.5.

The string a is said to be less than the string b if a precedes b alphabetically when using
the ANSI (or ASCII) table to alphabetize their values. For instance, “cat” < “dog”, “cart” <
“cat”, and “cat” < “catalog”. Digits precede uppercase letters, which precede lowercase let-
ters. Two strings are compared working from left to right, character by character, to deter-
mine which one should precede the other. Therefore, “9W” < “bat”, “Dog” < “cat”, and
“Sales-99” < “Sales-retail”.

Table 4.1 shows the different mathematical relational operators, their representations in
Visual Basic, and their meanings.

TABLE 4.1
Relational Operators

Mathematical Visual Basic Numeric String
Notation Notation Meaning Meaning

= = equal to identical to
≠ <> unequal to different from
< < less than precedes alphabetically
> > greater than follows alphabetically
≤ <= less than or equal to precedes alphabetically or

is identical to
≥ >= greater than or equal to follows alphabetically or is

identical to

EXAMPLE 1

Determine whether each of the following conditions is true or false.
(a) 1 <= 1 (c) “car” “cat”
(b) 1 < 1 (d) “Dog” < “dog”

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/relationaloperator.html
http://www.pearsoncustom.com/link/visualbasic/logicaloperators.html

SOLUTION:

(a) True. The notation <= means “less than or equal to.” That is, the condition is true provided
either of the two circumstances holds. The second one (equal to) holds.

(b) False. The notation < means “strictly less than” and no number can be strictly less than itself.

(c) True. The characters of the strings are compared one at a time working from left to right.
Because the first two match, the third character decides the order.

(d) True. Because uppercase letters precede lowercase letters in the ANSI table, the first charac-
ter of “Dog” precedes the first character of “dog.”

Conditions also can involve variables, numeric operators, and functions. To determine
whether a condition is true or false, first compute the numeric or string values and then
decide if the resulting assertion is true or false.

EXAMPLE 2

Suppose the numeric variables a and b have values 4 and 3, and the string variables c and d have values
“hello” and “bye”. Are the following conditions true or false?

(a) (a + b) < 2 * a

(b) (Len(c) – b) = (a / 2)

(c) c < (“good” & d)

SOLUTION:

(a) The value of a + b is 7 and the value of 2 * a is 8. Because 7 < 8, the condition is true.

(b) True, because the value of Len(c) – b is 2, the same as (a / 2).

(c) The condition “hello” < “goodbye” is false, because “h” follows “g” in the ANSI table.

■ LOGICAL OPERATORS

Programming situations often require more complex conditions than those considered so far.
For instance, suppose we would like to state that the value of a numeric variable, n, is strictly
between 2 and 5. The proper Visual Basic condition is

(2 < n) And (n < 5)

The condition (2 < n) And (n < 5) is a combination of the two conditions 2 < n and n < 5 with
the logical operator And.

The three main logical operators are And, Or, and Not. If cond1 and cond2 are condi-
tions, then the condition

cond1 And cond2

is true if both cond1 and cond2 are true. Otherwise, it is false. The condition

cond1 Or cond2

is true if either cond1 or cond2 (or both) is true. Otherwise, it is false. The condition

Not cond1

is true if cond1 is false, and is false if cond1 is true.

EXAMPLE 3

Suppose the numeric variable n has value 4 and the string variable answ has value “Y”. Determine
whether each of the following conditions is true or false.

104 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/logicaloperators.html

(a) (2 < n) And (n < 6)

(b) (2 < n) Or (n = 6)

(c) Not (n < 6)

(d) (answ = “Y”) Or (answ = “y”)

(e) (answ = “Y”) And (answ = “y”)

(f) Not (answ = “y”)

(g) ((2 < n) And (n = 5 + 1)) Or (answ = “No”)

(h) ((n = 2) And (n = 7)) Or (answ = “Y”)

(i) (n = 2) And ((n = 7) Or (answ = “Y”))

SOLUTION:

(a) True, because the conditions (2 < 4) and (4 < 6) are both true.

(b) True, because the condition (2 < 4) is true. The fact that the condition (4 = 6) is false does not
affect the conclusion. The only requirement is that at least one of the two conditions be true.

(c) False, because (4 < 6) is true.

(d) True, because the first condition becomes (“Y” = “Y”) when the value of answ is substituted
for answ.

(e) False, because the second condition is false. Actually, this compound condition is false for
every value of answ.

(f) True, because (“Y” = “y”) is false.

(g) False. In this logical expression, the compound condition ((2 < n) And (n = 5 + 1)) and the
simple condition (answ = “No”) are joined by the logical operator Or. Because both of these
conditions are false, the total condition is false.

(h) True, because the second Or clause is true.

(i) False. Comparing (h) and (i) shows the necessity of using parentheses to specify the intended
grouping.

The use of parentheses with logical operators improves readability; however, they can be
omitted sometimes. Visual Basic has an operator hierarchy for deciding how to evaluate log-
ical expressions without parentheses. First, all arithmetic operations are carried out, and then
all expressions involving >, <, and = are evaluated to true or false. The logical operators are
next applied, in the order Not, then And, and finally Or. For instance, the logical expression
in part (g) of Example 3 could have been written 2 < n And n = 5 + 1 Or answ = “No”. In
the event of a tie, the leftmost operator is applied first.

EXAMPLE 4

Place parentheses in the following condition to show how it would be evaluated by Visual Basic.

a < b + c Or d < e And Not f = g

SOLUTION:
((a <(b + c)) Or ((d < e) And (Not (f = g))))

The step-by-step analysis of the order of operations is

a < (b + c), Ord < e, AndNot f = g arithmetic operation

(a < (b + c)), Or(d < e), AndNot (f = g) relational expressions

(a < (b + c)), Or(d < e), And, (Not (f = g)) Not

(a < (b + c)), Or, ((d < e), And, (Not (f = g))) And

((a < (b + c)), Or, ((d < e), And, (Not (f = g)))) Or

R e l a t i o n a l a n d L o g i c a l O p e r a t o r s 105

http://www.pearsoncustom.com/link/visualbasic/logicaloperators.html

COMMENTS

1. A condition involving numeric variables is different from an algebraic truth.
The assertion (a + b) < 2 * a, considered in Example 2, is not a valid algebraic
truth because it isn’t true for all values of a and b. When encountered in a Visu-
al Basic program, however, it will be considered true if it is correct for the cur-
rent values of the variables.

2. Conditions evaluate to either true or false. These two values often are called the
possible truth values of the condition.

3. A condition such as 2 < n < 5 should never be used, because Visual Basic will
not evaluate it as intended. The correct condition is (2 < n) And (n < 5).

4. A common error is to replace the condition Not (2 < 3) by condition (3 > 2).
The correct replacement is (3 >= 2).

4.2 IF BLOCKS

An If block allows a program to decide on a course of action based on whether a certain con-
dition is true or false. A block of the form

If condition Then
action1

Else
action2

End If

causes the program to take action1 if condition is true and action2 if condition is false. Each
action consists of one or more Visual Basic statements. After an action is taken, execution
continues with the line after the If block. Figure 4.1 contains the pseudocode and flowchart
for an If block.

FIGURE 4-1 Pseudocode and Flowchart for an If Block

EXAMPLE 1

Write a program to find the larger of two numbers input by the user.

106 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

If condition is true Then
Processing step(s) 1

Else
Processing step(s) 2

End If

http://www.pearsoncustom.com/link/visualbasic/ifblocks.html

SOLUTION:
In the following program, the condition is Val(txtFirstNum.Text) > Val(txtSecond Num.Text), and each
action consists of a single assignment statement. With the input 3 and 7, the condition is false, and so the
second action is taken.

Object Property Setting

frmMaximum Caption Maximum
lblFirstNum Caption First Number
Alignment Right Justify
txtFirstNum Text (blank)
lblSecondNum Caption Second Number
Alignment Right Justify
txtSecondNum Text (blank)
cmdFindLarger Caption Find Larger Number
picResult

Private Sub cmdFindLarger_Click()
Dim largerNum As Single
picResult.Cls
If Val(txtFirstNum.Text) > Val(txtSecondNum.Text) Then

largerNum = Val(txtFirstNum.Text)
Else

largerNum = Val(txtSecondNum.Text)
End If
picResult.Print “The larger number is”; largerNum

End Sub

[Run, type 3 and 7 into the text boxes, and press the command button.]

EXAMPLE 2

Write a program that requests the costs and revenue for a company and displays the message “Break even”
if the costs and revenue are equal or otherwise displays the profit or loss.

SOLUTION:
In the following program, the action following Else is another If block.

Object Property Setting

frm5_2_2 Caption Profit/Loss
lblCosts Caption Costs

Alignment Right justify
txtCosts Text (blank)
lblRev Caption Revenue

Alignment Right justify
txtRev Text (blank)
cmdShow Caption Show Financial Status
picResult

Private Sub cmdShow_Click()
Dim costs As Single, revenue As Single, profit As Single, loss As Single

I f B l o c k s 107

costs = Val(txtCosts.Text) revenue = Val(txtRev.Text)
picResult.Cls If costs = revenue Then picResult.Print “Break even”

Else
If costs < revenue Then

profit = revenue - costs
picResult.Print “Profit is “; FormatCurrency(profit)

Else
loss = costs - revenue

picResult.Print “Loss is “; FormatCurrency(loss)
End If
End If

End Sub

[Run, type 9500 and 8000 into the text boxes, and press the command button.]

EXAMPLE 3

The If block in the following program has a logical operator in its condition

Object Property Setting

frmQuiz Caption A Quiz
lblQuestion Caption How many gallons does

a ten-gallon hat hold?
txtAnswer Text (blank)
cmdEvaluate Caption Evaluate Answer
picSolution

Private Sub cmdEvaluate_Click()
Dim answer As Single ‘Evaluate answer picSolution.Cls
answer = Val(txtAnswer.Text)
If (answer >= .5) And (answer <= 1) Then

picSolution.Print “Good, “;
Else

picSolution.Print “No, “;
End If
picSolution.Print “it holds about 3/4 of a gallon.”

End Sub

[Run, type 10 into the text box, and press the command button.]

108 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

The Else part of an If block can be omitted. This important type of If block appears in
the next example.

EXAMPLE 4

The following program offers assistance to the user before presenting a quotation.

Object Property Setting

frm5_2_4 Caption Quotation
lblQuestion Caption Do you know what the

game of skittles is (Y/N)?
txtAnswer Text (blank)
cmdDisplay Caption Display Quotation
picQuote

Private Sub cmdDisplay_Click()
Dim message As String
message = “Skittles is an old form of bowling in which a wooden” & _ “ disk is used

to knock down nine pins arranged in a square.”
If UCase(txtAnswer.Text) = “N” Then

MsgBox message, , “”
End If
picQuote.Cls picQuote.Print “Life ain’t all beer and skittles. - Du Maurier
(1894)”

End Sub

[Run, type N into the text box, and press the command button.]

[Press OK.]

Note: Rerun the program, type Y into the text box, press the command button, and observe that
the description of the game is bypassed.

An extension of the If block allows for more than two possible alternatives with the
inclusion of ElseIf clauses. A typical block of this type is

If condition1 Then
action1

ElseIf condition2 Then
action2

ElseIf condition3 Then
action3

Else action4
End If

I f B l o c k s 109

http://www.pearsoncustom.com/link/visualbasic/ifblocks.html

This block searches for the first true condition, carries out its action, and then skips to the
statement following End If. If none of the conditions is true, then Else’s action is carried out.
Execution then continues with the statement following the block. In general, an If block can
contain any number of ElseIf clauses. As before, the Else clause is optional.

EXAMPLE 5

Redo Example 1 so that if the two numbers are equal, the program so reports.

SOLUTION:

Private Sub cmdFindLarger_Click()
picResult.Cls
If Val(txtFirstNum.Text) > Val(txtSecondNum.Text) Then

picResult.Print “The larger number is “; txtFirstNum.Text
ElseIf Val(txtSecondNum.Text) > Val(txtFirstNum.Text) Then

picResult.Print “The larger number is “; txtSecondNum.Text
Else

picResult.Print “The two numbers are equal.”
End If

End Sub

[Run, type 7 into both text boxes, and press the command button.]

If blocks allow us to define functions whose values are not determined by a simple for-
mula. The function in Example 6 uses an If block.

EXAMPLE 6

The Social Security or FICA tax has two components—the Social Security benefits tax, which in 1999 is
6.2 percent on the first $72,600 of earnings for the year, and the Medicare tax, which is 1.45 percent of
earnings. Write a program to calculate an employee’s FICA tax for the current pay period.

SOLUTION:

Object Property Setting

frmFICA Caption FICA Taxes
lblToDate Caption Total earnings for this year prior to the

current pay period
Alignment Right Justify

txtToDate Text (blank)
lblCurrent Caption Earnings for the current pay period

Alignment Right Justify
txtCurrent Text (blank)
cmdCalculate Caption Calculate FICA Taxes
picTax

Private Sub cmdCalculate_Click()
Dim FicaTaxes As Single
FicaTaxes = FICA(Val(txtToDate.Text), Val(txtCurrent.Text))

110 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/ifblocks.html

picTax.Cls

picTax.Print “Your FICA taxes for the current”

picTax.Print “pay period are “; FormatCurrency(FicaTaxes)

End Sub

Private Function FICA(ytdEarnings As Single, curEarnings As Single) As Single

Dim socialSecurityBenTax As Single, medicare As Single

‘Calculate Social Security benefits tax and Medicare tax

‘for a single pay period in 1999

socialSecurityBenTax = 0

If (ytdEarnings + curEarnings) <= 72600 Then

socialSecurityBenTax = .062 * curEarnings

ElseIf ytdEarnings < 72600 Then

socialSecurityBenTax = .062 * (72600 - ytdEarnings)

End If

medicare = .0145 * curEarnings

FICA = socialSecurityBenTax + medicare

End Function

[Run, type 12345.67 and 543.21 into the text boxes, and press the command button.]

COMMENTS

1. The actions of an If block and the words Else and ElseIf do not have to be
indented. For instance, the If block of Example 1 can be written

If Val(txtFirstNum.Text) > Val(txtSecondNum.Text) Then

largerNum = Val(txtFirstNum.Text)

Else

largerNum = Val(txtSecondNum.Text)

End If

However, because indenting improves the readability of the block, it is regard-
ed as good programming style. As soon as you see the word If, your eyes can
easily scan down the program to find the matching End If and the enclosed Else
and ElseIf clauses. You then immediately have a good idea of the size and com-
plexity of the block.

2. Constructs in which an If block is contained inside another If block are referred
to as nested If blocks.

3. Care should be taken to make If blocks easy to understand. For instance, in Fig-
ure 4.2, the block on the left is difficult to follow and should be replaced by the
clearer block on the right.

I f B l o c k s 111

http://www.pearsoncustom.com/link/visualbasic/ifblocks.html

If cond1 Then If cond1 And cond2 Then
If cond2 Then action

action End If
End If

End If

FIGURE 4-2 A Confusing If Block and an Improvement

4. Some programs call for selecting among many possibilities. Although such
tasks can be accomplished with complicated nested If blocks, the Select Case
block (discussed in the next section) is often a better alternative.

5. In Appendix D, the section “Stepping Through Programs Containing Decision
Structures: Section 4” uses the Visual Basic debugging tools to trace the flow
through an If block.

6. Visual Basic also has a single-line If statement of the form

If condition Then action1 Else action2

which is a holdover from earlier, unstructured versions of BASIC; it is seldom
used in this text.

4.3 SELECT CASE BLOCKS

A Select Case block is an efficient decision-making structure that simplifies choosing among
several actions. It avoids complex nested If constructs. If blocks make decisions based on the
truth value of a condition; Select Case choices are determined by the value of an expression
called a selector. Each of the possible actions is preceded by a clause of the form

Case valueList

where valueList itemizes the values of the selector for which the action should be taken.

EXAMPLE 1

The following program converts the finishing position in a horse race into a descriptive phrase. After the
variable position is assigned a value from txtPosition, Visual Basic searches for the first Case statement
whose value list contains that value and executes the succeeding statement. If the value of position is
greater than 5, then the statement following Case Else is executed.

Object Property Setting

frmRace Caption Horse Race
lblPosition Caption Finishing position (1, 2, 3, . . .)
txtPosition Text (blank)
cmdDescribe Caption Describe Position
picOutcome

Private Sub cmdDescribe_Click()
Dim position As Integer ‘selector
position = Val(txtPosition.Text)
picOutcome.Cls Select Case position

Case 1
picOutcome.Print “Win”

Case 2
picOutcome.Print “Place”

Case 3
picOutcome.Print “Show”

112 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/selectcaseblocks.html
http://www.pearsoncustom.com/link/visualbasic/ifblocks.html
http://www.pearsoncustom.com/link/visualbasic/debugging.html
http://www.pearsoncustom.com/link/visualbasic/selectcaseblocks.html

Case 4, 5
picOutcome.Print “You almost placed”
picOutcome.Print “in the money.” Case Else
picOutcome.Print “Out of the money.”

End Select
End Sub

[Run, type 2 into the text box, and press the command button.]

EXAMPLE 2

In the following variation of Example 1, the value lists specify ranges of values. The first value list pro-
vides another way to specify the numbers 1, 2, and 3. The second value list covers all numbers from 4 on.

Private Sub cmdDescribe_Click()
Dim position As Integer
‘Describe finishing positions in a horse race
position = Val(txtPosition.Text)
picOutcome.Cls
Select Case position

Case 1 To 3
picOutcome.Print “In the money.”
picOutcome.Print “Congratulations”

Case Is > 3
picOutcome.Print “Not in the money.”

End Select
End Sub

[Run, type 2 into the text box, and press the command button.]

The general form of the Select Case block is

Select Case selector
Case valueList1

action1
Case valueList2

action2
.
.

Case Else
action of last resort

End Select

S e l e c t C a s e B l o c k s 113

http://www.pearsoncustom.com/link/visualbasic/selectcaseblocks.html

where Case Else (and its action) is optional, and each value list contains one or more of the
following types of items separated by commas:

1. A constant

2. A variable

3. An expression

4. An inequality sign preceded by Is and followed by a constant, variable, or
expression

5. A range expressed in the form a To b, where a and b are constants, variables, or
expressions

Different items appearing in the same list must be separated by commas. Each action consists
of one or more statements. After the selector is evaluated, Visual Basic looks for the first
value-list item containing the value of the selector and carries out its associated action. Figure
4-3 contains the flowchart for a Select Case block. The pseudocode for a Select Case block is
the same as for the equivalent If block.

FIGURE 4-3 Flowchart for a Select Case Block

114 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/selectcaseblocks.html
http://www.pearsoncustom.com/link/visualbasic/ifblocks.html

EXAMPLE 3

The following program uses several different types of value lists. With the response shown, the first action
was selected because the value of y – x is 1.

Object Property Setting

frm5_3_3 Caption One, Two, Buckle My Shoe
lblEnterNum Caption Enter a number from 1 to 10
txtNumber Text (blank)
cmdInterpret Caption Interpret Number
picPhrase

Private Sub cmdInterpret_Click()
Dim x As Integer, y As Integer, num As Integer
‘One, Two, Buckle My Shoe
picPhrase.Cls
x = 2
y = 3
num = Val(txtNumber.Text)
Select Case num

Case y - x, x
picPhrase.Print “Buckle my shoe.”

Case Is <= 4
picPhrase.Print “Shut the door.”

Case x + y To x * y
picPhrase.Print “Pick up sticks.”

Case 7, 8
picPhrase.Print “Lay them straight.”

Case Else
picPhrase.Print “Start all over again.”

End Select
End Sub

[Run, type 4 into the text box, and press the command button.]

In each of the three preceding examples the selector was a numeric variable; however,
the selector also can be a string variable or an expression.

EXAMPLE 4

The following program has the string variable firstName as a selector.

Object Property Setting

frmQuiz Caption Quiz
lblQuestion Caption “What was President Wilson’s

first name ?”
txtName Text (blank)
cmdInterpret Caption Interpret Answer
picAnswer

S e l e c t C a s e B l o c k s 115

http://www.pearsoncustom.com/link/visualbasic/stringvariable.html

Private Sub cmdInterpret_Click()
Dim firstName As String
‘Quiz
picAnswer.Cls
firstName = txtName.Text
Select Case firstName

Case “Thomas”
picAnswer.Print “Correct.”

Case “Woodrow”
picAnswer.Print “Sorry, his full name was”
picAnswer.Print “Thomas Woodrow Wilson.”

Case “President”
picAnswer.Print “Are you for real?”

Case Else
picAnswer.Print “Nice try, but no cigar.”

End Select
End Sub

[Run, type Woodrow into the text box, and press the command button.]

EXAMPLE 5

The following program has the selector Left(anyString, 1), a string expression. In the sample run, only the
first action was carried out, even though the value of the selector was in both of the first two value lists.
The computer stops looking as soon as it finds the value of the selector.

Object Property Setting

frm5_3_5 Caption Analyze First [~]Character of
a String

lblEnter Caption Enter any string
txtString Text (blank)
cmdAnalyze Caption Analyze
picResult

Private Sub cmdAnalyze_Click()
Dim anyString As String
‘Analyze the first character of a string
picResult.Cls
anyString = UCase(txtString.Text)
Select Case Left(anyString, 1)

Case “S”, “Z”
picResult.Print “The string begins with a sibilant.”

Case “A” To “Z”
picResult.Print “The string begins with a nonsibilant.”

Case “0” To “9”
picResult.Print “The string begins with a digit.”

Case Is < “0”
picResult.Print “The string begins with a character of ANSI”
picResult.Print “value less than 48 (e.g. +, &, #, or %).”

116 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

Case Else
picResult.Print “The string begins with one of the following:”
picResult.Print “ : ; < = > ? @ [\] ^ _ ` ”

End Select
End Sub

[Run, type Sunday into the text box, and press the command button.]

EXAMPLE 6

The color of the beacon light atop Boston’s John Hancock Building forecasts the weather according to the
following rhyme. Write a program that requests a color (blue or red) and a mode (steady or flashing) as
input and displays the weather forecast. The program should contain a Select Case block with a string
variable as selector.
Steady blue, clear view.
Flashing blue, clouds due.
Steady red, rain ahead.
Flashing red, snow instead.

frmWeather Caption Weather Beacon

lblColor Caption Color of the light
txtColor Text (blank)
lblMode Caption Mode (S or F)
txtMode Text (blank)
cmdInterpret Caption Interpret Beacon
picForecast

Private Sub cmdInterpret_Click()
Dim color As String, mode As String
‘Interpret a weather beacon
picForecast.Cls
color = txtColor.Text
mode = txtMode.Text
Select Case UCase(mode) & UCase(color)

Case “SBLUE”
picForecast.Print “CLEAR VIEW”

Case “FBLUE”
picForecast.Print “CLOUDS DUE”

Case “SRED”
picForecast.Print “RAIN AHEAD”

Case “FRED”
picForecast.Print “SNOW AHEAD”

End Select
End Sub

[Run, type red and S into the text boxes, and press the command button.]

S e l e c t C a s e B l o c k s 117

EXAMPLE 7

Select Case is useful in defining functions that are not determined by a formula. The following program
assumes the current year is not a leap year.

Object Property Setting

frm5_3_7 Caption Seasons
lblSeason Caption Season
txtSeason Text (blank)
cmdNumber Caption Number of Days
picNumDays

Private Sub cmdNumber_Click()
Dim season As String
‘Determine the number of days in a season
picNumDays.Cls
season = txtSeason.Text
picNumDays.Print season; “ has”; NumDays(season); “days.”

End Sub

Private Function NumDays(season As String) As Integer
‘Look up the number of days in a given season
Select Case UCase(season)

Case “WINTER”
NumDays = 87

Case “SPRING”
NumDays = 92

Case “SUMMER”, “AUTUMN”, “FALL”
NumDays = 93

End Select
End Function

[Run, type Summer into the text box, and press the command button.]

COMMENTS

1. Some programming languages do not allow a value to appear in two different
value lists; Visual Basic does. If the value of the selector appears in two differ-
ent value lists, the action associated with the first value list will be carried out.

2. In Visual Basic, if the value of the selector does not appear in any of the value
lists and there is no Case Else clause, execution of the program will continue
with the statement following the Select Case block.

3. The Case statements and their actions do not have to be indented; however,
because indenting improves the readability of the block, it is regarded as good
programming style. As soon as you see the words Select Case, your eyes can
easily scan down the block to find the matching End Select statement. You
immediately know the number of different cases under consideration.

118 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/selectcaseblocks.html

4. The items in the value list must evaluate to a constant of the same type, string
or numeric, as the selector. For instance, if the selector evaluates to a string
value, as in

Dim firstName A String

firstName = txtBox.Text

Select Case first Name

then the clause

Case Len(firstNme)

would be meaningless.

5. If the word Is, which should precede an inequality sign in a value list, is acciden-
tally omitted, the smart editor will automatically insert it when checking the line.

6. A Case clause of the form Case b To c selects values from b to c inclusive. How-
ever, the extreme values can be excluded by placing the action inside an If block
beginning with If (selector <> b) And (selector <> c) Then.

7. The value of b must be less than or equal to the value of c in a Case clause of
the form Case b To c.

8. Every Select Case block can be replaced by an If block. Select Case is prefer-
able to an If block when the possible choices have more or less the same impor-
tance.

9. In Appendix D, the section “Stepping Through Programs Containing Selection
Structures: Section 4” uses the Visual Basic debugging tools to trace the flow
through a Select Case block.

4.4 A CASE STUDY: WEEKLY PAYROLL

This case study processes a weekly payroll using the 1998 Employer’s Tax Guide. Table 4.2
shows typical data used by a company’s payroll office. These data are processed to produce
the information in Table 4.3 that is supplied to each employee along with his or her paycheck.
The program should request the data from Table 4.2 for an individual as input and produce out-
put similar to that in Table 4.3.

The items in Table 4.3 should be calculated as follows:
Current Earnings: Hourly wage times hours worked (with time-and-a-half after 40 hours)
Year-to-Date Earnings: Previous year-to-date earnings plus current earnings
FICA Tax: Sum of 6.2 percent of first $68,400 of earnings (Social Security benefits tax) and
1.45 percent of total wages (Medicare tax)
Federal Income Tax Withheld: Subtract $51.92 from the current earnings for each withhold-
ing exemption and use Table 4.4 or Table 4.5, depending on marital status
Check Amount: [Current earnings] – [FICA taxes] – [Income tax withheld]

TABLE 4.2
Employee Data

Previous
Hourly Hours Withholding Marital Year-to-Date

Name Wage Worked Exemptions Status Earnings

Al Clark $45.50 38 4 Married $68,925.50
Ann Miller $44.00 35 3 Married $68,200.00
John Smith $17.95 50 1 Single $30,604.75
Sue Taylor $25.50 43 2 Single $36,295.50

A C a s e S t u d y : W e e k l y P a y r o l l 119

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/selectcaseblocks.html
http://www.pearsoncustom.com/link/visualbasic/ifblocks.html
http://www.pearsoncustom.com/link/visualbasic/debugging.html

TABLE 4.3
Payroll Information

Current Yr. to Date FICA Income Check
Name Earnings Earnings Taxes Tax Wh. Amount
Al Clark $1,729.00 $70,654.50 $25.07 $290.50 $1,413.43

TABLE 4.4
1998 Federal Income Tax Withheld for a Single Person Paid Weekly

Adjusted Weekly Income Income Tax Withheld

$0 to $51 $0
Over $51 to $517 15% of amount over $51
Over $517 to $1,105 $69.90 + 28% of excess over $517
Over $1,105 to $2,493 $234.54 + 31% of excess over $1,105
Over $2,493 to $5,385 $664.82 + 36% of excess over $2,493
Over $5,385 $1,705.94 + 39.6% of excess over $5,385

TABLE 4.5
1998 Federal Income Tax Withheld for a Married Person Paid Weekly

Adjusted Weekly Income Income Tax Withheld

$0 to $124 $0
Over $124 to $899 15% of excess over $124
Over $899 to $1,855 $116.25 + 28% of excess over $899
Over $1,855 to $3,084 $383.93 + 31% of excess over $1,855
Over $3,084 to $5,439 $764.92 + 36% of excess over $3,084
Over $5,439 $1,612.72 + 39.6% of excess over $5,439

■ DESIGNING THE WEEKLY PAYROLL PROGRAM

After the data for an employee have been gathered from the text boxes, the program must com-
pute the five items appearing in Table 4.3 and then display the payroll information. The five
computations form the basic tasks of the program.

1. Compute current earnings.

2. Compute year-to-date earnings.

3. Compute FICA tax.

4. Compute federal income tax withheld.

5. Compute paycheck amount (that is, take-home pay).

Tasks 1, 2, 3, and 5 are fairly simple. Each involves applying a formula to given
data. (For instance, if hours worked is at most 40, then Current Earnings =
Hourly Wage times Hours Worked.) Thus, we won’t break down these tasks any
further. Task 4 is more complicated, so we continue to divide it into smaller sub-
tasks.

4. Compute Federal Income Tax Withheld. First, the employee’s pay is adjusted for
exemptions, and then the amount of income tax to be withheld is computed. The
computation of the income tax withheld differs for married and single individ-
uals. Task 4 is, therefore, divided into the following subtasks:

4.1 Compute pay adjusted by exemptions.
4.2 Compute income tax withheld for single employee.
4.3 Compute income tax withheld for married employee.

120 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

The hierarchy chart in Figure 4-4 shows the stepwise refinement of the problem.

FIGURE 4-4 Hierarchy Chart for the Weekly Payroll Program

■ PSEUDOCODE FOR THE DISPLAY PAYROLL EVENT

INPUTemployee data (Sub procedure InputData)
COMPUTE CURRENT GROSS PAY (Function Gross_Pay)
COMPUTE TOTAL EARNINGS TO DATE (Function Total_Pay)
COMPUTE FICA TAX (Function FICA_Tax)
COMPUTE FEDERAL TAX (Function Fed_Tax)

Adjust pay for exemptions
If employee is single Then

COMPUTE INCOME TAX WITHHELD from adjusted pay using tax brackets for
single taxpayers (Function TaxSingle)

Else
COMPUTE INCOME TAX WITHHELD from adjusted pay using taxbrackets for
married taxpayers (Function TaxMarried)

End If
COMPUTE CHECK (Function Net_Check)
Display payroll information (Sub procedure ShowPayroll)

■ WRITING THE WEEKLY PAYROLL PROGRAM

The cmdDisplay event procedure calls a sequence of seven procedures. Table 4.6 shows the
tasks and the procedures that perform the tasks.

TABLE 4.6
Tasks and Their Procedures

Task Procedure

0. Input employee data. InputData
1. Compute current earnings. Gross_Pay
2. Compute year-to-date earnings. Total_Pay
3. Compute FICA tax. FICA_Tax
4. Compute federal income tax withheld. Fed_Tax
4.1 Compute adjusted pay. Fed_Tax
4.2 Compute amount withheld for single employee. TaxSingle
4.3 Compute amount withheld for married employee. TaxMarried
5. Compute paycheck amounts. Net_Check
6. Display payroll information. ShowPayroll

A C a s e S t u d y : W e e k l y P a y r o l l 121

http://www.pearsoncustom.com/link/visualbasic/hierarchychart.html

■ THE USER INTERFACE

FIGURE 4-5 Template for Entering Payroll Data

TABLE 4.7
Objects and Initial Properties for the Weekly Payroll Program

Object Property Setting

frmPayroll Caption Weekly Payroll
lblName Alignment 1 – Right Justify

Caption Employee Name
txtName Text (blank)
lblWage Alignment 1 – Right Justify

Caption Hourly Wage
txtWage Text (blank)
lblHours Alignment 1 – Right Justify

Caption Number of Hours Worked
txtHours Text (blank)
lblExempts Alignment 1 – Right Justify

Caption Number of Exemptions
txtExempts Text (blank)
lblMarital Alignment 1 – Right Justify

Caption Marital Status (M or S)
txtMarital Text (blank)
lblPriorPay Alignment 1– Right Justify

Caption Total Pay Prior to this Week
txtPriorPay Text (blank)
cmdDisplay Caption Display Payroll
cmdNext Caption Next Employee
cmdQuit Caption Quit
picResults

FIGURE 4-6 Sample Run of Weekly Payroll

122 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

‘Program to compute employees’ weekly payroll

Private Sub cmdDisplay_Click()
Dim empName As String ‘Name of employee
Dim hrWage As Single ‘Hourly wage
Dim hrsWorked As Single ‘Hours worked this week
Dim exemptions As Integer ‘Number of exemptions for employee
Dim mStatus As String ‘Marital status: S for Single; M for Married
Dim prevPay As Single ‘Total pay for year excluding this week
Dim pay As Single ‘This week’s pay before taxes
Dim totalPay As Single ‘Total pay for year including this week
Dim ficaTax As Single ‘FICA taxes for this week
Dim fedTax As Single ‘Federal income tax withheld this week
Dim check As Single ‘Paycheck this week (take-home pay)
‘Obtain data, compute payroll, display results
Call InputData(empName, hrWage, hrsWorked, exemptions,

mStatus, prevPay) ‘Task 0
pay = Gross_Pay(hrWage, hrsWorked) ‘Task 1
totalPay = Total_Pay(prevPay, pay) ‘Task 2
ficaTax = FICA_Tax(pay, prevPay, totalPay) ‘Task 3
fedTax = Fed_Tax(pay, exemptions, mStatus) ‘Task 4
check = Net_Check(pay, ficaTax, fedTax) ‘Task 5
Call ShowPayroll(empName, pay, totalPay, ficaTax, fedTax, check) ‘Task 6

End Sub

Private Sub cmdNext_Click()
‘Clear all text boxes for next employee’s data
txtName.Text = “ “
txtWage.Text = “ “
txtHours.Text = “ “
txtExempts.Text = “ “
txtMarital.Text = “ “
txtPriorPay.Text = “ “
picResults.Cls

End Sub

Private Sub cmdQuit_Click()
End

End Sub

Private Function Fed_Tax(pay As Single, exemptions As Integer, mStatus As String)
Dim adjPay As Single
‘Task 4.1: Compute federal income tax
adjPay = pay - (51.92 * exemptions)
If adjPay < 0 Then

adjPay = 0
End If
If mStatus = “S” Then

Fed_Tax = TaxSingle(adjPay) ‘Task 4.2
Else

Fed_Tax = TaxMarried(adjPay) ‘Task 4.3
End If
Fed_Tax = Round(Fed_Tax, 2) ‘Round to nearest cent

End Function

Private Function FICA_Tax(pay As Single, prevPay As Single, totalPay As Single)

A C a s e S t u d y : W e e k l y P a y r o l l 123

Dim socialSecurity As Single ‘Social Security tax for this week
Dim medicare As Single ‘Medicare tax for this week
‘Task 3: Compute social security and medicare tax
If totalPay <= 68400 Then

socialSecurity = 0.062 * pay
ElseIf prevPay < 68400 Then

socialSecurity = 0.062 * (68400 - prevPay)
End If
medicare = 0.0145 * pay
FICA_Tax = socialSecurity + medicare
FICA_Tax = Round(FICA_Tax, 2) ‘Round to nearest cent

End Function

Private Function Gross_Pay(hrWage As Single, hrsWorked As Single)
‘Task 1: Compute weekly pay before taxes
If hrsWorked <= 40 Then

Gross_Pay = hrsWorked * hrWage
Else

Gross_Pay = 40 * hrWage + (hrsWorked - 40) * 1.5 * hrWage
End If

End Function

Private Sub InputData(empName As String, hrWage As Single, _ hrsWorked As
Single, exemptions As Integer, _ mStatus As String,
prevPay As Single)

‘Get payroll data for employee empName = txtName.Text
hrWage = Val(txtWage.Text)
hrsWorked = Val(txtHours.Text)
exemptions = Val(txtExempts.Text)
mStatus = Left(UCase(txtMarital.Text), 1) ‘M or S
prevPay = Val(txtPriorPay.Text)

End Sub

Private Function Net_Check(pay As Single, ficaTax As Single, fedTax As Single)
‘Task 5: Compute amount of money given to employee
Net_Check = pay - ficaTax - fedTax

End Function

Private Sub ShowPayroll(empName As String, pay As Single, _ totalPay As
Single, ficaTax As Single, fedTax As Single, check As Single)

‘Display results of payroll computations
picResults.Cls
picResults.Print “Payroll results for “; empName
picResults.Print
picResults.Print “ Gross pay this period: “; FormatCurrency(pay)
picResults.Print
picResults.Print “ Year-to-date earnings: “; FormatCurrency(totalPay)
picResults.Print
picResults.Print “ Fica Taxes this period: “; FormatCurrency(ficaTax)
picResults.Print
picResults.Print “ Income tax withheld: “; FormatCurrency(fedTax)
picResults.Print
picResults.Print “Net pay (check amount): “; FormatCurrency(check)

End Sub

124 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

Private Function TaxMarried(adjPay As Single) As Single
‘Task 6.3: Compute federal tax for married person based on adjusted pay
Select Case adjPay

Case 0 To 124
TaxMarried = 0

Case 124 To 899
TaxMarried = 0.15 * (adjPay - 124)

Case 899 To 1855
TaxMarried = 116.25 + 0.28 * (adjPay - 899)

Case 1855 To 3084
TaxMarried = 383.93 + 0.31 * (adjPay - 1855)

Case 3084 To 5439
TaxMarried = 764.92 + 0.36 * (adjPay - 3084)

Case Is > 5439
TaxMarried = 1612.72 + 0.396 * (adjPay - 5439)

End Select
End Function

Private Function TaxSingle(adjPay As Single) As Single
‘Task 6.2: Compute federal tax for single person based on adjusted pay
Select Case adjPay

Case 0 To 51
TaxSingle = 0

Case 51 To 517
TaxSingle = 0.15 * (adjPay - 51)

Case 517 To 1105
TaxSingle = 69.6 + 0.28 * (adjPay - 517)

Case 1105 To 2493
TaxSingle = 234.54 + 0.31 * (adjPay - 1105)

Case 2493 To 5385
TaxSingle = 664.82 + 0.36 * (adjPay - 2493)

Case Is > 5385
TaxSingle = 1705.94 + 0.396 * (adjPay - 5385)

End Select
End Function

Private Function Total_Pay(prevPay As Single, pay As Single)
‘Compute total pay before taxes
Total_Pay = prevPay + pay

End Function

COMMENTS

1. In the function FICA_Tax, care has been taken to avoid computing Social Secu-
rity benefits tax on income in excess of $68,400 per year. The logic of the pro-
gram makes sure an employee whose income crosses the $68,400 threshold
during a given week is taxed only on the difference between $68,400 and his
previous year-to-date income.

2. The two functions TaxMarried and TaxSingle use Select Case to incorporate the
tax brackets given in Tables 4.4 and 4.5 for the amount of federal income tax
withheld. The upper limit of each Case clause is the same as the lower limit of
the next Case clause. This ensures fractional values for adjPay, such as 51.50 in

A C a s e S t u d y : W e e k l y P a y r o l l 125

the TaxSingle function, will be properly treated as part of the higher salary
range.

SUMMARY

1. The relational operators are <, >, =, <>, <=, and >=.

2. The principal logical operators are And, Or, and Not.

3. A condition is an expression involving constants, variables, functions, and oper-
ators (arithmetic, relational, and/or logical) that can be evaluated as either True
or False.

4. An If block decides what action to take depending on the truth values of one or
more conditions. To allow several courses of action, the If and Else parts of an
If statement can contain other If statements.

5. A Select Case block selects one of several actions depending on the value of an
expression, called the selector. The entries in the value lists should have the
same type (string or numeric) as the selector.

PROGRAMMING PROJECTS

1. Table 4.8 gives the price schedule for Eddie’s Equipment Rental. Full-day
rentals cost one-and-a-half times half-day rentals. Write a program that displays
Table 4.8 in a picture box when an appropriate command button is clicked and
displays a bill in another picture box based on the item number and time peri-
od chosen by a customer. The bill should include a $30.00 deposit.

TABLE 4.8
Price Schedule for Eddie’s Equipment Rental

Piece of Equipment Half-Day Full Day

1. Rug cleaner $16.00 $24.00
2. Lawn mower $12.00 $18.00
3. Paint sprayer $20.00 $30.00

A possible form layout and sample run is shown in Figure 4-7.

FIGURE 4-7 Form Layout and Sample Run for Programming Project 1

2. The American Heart Association suggests that at most 30 percent of the calo-
ries in our diet come from fat. Although food labels give the number of calories
and amount of fat per serving, they often do not give the percentage of calories
from fat. This percentage can be calculated by multiplying the number of grams
of fat in one serving by 9, dividing that number by the total number of calories
per serving, and multiplying the result by 100. Write a program that requests the
name, number of calories per serving, and the grams of fat per serving as input,

126 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/selectcaseblocks.html
http://www.pearsoncustom.com/link/visualbasic/relationaloperator.html
http://www.pearsoncustom.com/link/visualbasic/logicaloperators.html
http://www.pearsoncustom.com/link/visualbasic/ifblocks.html

and tells us whether the food meets the American Heart Association recom-
mendation. A sample run is as follows:

3. Table 4.9 gives the 1998 federal income tax rate schedule for single taxpayers.
Write a program that requests the taxable income and calculates the federal
income tax. Use a Sub procedure for the input and a Function procedure to cal-
culate the tax.

TABLE 4.9
1998 Federal Income Tax Rates for Single Taxpayers

Taxable Income Over But Not Over Your Tax Is Of Amount Over

$0 $25,350 15% $0
$25,350 $61,400 $3,802.50 + 28% $25,350
$61,400 $128,100 $13,896.50 + 31% $61,400
$128,100 $278,450 $34,573.50 + 36% $128,100
$278,450 $86,699.50 + 39.6% $278,450

4. Write a program to determine the real roots of the quadratic equation
ax + bx + c = 0 (where a ≠ 0) after requesting the values of a, b, and c. Use a
sub procedure to ensure that a is nonzero. Note: The equation has 2, 1, or 0
solutions depending on whether the value of b ^2 – 4 * a * c is positive, zero,
or negative. In the first two cases, the solutions are given by the quadratic for-
mula (–b ± Sqr(b^2 – 4 * a * c)) / (2 * a). (Test the program with the following
sets of coefficients.)

a = 1 b = –11 c = 28 Solutions are 4 and 7.
a = 1 b = –6 c = 9 Solution is 3.
a = 1 b = 4 c = 1 No solution.

5. Table 4.10 contains seven proverbs and their truth values. Write a program that
presents these proverbs one at a time and asks the user to evaluate them as true
or false. The program should then tell the user how many questions were
answered correctly and display one of the following evaluations: Perfect (all
correct), Excellent (5 or 6 correct), You might consider taking Psychology 101
(less than 5 correct).

TABLE 4.10
Seven Proverbs

Proverb Truth Value

The squeaky wheel gets the grease. True
Cry and you cry alone. True
Opposites attract. False
Spare the rod and spoil the child. False
Actions speak louder than words. True
Familiarity breeds contempt. False
Marry in haste, repent at leisure. True

Source: “You Know What They Say . . .,” by Alfie Kohn, Psychology Today, April 1988.

P r o g r a m m i n g P r o j e c t s 127

6. Write a program to analyze a mortgage. The user should enter the amount of the
loan, the annual rate of interest, and the duration of the loan in months. When
the user clicks on the command button, the information that was entered should
be checked to make sure it is reasonable. If bad data have been supplied, the
user should be so advised. Otherwise, the monthly payment and the total
amount of interest paid should be displayed. The formula for the monthly pay-
ment is

payment = p * r / (1 – (1 + r) ^ (–n))

where p is the amount of the loan, r is the monthly interest rate (annual rate
divided by 12) given as a number between 0 (for 0 percent) and 1 (for 100 per-
cent), and n is the duration of the loan. The formula for the total interest paid is

total interest = n * payment - p

(Test the program for a mortgage of $140,000 at 8% annual rate of interest, and
duration 360 months. Such a mortgage will have a monthy payment of
$1,027.27.)

7. Write a program using the form in Figure 4-8. Each time the command button
is pressed, Rnd is used to simulate a coin toss and the values are updated. The
figure shows the status after 27 coin tosses. Note: You can produce tosses
quickly by just holding down the Enter key. Although the percentage of heads
initially will fluctuate considerably, it should stay close to 50% after many (say,
1000) tosses.

FIGURE 4-8 Form for Programming

128 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

S E C T I O N

REPETITION

55

131

5.1 DO LOOPS

A loop, one of the most important structures in Visual Basic, is used to repeat a sequence of
statements a number of times. At each repetition, or pass, the statements act upon variables whose
values are changing. The Do loop repeats a sequence of statements either as long as or until a
certain condition is true. A Do statement precedes the sequence of statements, and a Loop state-
ment follows the sequence of statements. The condition, along with either the word While or
Until, follows the word Do or the word Loop. When Visual Basic executes a Do loop of the form

Do While condition
statement(s)

Loop

it first checks the truth value of condition. If condition is false, then the statements inside the loop
are not executed, and the program continues with the line after the Loop statement. If condition
is true, then the statements inside the loop are executed. When the statement Loop is encountered,
the entire process is repeated, beginning with the testing of condition in the Do While statement.
In other words, the statements inside the loop are repeatedly executed only as long as (that is,
while) the condition is true. Figure 5-1 contains the pseudocode and flowchart for this loop.

FIGURE 5-1 Pseudocode and Flowchart for a Do While Loop

Do While condition is true
Processing step(s)

Loop

http://www.pearsoncustom.com/link/visualbasic/doloop.html

EXAMPLE 1

Write a program that displays the numbers from 1 through 10.

SOLUTION:
The condition in the Do loop is “num <= 10”

Private Sub cmdDisplay_Click()

Dim num As Integer

‘Display the numbers from 1 to 10

num = 1

Do While num <= 10

picNumbers.Print num;

num = num + 1

Loop

End Sub

[Run, and click the command button. The following is displayed in the picture box.]

1 2 3 4 5 6 7 8 9 10

Do loops are commonly used to ensure that a proper response is received from the Input-
Box function.

EXAMPLE 2

The following program requires the user to give a password before a secret file can be accessed.

Object Property Setting

frm6_1_2 Caption Read File
lblFiles Caption The available files are:

HUMOR.TXT,
INSULTS.TXT, and
SECRET.TXT.

lblName Caption Name of file to open
txtName Text (blank)
cmdDisplay Caption Display First Item of File
picItem

Private Sub cmdDisplay_Click()

Dim passWord As String, info As String

If UCase(txtName.Text) = “SECRET.TXT”Then

passWord = “”

Do While passWord <> “SHAZAM”

passWord = InputBox(“What is the password?”)

passWord = UCase(passWord)

Loop

End If

Open txtName.Text For Input As #1

Input #1, info

picItem.Cls

picItem.Print info

Close #1

End Sub

[Run, type SECRET.TXT into the text box, and click the command button.]

132 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/doloop.html

Note: If a file other than SECRET.TXT is requested, the statements inside the loop are
not executed.

In Examples 1 and 2 the condition was checked at the top of the loop—that is, before
the statements were executed. Alternatively, the condition can be checked at the bottom of
the loop when the statement Loop is reached. When Visual Basic encounters a Do loop of
the form

Do
statement(s)

Loop Until condition

it executes the statements inside the loop and then checks the truth value of condition. If con-
dition is true, then the program continues with the line after the Loop statement. If condition
is false, then the entire process is repeated beginning with the Do statement. In other words,
the statements inside the loop are executed at least once and then are repeatedly executed until
the condition is true. Figure 5-2 shows the pseudocode and flowchart for this type of Do loop.

FIGURE 5-2 Pseudocode and Flowchart for a Do Loop with Condition Tested at the
Bottom

EXAMPLE 3

The following program is equivalent to Example 2, except that the condition is tested at the bottom of the
loop.

Private Sub cmdDisplay_Click()
Dim passWord As String, info As String

D o L o o p s 133

Do
statement(s)

Loop Until condition is true

http://www.pearsoncustom.com/link/visualbasic/doloop.html

If UCase(txtName.Text) = “SECRET.TXT”Then
Do

passWord = InputBox(“What is the password?”)
passWord = UCase(passWord)

Loop Until passWord = “SHAZAM”
End If
Open txtName.Text For Input As #1
Input #1, info
picItem.Cls
picItem.Print info
Close #1

End Sub

Do loops allow us to calculate useful quantities for which we might not know a simple
formula.

EXAMPLE 4

Suppose you deposit $100 into a savings account and let it accumulate at 7 percent interest compounded
annually. The following program determines when you will be a millionaire.

Object Property Setting

frmInterest Caption 7% Interest
lblAmount Caption Amount Deposited
txtAmount Text (blank)
cmdYears Caption Years to become a

millionaire
picWhen

Private Sub cmdYears_Click()
Dim balance As Single, numYears As Integer
‘Compute years required to become a millionaire
picWhen.Cls
balance = Val(txtAmount.Text)
numYears = 0
Do While balance < 1000000

balance = balance + .07 * balance
numYears = numYears + 1

Loop
picWhen.Print “In”; numYears; “years you will have a million dollars.”

End Sub

[Run, type 100 into the text box, and press the command button.]

COMMENTS

1. Be careful to avoid infinite loops—that is, loops that are never exited. The fol-
lowing loop is infinite, because the condition “num < > 0”will always be true.
Note: The loop can be terminated by pressing Ctrl+Break.

134 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/doloop.html

Private Sub cmdButton_Click()

Dim num As Single

‘An infinite loop

num = 7

Do While num <> 0

num = num - 2

Loop

End Sub

Notice that this slip-up can be avoided by changing the condition to “num >=
0”

2. The statements between Do and Loop do not have to be indented. However,
because indenting improves the readability of the program, it is regarded as
good programming style. As soon as you see the word Do, your eyes can easi-
ly scan down the program to find the matching Loop statement. You know
immediately the size of the loop.

3. Visual Basic allows the use of the words While and Until either at the top or
bottom of a Do loop. In this text, the usage of these words is restricted for the
following reasons.

(a) Because any While statement can be easily converted to an Until statement
and vice versa, the restriction produces no loss of capabilities and the pro-
grammer has one less matter to think about.

(b) Restricting the use simplifies reading the program. The word While pro-
claims testing at the top, and the word Until proclaims testing at the bottom.

(c) Certain other major structured languages, such as Pascal, only allow While
at the top and Until at the bottom of a loop. Therefore, following this con-
vention will make life easier for people already familiar with Pascal or plan-
ning to learn it.

(d) Standard pseudocode uses the word While to denote testing a loop at the top
and the word Until to denote testing at the bottom.

4. Good programming practice requires that all variables appearing in a Do loop
be assigned values before the loop is entered rather than relying on default val-
ues. For instance, the code at the left in what follows should be replaced with
the code at the right.

‘Add 1 through 10 ‘Add 1 through 10

Do While num < 10 num = 0

num = num + 1 sum = 0

sum = sum + num Do While num < 10

Loop num = num + 1

sum = sum + num

Loop

5.2 PROCESSING LISTS OF DATA WITH DO LOOPS

One of the main applications of programming is the processing of lists of data from a file. Do
loops are used to display all or selected items from lists, search lists for specific items, and per-
form calculations on the numerical entries of a list. This section introduces several devices that
facilitate working with lists. Counters calculate the number of elements in lists, accumula-
tors sum numerical values in lists, flags record whether certain events have occurred, and the
EOF function indicates the end of a file. Nested loops add yet another dimension to repetition.

P r o c e s s i n g L i s t s o f D a t a w i t h D o L o o p s 135

http://www.pearsoncustom.com/link/visualbasic/errortrapping.html
http://www.pearsoncustom.com/link/visualbasic/eoffunction.html
http://www.pearsoncustom.com/link/visualbasic/doloop.html

■ EOF FUNCTION

Data to be processed are often retrieved from a file by a Do loop. Visual Basic has a useful
function, EOF, that tells us if we have reached the end of the file from which we are reading.
Suppose a file has been opened with reference number n. At any time, the condition

EOF(n)

will be true if the end of the file has been reached, and false otherwise.
One of the first programs I wrote when I got my computer stored a list of names and

phone numbers and printed a phone directory. I first had the program display the directory
on the screen and later changed the picNumbers.Print statements to Printer.Print statements
to produce a printed copy. I stored the names in a file so I could easily add, change, or delete
entries.

EXAMPLE 1

The following program displays the contents of a telephone directory. The names and phone numbers are
contained in the file PHONE.TXT. The loop will repeat as long as the end of the file is not reached.

PHONE.TXT contains the following four lines:

“Bert”, “123-4567”
”Ernie”, “987-6543”
”Grover”, “246-8321”
”Oscar”, “135-7900”

Object Property Setting

frmPhone Caption Directory
cmdDisplay Caption Display Phone Numbers
picNumbers

Private Sub cmdDisplay_Click()
Dim nom As String, phoneNum As String
picNumbers.Cls
Open “PHONE.TXT”For Input As #1
Do While Not EOF(1)

Input #1, nom, phoneNum
picNumbers.Print nom, phoneNum

Loop
Close #1

End Sub

[Run, and press the command button.]

The program in Example 1 illustrates the proper way to process a list of data contained in a
file. The Do loop should be tested at the top with an end-of-file condition. (If the file is empty,
no attempt is made to input data from the file.) The first set of data should be input after the
Do statement, and then the data should be processed. Figure 5-3 contains the pseudocode and
flowchart for this technique.

136 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/doloop.html

FIGURE 5-3 Pseudocode and Flowchart for Processing Data from a File

Sequential files can be quite large. Rather than list the entire contents, we typically
search the file for a specific piece of information.

EXAMPLE 2

Modify the program in Example 1 to search the telephone directory for a name specified by the user. If
the name does not appear in the directory, so notify the user.

SOLUTION:
We want to keep searching as long as there is no match and we have not reached the end of the list. There-
fore, the condition for the Do While statement is a compound logical expression with the operator And.
After the last pass through the loop, we will know whether the name was found and be able to display the
requested information.

Object Property Setting

frmPhone Caption Phone Number
lblName Caption Name to look up
txtName Text (blank)
cmdDisplay Caption Display Phone Number
picNumber

Private Sub cmdDisplay_Click()

Dim nom As String, phoneNum As String

Open “PHONE.TXT”For Input As #1

Do While (nom txtName.Text) And (Not EOF(1))

Input #1, nom, phoneNum

Loop

Close #1

picNumber.Cls

If nom = txtName.Text Then

picNumber.Print nom, phoneNum

P r o c e s s i n g L i s t s o f D a t a w i t h D o L o o p s 137

Do While there are still data in the file
Get an item of data
Process the item

Loop

http://www.pearsoncustom.com/link/visualbasic/sequentialfile.html

Else

picNumber.Print “Name not found.”

End If

End Sub

[Run, type Grover into the text box, and press the command button.]

■ COUNTERS AND ACCUMULATORS

A counter is a numeric variable that keeps track of the number of items that have been
processed. An accumulator is a numeric variable that totals numbers.

EXAMPLE 3

The following program counts and finds the value of coins listed in a file.

COINS.TXT contains the following entries: 1, 1, 5, 10, 10, 25

Object Property Setting

frmCoins Caption Coins
cmdAnalyze Caption Analyze Change
picValue

Private Sub cmdAnalyze_Click()

Dim numCoins As Integer, sum As Single, value As Single

Open “COINS.TXT”For Input As #1

numCoins = 0

sum = 0

Do While Not EOF(1)

Input #1, value

numCoins = numCoins + 1

sum = sum + value

Loop

picValue.Cls

picValue.Print “The value of the”; numCoins; “coins is”; sum; “cents.”

Close #1

End Sub

[Run, and press the command button.]

The value of the counter, numCoins, was initially 0 and changed on each execution of the loop
to 1, 2, 3, 4, 5, and finally 6. The accumulator, sum, initially had the value 0 and increased with
each execution of the loop to 1, 2, 7, 17, 27, and finally 52.

138 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

■ FLAGS

A flag is a variable that keeps track of whether a certain situation has occurred. The data type
most suited to flags is the Boolean data type. Variables of type Boolean can assume just two
values—True and False. Flags are used within loops to provide information that will be uti-
lized after the loop terminates. Flags also provide an alternative method of terminating a loop.

EXAMPLE 4

The following program counts the number of words in the file WORDS.TXT and then reports whether the
words are in alphabetical order. In each execution of the loop, a word is compared to the next word in the
list. The flag variable, called orderFlag, is initially assigned the value True and is set to False if a pair of
adjacent words is out of order. The technique used in this program will be used in Section 6 when we study
sorting. Note: The statement in line 7, word1 = “”, is a device to get things started. Each word must first
be read into the variable word2.
WORDS.TXT contains the following winning words from the U.S. National Spelling Bee:
“cambist”, “croissant”, “deification”
“hydrophyte”, “incisor”, “maculature”
“macerate”, “narcolepsy”, “shallon”

Object Property Setting

frmWords Caption Word Analysis
cmdAnalyze Caption Analyze Words
picReport

Private Sub cmdAnalyze_Click()
Dim orderFlag As Boolean, wordCounter As Integer
Dim word1 As String, word2 As String
‘Count words. Are they in alphabetical order?
orderFlag = True
wordCounter = 0
word1 = “”
Open “WORDS.TXT”For Input As #1
Do While Not EOF(1)

Input #1, word2
wordCounter = wordCounter + 1
If word1 > word2 Then ‘Two words are out of order

orderFlag = False
End If
word1 = word2

Loop
Close #1
picReport.Print “The number of words is”; wordCounter
If orderFlag = True Then

picReport.Print “The words are in alphabetical order.”
Else

picReport.Print “The words are not in alphabetical order.”
End If

End Sub

[Run, and press the command button.]

P r o c e s s i n g L i s t s o f D a t a w i t h D o L o o p s 139

■ NESTED LOOPS

The statements inside of a Do loop can consist of another Do loop. Such a configuration is re-
ferred to as nested loops and is useful in repeating a single data-processing routine several
times.

EXAMPLE 5

Modify the program in Example 2 to allow the user to look through several lists of names. Suppose we
have several different phone directories, the names of which are listed in the file LISTS.TXT. (For
instance, the file LISTS.TXT might contain the entries CLIENTS.TXT, FRIENDS.TXT, and KIN-
FOLK.TXT.) A sought-after name might be in any one of the files.

SOLUTION:
The statements in the inner Do loop will be used to look up names as before. At least one pass through
the outer Do loop is guaranteed and passes will continue as long as the name is not found and phone lists
remain to be examined.

Private Sub cmdDisplay_Click()

Dim foundFlag As Boolean, fileName As String

Dim nom As String, phoneNum As String

Open “LISTS.TXT”For Input As #1

foundFlag = False

nom = “”

Do While (foundFlag = False) And (Not EOF(1))

Input #1, fileName

Open fileName For Input As #2

Do While (nom <> txtName.Text) And (Not EOF(2))

Input #2, nom, phoneNum

Loop

Close #2

picNumber.Cls

If nom = txtName.Text Then

picNumber.Print nom, phoneNum

foundFlag = True

End If

Loop

Close #1

If foundFlag = False Then

picNumber.Print “Name not found.”

End If

End Sub

COMMENT

1. In Appendix D, the section “Stepping Through a Program Containing a Do
Loop: Section 5” uses the Visual Basic debugging tools to trace the flow
through a Do loop.

2. When flagVar is a variable of Boolean type, the statements

True Then and If flagVar = False Then

can be replaced by

If flagVar Then and If Not flagVar Then

140 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/doloop.html

Similarly, the statements

Do While flagVar = True and Do While flagVar = False

can be replaced by

Do While flagVar and Do While Not flagVar

5.3 FOR...NEXT LOOPS

When we know exactly how many times a loop should be executed, a special type of loop,
called a For...Next loop, can be used. For...Next loops are easy to read and write, and have
features that make them ideal for certain common tasks. The following code uses a For...Next
loop to display a table.

Private Sub cmdDisplayTable_Click()
Dim i As Integer
‘Display a table of the first 5 numbers and their squares
picTable.Cls
For i = 1 To 5

picTable.Print i; i ^ 2
Next i

End Sub

[Run and click on cmdDisplayTable. The following is displayed in the picture box.]

1 1

2 4

3 9

4 16

5 25

The equivalent program written with a Do loop is as follows.
Private Sub cmdDisplayTable_Click()

Dim i As Integer
‘Display a table of the first 5 numbers and their squares
picTable.Cls
i = 1
Do While i <= 5

picTable.Print i; i ^ 2
i = i + 1

Loop
End Sub

In general, a portion of a program of the form

constitutes a For...Next loop. The pair of statements For and Next cause the statements be-
tween them to be repeated a specified number of times. The For statement designates a numeric
variable, called the control variable, that is initialized and then automatically changes after
each execution of the loop. Also, the For statement gives the range of values this variable will
assume. The Next statement increments the control variable. If m ≤ n, then i is assigned the

F o r . . . N e x t L o o p s 141

http://www.pearsoncustom.com/link/visualbasic/fornextloop.html
http://www.pearsoncustom.com/link/visualbasic/doloop.html

values m, m + 1,..., n in order, and the body is executed once for each of these values. If
m > n, then execution continues with the statement after the For...Next loop.

When program execution reaches a For...Next loop, such as the one shown previously, the
For statement assigns to the control variable ithe initial value m and checks to see whether it is
greater than the terminating value n. If so, then execution jumps to the line following the Next
statement. If i <= n, the statements inside the loop are executed. Then, the Next statement
increases the value of i by 1 and checks this new value to see if it exceeds n. If not, the entire
process is repeated until the value of i exceeds n. When this happens, the program moves to the
line following the loop. Figure 5-4 contains the pseudocode and flowchart of a For...Next loop.

FIGURE 5-4 Pseudocode and Flowchart of a For...Next Loop

The control variable can be any numeric variable. The most common single-letter names
are i, j, and k; however, if appropriate, the name should suggest the purpose of the control
variable.

EXAMPLE 1

Suppose the population of a city is 300,000 in the year 1998 and is growing at the rate of 3 percent per
year. The following program displays a table showing the population each year until 2002.

Object Property Setting

frm6_3_1 Caption POPULATION GROWTH
cmdDisplay Caption Display Population
picTable

142 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

For i = m to n
Processing step(s)

Next i

http://www.pearsoncustom.com/link/visualbasic/fornextloop.html

Private Sub cmdDisplay_Click()

Dim pop As Single, yr As Integer

‘Display population from 1998 to 2002

picTable.Cls

pop = 300000

For yr = 1998 To 2002

picTable.Print yr, FormatNumber(pop, 0)

pop = pop + .03 * pop

Next yr

End Sub

[Run, and click the command button.]

The initial and terminating values can be constants, variables, or expressions. For
instance, the For statement in the preceding program can be replaced by

firstYr = 1998

lastYr = 2002

For yr = firstYr To lastYr

In Example 1, the control variable was increased by 1 after each pass through the loop.
A variation of the For statement allows any number to be used as the increment. The state-
ment

For i= m To n Step s

instructs the Next statement to add s to the control variable instead of 1. The numbers m, n,
and s do not have to be whole numbers. The number s is called the step value of the loop.

EXAMPLE 2

The following program displays the values of the index of a For...Next loop for terminating and step val-
ues input by the user.

Object Property Setting

frm6_3_2 Caption For index = 0 To n Step s
lblN Caption n:
txtEnd Text (blank)
lblS Caption s:
txtStep Text (blank)
cmdDisplay Caption Display Values of index
picValues

Private Sub cmdDisplay_Click()

Dim n As Single, s As Single, index As Single

‘Display values of index ranging from 0 to n Step s

picValues.Cls

n = Val(txtEnd.Text)

s = Val(txtStep.Text)

For index = 0 To n Step s

F o r . . . N e x t L o o p s 143

picValues.Print index;
Next index

End Sub

[Run, type 3.2 and .5 into the text boxes, and click the command button.]

In the examples considered so far, the control variable was successively increased until
it reached the terminating value. However, if a negative step value is used and the initial value
is greater than the terminating value, then the control value is decreased until reaching the
terminating value. In other words, the loop counts backward or downward.

EXAMPLE 3

The following program accepts a word as input and displays it backward.

Object Property Setting

frm6_3_3 Caption Write Backwards
lblWord Caption Enter Word
txtWord Text (blank)
cmdReverse Caption Reverse Letters
picTranspose

Private Sub cmdReverse_Click()
picTranspose.Cls
picTranspose.Print Reverse(txtWord.Text)

End Sub

Private Function Reverse(info As String) As String
Dim m As Integer, j As Integer, temp As String
m = Len(info)
temp = “”
For j = m To 1 Step -1

temp = temp + Mid(info, j, 1)
Next j
Reverse = temp

End Function

[Run, type SUEZ into the text box, and click the command button.]

Note: The initial and terminating values of a For...Next loop can be expressions. For instance,
the third and fifth lines of the function in Example 3 can be consolidated to

For j = Len(info) To 1 Step -1

144 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/fornextloop.html

The body of a For...Next loop can contain any sequence of Visual Basic statements. In par-
ticular, it can contain another For...Next loop. However, the second loop must be completely
contained inside the first loop and must have a different control variable. Such a configura-
tion is called nested loops. Figure 5-5 shows several examples of valid nested loops.

FIGURE 5-5 Nested Loops

EXAMPLE 4

Write a program to display a multiplication table for the integers from 1 to 4.

SOLUTION:
In the following program, j denotes the left factors of the products, and k denotes the right factors. Each
factor takes on a value from 1 to 4. The values are assigned to j in the outer loop and to k in the inner loop.
Initially, j is assigned the value 1, and then the inner loop is traversed four times to produce the first row
of products. At the end of these four passes, the value of j will still be 1, and the value of k will have been
incremented to 5. The picTable.Print statement just before Next j guarantees that no more products will
be displayed in that row. The first execution of the outer loop is then complete. Following this, the state-
ment Next j increments the value of j to 2. The statement beginning For k is then executed. It resets the
value of k to 1. The second row of products is displayed during the next four executions of the inner loop
and so on.

Object Property Setting

frmMultiply Caption Multiplication Table
cmdDisplay Caption Display Table
picTable

Private Sub cmdDisplay_Click()
Dim j As Integer, k As Integer
picTable.Cls
For j = 1 To 4

For k = 1 To 4
picTable.Print j; “x”; k; “=”; j * k,

Next k
picTable.Print

Next j
End Sub

F o r . . . N e x t L o o p s 145

http://www.pearsoncustom.com/link/visualbasic/fornextloop.html

[Run and press the command button.]

COMMENTS

1. The body of a For...Next loop need not be indented. However, because indent-
ing improves the readability of the program, it is good programming style. As
soon as you see the word For, your eyes can easily scan down the program to
find the matching Next statement. You then know two facts immediately: the
number of statements in the body of the loop and the number of passes that will
be made through the loop.

2. For and Next statements must be paired. If one is missing, the program will
generate the error message “For without Next”or “Next without For.”

3. Consider a loop beginning with For i = m To n Step s. The loop will be execut-
ed exactly once if m equals n no matter what value s has. The loop will not be
executed at all if m is greater than n and s is positive, or if m is less than n and
s is negative.

4. The value of the control variable should not be altered within the body of the
loop; doing so might cause the loop to repeat indefinitely or have an unpre-
dictable number of repetitions.

5. Noninteger step values can lead to roundoff errors with the result that the loop
is not executed the intended number of times. For instance, a loop beginning
with For i = 1 To 2 Step .1 will be executed only 10 times instead of the intend-
ed 11 times. It should be replaced with For i = 1 To 2.01 Step .1.

5.4 A CASE STUDY: ANALYZE A LOAN

This case study develops a program to analyze a loan. Assume the loan is repaid in equal
monthly payments and interest is compounded monthly. The program should request the amount
(principal) of the loan, the annual rate of interest, and the number of years over which the loan
is to be repaid. The four options to be provided by command buttons are as follows.

1. Calculate the monthly payment. The formula for the monthly payment is

payment = p * r / (1 – (1 + r) ^ (–n))

where p is the principal of the loan, r is the monthly interest rate (annual rate
divided by 12) given as a number between 0 (for 0 percent) and 1 (for 100 per-
cent), and n is the number of months over which the loan is to be repaid.
Because a payment computed in this manner can be expected to include frac-
tions of a cent, the value should be rounded up to the next nearest cent. This cor-
rected payment can be achieved using the formula

146 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/fornextloop.html

correct payment = Round(payment + .005, 2)

2. Display an amortization schedule, that is, a table showing the balance on the
loan at the end of each month for any year over the duration of the loan. Also
show how much of each monthly payment goes toward interest and how much
is used to repay the principal. Finally, display the total interest paid over the
duration of the loan. The balances for successive months are calculated with the
formula

balance = (1 + r) * b – m

where r is the monthly interest rate (annual rate / 12, a fraction between 0 and
1), b is the balance for the preceding month (amount of loan left to be paid),
and m is the monthly payment.

3. Show the effect of changes in the interest rate. Display a table giving the month-
ly payment for each interest rate from 1 percent below to 1 percent above the
specified annual rate in steps of one-eighth of a percent.

4. Quit

■ DESIGNING THE ANALYZE-A-LOAN PROGRAM

For each of the tasks described in preceding options 1 to 4, the program must first look at the
text boxes to obtain the particulars of the loan to be analyzed. Thus, the first division of the
problem is into the following tasks:

1. Input the principal, interest, and duration.

2. Calculate the monthly payment.

3. Calculate the amortization schedule.

4. Display the effects of interest rate changes.

5. Quit.

Task 1 is a basic input operation and Task 2 involves applying the formula given in Step
1; therefore, these tasks need not be broken down any further. The demanding work of the
program is done in Tasks 3 and 4, which can be divided into smaller subtasks.

3. Calculate amortization schedule. This task involves simulating the loan month
by month. First, the monthly payment must be computed. Then, for each month,
the new balance must be computed together with a decomposition of the month-
ly payment into the amount paid for interest and the amount going toward
repaying the principal. That is, Task 3 is divided into the following subtasks:

3.1 Calculate monthly payment.
3.2 Calculate new balance.
3.3 Calculate amount of monthly payment for interest.
3.4 Calculate amount of monthly payment for principal.

4. Display the effects of interest-rate changes. A table is needed to show the effects
of changes in the interest rate on the size of the monthly payment. First, the
interest rate is reduced by one percentage point and the new monthly payment
is computed. Then the interest rate is increased by regular increments until it
reaches one percentage point above the original rate, with new monthly pay-
ment amounts computed for each intermediate interest rate. The subtasks for
this task are then:

4.1 Reduce the interest rate by 1 percent.
4.2 Calculate the monthly payment.
4.3 Increase the interest rate by 1/8 percent.

A C a s e S t u d y : A n a l y z e a L o a n 147

The hierarchy chart in Figure 5-6 shows the stepwise refinement of the
problem.

FIGURE 5-6 Hierarchy Chart for the Analyze a Loan Program

■ THE USER INTERFACE

Figure 5-7 shows a possible form design. Figures 5-8 and 5-9 show possible runs of the pro-
gram for each task available through the command buttons. The width and height of the pic-
ture box were adjusted by trial and error to handle the extensive output generated.

FIGURE 5-7 Template for Loan Analysis

TABLE 5.1
Objects and Initial Properties for the Loan Analysis Program

Object Property Setting

frmLoan Caption Analysis of a Loan
lblAmt Alignment 1 – Right Justify
Caption Amount of Loan:
txtAmt Text (blank)
lblApr Alignment 1 – Right Justify
Caption Interest APR:
txtApr Text (blank)
lblYrs Alignment 1 – Right Justify
Caption Number of Loan Years
txtYrs Text (blank)
cmdPayment Caption Calculate Monthly Payment
cmdRateTable Caption Display Interest Rate Change Table
cmdAmort Caption Display Amortization Schedule
cmdQuit Caption Quit

148 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/hierarchychart.html

picDisp

FIGURE 5-8 Monthly Payment on a 30-Year Loan

FIGURE 5-9 Interest Rate Change Table for a 30-Year Loan

FIGURE 5-10 Amortization of Year 30 of a Loan

■ WRITING THE ANALYZE-A-LOAN PROGRAM

Table 5.2 shows each task discussed before and the procedure that carries out the task.

A C a s e S t u d y : A n a l y z e a L o a n 149

■ PSEUDOCODE FOR THE ANALYZE-A-LOAN PROGRAM

Calculate Monthly Payment command button:
INPUT LOAN DATA (Sub procedure InputData)
COMPUTE MONTHLY PAYMENT (Function Payment)
DISPLAY MONTHLY PAYMENT (Sub procedure ShowPayment)

Display Interest Rate Change Table command button:
INPUT LOAN DATA (Sub procedure InputData)
DISPLAY INTEREST RATE CHANGE TABLE

(Sub procedure ShowInterestChanges)
Decrease annual rate by .01
Do

Display monthly interest rate
COMPUTE MONTHLY PAYMENT (Function Payment)
Increase annual rate by .00125

Loop Until annual rate > original annual rate + .01

Display Amortization Schedule command button:
INPUT LOAN DATA (Sub procedure InputData)
DISPLAY AMORTIZATION SCHEDULE (Sub procedure ShowAmortSched)
Compute monthly interest rate
COMPUTE MONTHLY PAYMENT (Function Payment)
Display amortization table
Display total interest paid

TABLE 5.2
Tasks and Their Procedures

Task Procedure

1. Input principal, interest, duration. InputData
2. Calculate monthly payment. ShowPayment
3. Calculate amortization schedule. ShowAmortSched

3.1 Calculate monthly payment. Payment
3.2 Calculate new balance. Balance
3.3 Calculate amount paid for loan. ShowAmortSched
3.4 Calculate amount paid for interest. ShowAmortSched

4. Show effect of interest rate changes. ShowInterestChanges
4.1 Reduce interest rate. ShowInterestChanges
4.2 Compute new monthly payment. Payment
4.3 Increase interest rate. ShowInterestChanges

‘Analyze a loan

Private Function Balance(mPayment As Single, prin As Single, mRate As Single) As Single
Dim newBal As Single ‘Compute balance at end of month
newBal = (1 + mRate) * prin
If newBal <= mPayment Then

mPayment = newBal
Balance = 0

Else
Balance = newBal - mPayment

End If
End Function

Private Sub cmdAmort_Click()
Dim principal As Single ‘Amount of loan
Dim yearlyRate As Single ‘Annual rate of interest
Dim numMonths As Integer ‘Number of months to repay loan

150 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

Call InputData(principal, yearlyRate, numMonths)
Call ShowAmortSched(principal, yearlyRate, numMonths)

End Sub

Private Sub cmdPayment_Click()
Dim principal As Single ‘Amount of loan
Dim yearlyRate As Single ‘Annual rate of interest
Dim numMonths As Integer ‘Number of months to repay loan
Call InputData(principal, yearlyRate, numMonths)
Call ShowPayment(principal, yearlyRate, numMonths)

End Sub

Private Sub cmdQuit_Click()
End

End Sub

Private Sub cmdRateTable_Click()
Dim principal As Single ‘Amount of loan
Dim yearlyRate As Single ‘Annual rate of interest
Dim numMonths As Integer ‘Number of months to repay loan
Call InputData(principal, yearlyRate, numMonths)
Call ShowInterestChanges(principal, yearlyRate, numMonths)

End Sub

Private Sub InputData(prin As Single, yearlyRate As Single, numMs As Integer)
Dim percentageRate As Single, numYears As Integer
‘Input the loan amount, yearly rate of interest, and duration
prin = Val(txtAmt.Text)
percentageRate = Val(txtApr.Text)
numYears = Val(txtYrs.Text)
yearlyRate = percentageRate / 100
numMs = numYears * 12

End Sub

Private Function Payment(prin As Single, mRate As Single, numMs As Integer) As Single
Dim payEst As Single
If numMs = 0 Then

payEst = prin
ElseIf mRate = 0 Then

payEst = prin / numMs
Else

payEst = prin * mRate / (1 - (1 + mRate) ^ (-numMs))
End If
If payEst <> Round(payEst, 2) Then

Payment = Round(payEst + .005, 2) ‘round up to nearest cent
End If

End Function

Private Sub ShowAmortSched(prin As Single, yearlyRate As Single, numMs As Integer)
Dim msg As String, startMonth As Integer, mRate As Single
Dim monthlyPayment As Single, totalInterest As Single
Dim yearInterest As Single, oldBalance As Single
Dim monthNum As Integer, newBalance As Single
Dim principalPaid As Single, interestPaid As Single
Dim reducPrin As Single, loanYears As Integer
‘Display amortization schedule

A C a s e S t u d y : A n a l y z e a L o a n 151

msg = “Please enter year (1-”& Str(numMs / 12)
msg = msg & “) for which amorization is to be shown:”
startMonth = 12 * Val(InputBox(msg)) - 11 picDisp.Cls
picDisp.Print “”, “Amount Paid “,
picDisp.Print “Amount Paid”, “Balance at”
picDisp.Print “Month”, “for Principal”,
picDisp.Print “for Interest”, “End of Month”
mRate = yearlyRate / 12 ‘monthly rate
monthlyPayment = Payment(prin, mRate, numMs)
totalInterest = 0
yearInterest = 0
oldBalance = prin
For monthNum = 1 To numMs

newBalance = Balance(monthlyPayment, oldBalance, mRate)
principalPaid = oldBalance - newBalance
interestPaid = monthlyPayment - principalPaid
totalInterest = totalInterest + interestPaid
If (monthNum >= startMonth) And (monthNum <= startMonth + 11) Then

picDisp.Print Tab(2); FormatNumber(monthNum, 0),
picDisp.Print FormatCurrency(principalPaid),
picDisp.Print FormatCurrency(interestPaid),
picDisp.Print FormatCurrency(newBalance)
yearInterest = yearInterest + interestPaid

End If
oldBalance = newBalance

Next monthNum
reducPrin = 12 * monthlyPayment - yearInterest
loanYears = numMs / 12
picDisp.Print
picDisp.Print “Reduction in principal”,
picDisp.Print FormatCurrency(reducPrin)
picDisp.Print “Interest paid”, ,
picDisp.Print FormatCurrency(yearInterest)
picDisp.Print “Total interest over”; loanYears; “years”,
picDisp.Print FormatCurrency(totalInterest)

End Sub

Private Sub ShowInterestChanges(prin As Single, yearlyRate As Single, numMs As Integer)
Dim newRate As Single, mRate As Single, py As Single
Dim pymnt As String
‘Display affect of interest changes
picDisp.Cls
picDisp.Print , “Annual”
picDisp.Print , “Interest rate”, “Monthly Payment”
newRate = yearlyRate - .01
Do

mRate = newRate / 12 ‘monthly rate
py = Payment(prin, mRate, numMs)
pymnt = FormatCurrency(py)
picDisp.Print , FormatPercent(newRate, 3) , pymnt
newRate = newRate + .00125

Loop Until newRate > yearlyRate + .01
End Sub

Private Sub ShowPayment(prin As Single, yearlyRate As Single, numMs As Integer)
Dim mRate As Single, prn As String, apr As String

152 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

Dim yrs As String, pay As Single, pymnt As String

‘Display monthly payment amount

mRate = yearlyRate / 12 ‘monthly rate

prn = FormatCurrency(prin)

apr = FormatNumber(yearlyRate * 100)

yrs = FormatNumber(numMs / 12, 0)

pay = Payment(prin, mRate, numMs)

pymnt = FormatCurrency(pay)

picDisp.Cls

picDisp.Print “The monthly payment for a “& prn & “loan at “

picDisp.Print apr & “% annual rate of interest for “;

picDisp.Print yrs & “years is “& pymnt

End Sub

COMMENTS

1. Tasks 3.1 and 3.2 are performed by functions. Using functions to compute these
quantities simplifies the computations in ShowAmortSched.

2. Because the payment was rounded up to the nearest cent, it is highly likely that
the payment needed in the final month to pay off the loan will be less than the
normal payment. For this reason, ShowAmortSched checks if the balance of the
loan (including interest due) is less than the regular payment, and if so, makes
appropriate adjustments.

3. The standard formula for computing the monthly payment cannot be used if
either the interest rate is zero percent or the loan duration is zero months.
Although both of these situations do not represent reasonable loan parameters,
provisions are made in the function Payment so that the program can handle
these esoteric situations.

SUMMARY

1. A Do loop repeatedly executes a block of statements either as long as or until a
certain condition is true. The condition can be checked either at the top of the
loop or at the bottom.

2. The EOF function tells us if we have read to the end of a file.

3. As various items of data are processed by a loop, a counter can be used to keep
track of the number of items, and an accumulator can be used to sum numeri-
cal values.

4. A flag is a Boolean variable, used to indicate whether or not a certain event has
occurred.

5. A For...Next loop repeats a block of statements a fixed number of times. The
control variable assumes an initial value and increments by one after each pass
through the loop until it reaches the terminating value. Alternative increment
values can be specified with the Step keyword.

PROGRAMMING PROJECTS

1. Write a program to display a company’s payroll report in a picture box. The pro-
gram should read each employee’s name, hourly rate, and hours worked from a

P r o g r a m m i n g P r o j e c t s 153

http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/fornextloop.html
http://www.pearsoncustom.com/link/visualbasic/errortrapping.html
http://www.pearsoncustom.com/link/visualbasic/eoffunction.html
http://www.pearsoncustom.com/link/visualbasic/doloop.html

file and produce a report in the form of the sample run shown in Figure 5-11.
Employees should be paid time-and-a-half for hours in excess of 40.

Payroll Report for Week ending 4/15/99

Employee Hourly Rate Hours Worked Gross Pay

Al Adams $6.50 38 $247.00

Bob Brown $5.70 50 $313.50

Carol Coe $7.00 40 $280.00

FinalTotal $840.50

FIGURE 5-11 Sample Output from Programming Project 1

2. Table 5.3 shows the standard prices for items in a department store. Suppose
prices will be reduced for the annual George Washington’s Birthday Sale. The
new price will be computed by reducing the old price by 10 percent, rounding
up to the nearest dollar, and subtracting 1 cent. If the new price is greater than
the old price, the old price is used as the sale price. Write a program to display
in a picture box the output shown in Figure 5-12.

TABLE 5.3
Washington’s Birthday Sale

Sale

Item Original Price Item Price

GumShoes 39.00 GumShoes 35.99

SnugFoot Sandals 21.00 SnugFoot Sandals 18.99

T-Shirt 7.75 T-Shirt 6.99

Maine Handbag 33.00 Maine Handbag 29.99

Maple Syrup 6.75 Maple Syrup 6.75

Flaked Vest 24.00 Flaked Vest 21.99

Nightshirt 26.00 Nightshirt 23.99

FIGURE 5-12 Output of Project 2

3. The Rule of 72 is used to make a quick estimate of the time required for prices
to double due to inflation. If the inflation rate is r percent, then the Rule of 72
estimates that prices will double in 72/r years. For instance, at an inflation rate
of 6 percent, prices double in about 72/6 or 12 years. Write a program to test
the accuracy of this rule. The program should display a table showing, for each
value of r from 1 to 20, the rounded value of 72/r and the actual number of years
required for prices to double at an r percent inflation rate. (Assume prices
increase at the end of each year.) Figure 5-13 shows the first few rows of the
output.

Interest Rule

Rate (%) of 72 Actual

1 72 70

2 36 36

3 24 24

FIGURE 5-13 Rule of 72

4. Table 5.4 shows the number of bachelor degrees conferred in 1980 and 1994 in
certain fields of study. Tables 5.5 and 5.6 show the percentage change and a his-

154 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

togram of 1994 levels, respectively. Write a program that allows the user to dis-
play any one of these tables as an option and quit as a fourth option.

TABLE 5.4
Bachelor Degrees Conferred in Certain Fields

Field of Study 1980 1994

Business and management 185,361 246,654
Computer and info. science 11,154 24,200
Education 118,169 167,600
Engineering 68,893 62,220
Social sciences 103,519 133,680

Source: U.S. National Center of Educational Statistics

TABLE 5.5
Percentage Change in Bachelor Degrees Conferred

Field of Study % Change (1980–1994)

Business and management 33.1
Computer and info. science 117.0
Education 41.8
Engineering –9.7
Social sciences 29.1

TABLE 5.6
Bachelor Degrees Conferred in 1994 in Certain Fields

Business and management ************************* 246,654
Computer and info. science *** 24,200
Education ***************** 167,600
Engineering ****** 62,220
Social sciences ************* 133,680

5. Least-Squares Approximation. Table 5.7 shows the 1988 price of a gallon of fuel
and the consumption of motor fuel for several countries. Figure 5-14 displays
the data as points in the xy plane. For instance, the point with coordinates
(1, 1400) corresponds to the USA. Figure 5-14 also shows the straight line that
best fits these data in the least squares sense. (The sum of the squares of the dis-
tances of the 11 points from this line is as small as possible.) In general, if
(xi, y1), (x2, y2), . . , (xn, yn) are n points in the xy coordinate system, then the
least squares approximation to these points is the line y = mx + b, where

m =

and

b = ((sum of yi) – m * (sum of xi))/n

Write a program that calculates and displays the equation of the least squares line, and then
allows the user to enter a fuel price and uses the equation of the line to predict the corre-
sponding consumption of motor fuel. (Place the numeric data from the table in a data file.) A
sample run is shown in Figure 5-15.

n * (sum of xi * yi) – (sum of xi) * *=(sum of yi)������
n * (sum of xi * xi) – (sum of xi)2

P r o g r a m m i n g P r o j e c t s 155

TABLE 5.7
A Comparison of 1988 Fuel Prices and Per Capita Motor Fuel Use

Price per Tons of Oil Price per Tons of Oil
gallon in per 1000 gallon in per 1000

Country U.S. Dollars Person Country U.S. Dollars Person

USA $1.00 1400 France $3.10 580
W. Ger. $2.20 620 Norway $3.15 600
England $2.60 550 Japan $3.60 410
Austria $2.75 580 Denmark $3.70 570
Sweden $2.80 700 Italy $3.85 430
Holland $3.00 490

Source: World Resources Institute

FIGURE 5-14 Least-Squares Fit to Data from Table 5.7

FIGURE 5-15 Sample Run of Programming Project 5

6. Write a program to provide information on the height of a ball thrown straight
up into the air. The program should request the initial height, h feet, and the ini-
tial velocity, v feet per second, as input. The four options to be provided by com-
mand buttons are as follows:

(a) Determine the maximum height of the ball. Note: The ball will reach its
maximum height after v/32 seconds.

(b) Determine approximately when the ball will hit the ground. Hint: Calculate
the height after every .1 second and observe when the height is no longer a
positive number.

(c) Display a table showing the height of the ball every quarter second for 5 sec-
onds or until it hits the ground.

(d) Quit.

The formula for the height of the ball after t seconds, h + v * t – 16 * t * t,
should be specified in a user-defined function. (Test the program with v = 148
and h = 0. This velocity is approximately the top speed clocked for a ball thrown
by a professional baseball pitcher.)

156 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

7. Depreciation to a Salvage Value of 0. For tax purposes an item may be depreci-
ated over a period of several years, n. With the straight-line method of depreci-
ation, each year the item depreciates by 1/nth of its original value. With the
double-declining-balance method of depreciation, each year the item depreci-
ates by 2/nths of its value at the beginning of that year. (In the last year it is
depreciated by its value at the beginning of the year.) Write a program that

(a) Requests a description of the item, the year of purchase, the cost of the item,
the number of years to be depreciated (estimated life), and the method of
depreciation. The method of depreciation should be chosen by clicking one
of two command buttons.

(b) Displays a depreciation schedule for the item similar to the schedule shown
in Figure 5-16.

Description: Computer

Year of purchase: 1999

Cost: $2000.00

Estimated life: 5

Method of depreciation: double-declining-balance

Value at Amount Deprec Total Depreciation

Year Beg of Yr During Year to End of Year

1999 2,000.00 800.00 800.00

2000 1,200.00 480.00 1,280.00

2001 720.00 288.00 1,568.00

2002 432.00 172.80 1,740.80

2003 259.20 259.20 2,000.00

FIGURE 5-16 Depreciation Schedule

8. The Twelve Days of Christmas. Each year, Provident National Bank of Philadel-
phia publishes a Christmas price list. See Table 5.8. Write a program that
requests an integer from 1 through 12 and then lists the gifts for that day along
with that day’s cost. On the nth day, the n gifts are 1 partridge in a pear tree, 2
turtle doves, . . . n of the nth item. The program also should give the total cost
of all twelve days. As an example, Figure 5-17 shows the output in the picture
box when the user enters 3.

TABLE 5.8
Christmas Price Index

Item Cost Item Cost

partridge in a pear tree 27.50 swan-a-swimming 1000.00
turtle dove 25.00 maid-a-milking 4.25
French hen 5.00 lady dancing 289.50
calling bird 70.00 lord-a-leaping 292.50
gold ring 60.00 piper piping 95.75
geese-a-laying 25.00 drummer drumming 95.00

The gifts for day 3 are

1 partridge in a pear tree

2 turtle doves

3 French hens

Cost: $92.50

Total cost for the twelve days: $71,613.50

FIGURE 5-17 Sample Output for Programming Project 8

P r o g r a m m i n g P r o j e c t s 157

S E C T I O N

ARRAYS

66

161

6.1 CREATING AND ACCESSING ARRAYS

A variable (or simple variable) is a name to which Visual Basic can assign a single value. An
array variable is a collection of simple variables of the same type to which Visual Basic can
efficiently assign a list of values.

Consider the following situation. Suppose you want to evaluate the exam grades for 30
students. Not only do you want to compute the average score, but you also want to display
the names of the students whose scores are above average. You might place the 30 pairs of
student names and scores in a data file and run the program outlined.

Private Sub cmdButton_Click()
Dim student1 As String, score1 As Single
Dim student2 As String, score2 As Single
Dim student3 As String, score3 As Single
.
.
Dim student30 As String, score30 As Single
’Analyze exam grades
Open “SCORES.TXT” For Input As #1
Input #1, student1, score1
Input #1, student2, score2
Input #1, student3, score3
.
.
Input #1, student30, score30
‘Compute the average grade
.
.
‘Display names of above average students
.
.

End Sub

This program is going to be uncomfortably long. What’s most frustrating is that the 30 Dim
statements and 30 Input # statements are very similar and look as if they should be condensed

into a short loop. A shorthand notation for the many related variables would be welcome. It
would be nice if we could just write

For i = 1 To 30
Input #1, studenti, scorei

Next i

Of course, this will not work. Visual Basic will treat studenti and scorei as two variables and
keep reassigning new values to them. At the end of the loop they will have the values of the
thirtieth student.

Visual Basic provides a data structure called an array that lets us do what we tried to
accomplish in the loop. The variable names will be similar to those in the Input # statement.
They will be

student(1), student(2), student(3), ..., student(30)

and

score(1), score(2), score(3), ..., score(30).

We refer to these collections of variables as the array variables student() and score(). The num-
bers inside the parentheses of the individual variables are called subscripts, and each individual
variable is called a subscripted variable or element. For instance, student(3) is the third sub-
scripted variable of the array student(), and score() is the 20th subscripted variable of the array
score(). The elements of an array are assigned successive memory locations. Figure 6-1 shows
the memory locations for the array score().

FIGURE 6-1 The Array Score()

Array variables have the same kinds of names as simple variables. If arrayName is the
name of an array variable and n is a whole number, then the statement

Dim arrayName(1 To n) As varType

placed in the (Declarations) section of (General) reserves space in memory to hold the values
of the subscripted variables arrayName(1), arrayName(2), arrayName(3), . . . , arrayName(n).
(Recall from Section 3.1 that the (Declarations) section of (General) is accessed from any
code window by selecting these values in the Object and Procedure boxes.) The spread of the
subscripts specified by the Dim statement is called the range of the array, and the Dim state-
ment is said to dimension the array. The subscripted variables will all have the same data type;
namely, the type specified by varType. For instance, they could be all String variables or all
Integer variables. In particular, the statements

Dim student(1 To 30) As String
Dim score(1 To 30) As Integer

dimension the arrays needed for the preceding program.
As with any variable created in the (Declarations) section of (General), these array vari-

ables are form-level as discussed in Section 3. Recall that form-level variables can be
accessed from any procedure in the program and continue to exist and retain their values as
long as the program is running.

Values can be assigned to subscripted variables with assignment statements and dis-
played with Print methods. The statement

Dim score(1 To 30) As Integer

162 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/stringvariable.html
http://www.pearsoncustom.com/link/visualbasic/formlevelvariable.html

sets aside a portion of memory for the numeric array score() and places the default value 0
in each element.

The statements

score(1) = 87
score(3) = 92

assign values to the first and third elements.

The statements

For i = 1 To 4
picBox.Print score(i);

Next i

then produce the output 87 0 92 in picBox.

EXAMPLE 1

The following program creates a string array consisting of the names of the first five World Series win-
ners. Figure 6-2 shows the array created by the program.

’Create array for five strings
Dim teamName(1 To 5) As String ‘in (Declarations) section of (General)

Private Sub cmdWhoWon_Click()
Dim n As Integer
’Fill array with World Series Winners
teamName(1) = “Red Sox”
teamName(2) = “Giants”
teamName(3) = “White Sox”
teamName(4) = “Cubs”
teamName(5) = “Cubs” ‘
Access array of five strings
n = Val(txtNumber.Text)
picWinner.Cls
picWinner.Print “The ”; teamName(n); “ won World Series number”; n

End Sub

[Run, type 2 into the text box, and click the command button.]

C r e a t i n g a n d A c c e s s i n g A r r a y s 163

FIGURE 6-2 The Array TeamName() of Example 1

In Example 1, the array teamName was assigned values within the cmdWhoWon_Click
event procedure. Every time the command button is clicked, the values are reassigned to the
array. This manner of assigning values to an array can be very inefficient, especially in pro-
grams with large arrays where the task of the program (in Example 1, looking up a fact) may
be repeated numerous times for different user input. When, as in Example 1, the data to be
placed in an array are known at the time the program first begins to run, a more efficient
location for the statements that fill the array is in Visual Basic’s Form_Load event procedure.
The Form_Load event procedure is executed by Visual Basic as soon as the program is run,
and this execution is guaranteed to occur before the execution of any other event or general
procedure in the program. Example 2 uses the Form_Load procedure to improve on
Example 1.

EXAMPLE 2

Modify Example 1 to request the name of a baseball team as input and search the array to determine
whether or not the team name appears in the array. Load the array values only once.

’Create array for five strings
Dim teamName(1 To 5) As String ‘in (Declarations) section of (General)

Private Sub cmdDidTheyWin_Click()
Dim team As String, foundFlag As Boolean, n As Integer
’Search for an entry in a list of strings
team = txtName.Text
foundFlag = False
n = 0
Do

n = n + 1
If UCase(teamName(n)) = UCase(team) Then

foundFlag = True
End If

Loop Until (foundFlag = True) Or (n = 5)
‘Above line can be replaced with Loop Until (foundFlag) or (n = 5)
picWinner.Cls
If foundFlag = False Then ‘Can be replaced by If Not foundFlag Then

picWinner.Print “The ”; team; “ did not win any”;
picWinner.Print “ of the first five World Series.”

Else
picWinner.Print “The ”; teamName(n); “ won World Series number”; n

End If
End Sub

Private Sub Form_Load()
’Fill array with World Series winners
teamName(1) = “Red Sox”
teamName(2) = “Giants”
teamName(3) = “White Sox”
teamName(4) = “Cubs”
teamName(5) = “Cubs”

164 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

End Sub

[Run, type White Sox into the text box, and click the command button.]

We could have written the program in Example 2 with a For...Next loop beginning For
n = 1 To 5. However, such a loop would unnecessarily search the entire list when the sought-
after item is found early. The wasted time could be significant for a large array.

In some applications, arrays are needed only temporarily to help a procedure complete
a task. Visual Basic also allows us to create array variables that are local to a specific pro-
cedure and that exist temporarily while the procedure is executing. If the statement

Dim arrayName(1 To n) As varType

is placed inside an event procedure or general procedure, then space for n subscripted variables
is set aside in memory each time the procedure is invoked and released when the procedure is
exited.

In Example 1, values were assigned to the elements of the array with assignment state-
ments. However, data for large arrays are more often stored in a data file and read with Input
statements. Example 3 uses this technique. Also, because the task of the program is likely
to be performed only once during a run of the program, a local array is used.

EXAMPLE 3

Table 6.1 gives names and test scores from a mathematics contest given in 1953. Write a program to dis-
play the names of the students scoring above the average for these eight students.

TABLE 6.1
The Top Scores on the Fourth Annual Mathematics Contest Sponsored by the
Metropolitan NY Section of the MAA

Richard Dolen 135 Paul H. Monsky 150
Geraldine Ferraro 114 Max A. Plager 114
James B. Fraser 92 Robert A. Schade 91
John H. Maltby 91 Barbara M. White 124

Source: The Mathematics Teacher, February 1953.

SOLUTION:
The following program creates a string array to hold the names of the contestants and a numeric array to
hold the scores. The first element of each array holds data for the first contestant, the second element of
each array holds data for the second contestant, and so on. See Figure 6-3. Note that the two arrays can
be dimensioned in a single Dim statement by placing a comma between the array declarations.

Private Sub cmdShow_Click()
Dim total As Integer, student As Integer, average As Single
’Create arrays for names and scores
Dim nom(1 To 8) As String, score(1 To 8) As Integer
‘Assume the data has been placed in the file “SCORES.TXT”
‘(The first line of the file is “Richard Dolen”, 135)
Open “SCORES.TXT” For Input As #1
For student = 1 To 8

Input #1, nom(student), score(student)
Next student
Close #1

C r e a t i n g a n d A c c e s s i n g A r r a y s 165

http://www.pearsoncustom.com/link/visualbasic/fornextloop.html

‘Analyze exam scores
total = 0
For student = 1 To 8

total = total + score(student)
Next student
average = total / 8
‘Display all names with above-average grades
picTopStudents.Cls
For student = 1 To 8

If score(student) > average Then
picTopStudents.Print nom(student)

End If
Next student

End Sub

[Run, and click the command button.]

FIGURE 6-3 Arrays Created by Example 3

In Example 3, the number of students to be processed had to be known at the time the
program was written. In actual practice, the amount of data that a program will be process-
ing is not known in advance. Programs should be flexible and incorporate a method for han-
dling varying amounts of data. Visual Basic makes this possible with the statement

ReDim arrayName (1 to n) As varType

which can use variables or expressions when indicating the subscript range. However, ReDim
statements can only be used inside procedures.

EXAMPLE 4

The following program reworks Example 3 for the case when the amount of data is not known in advance.

Private Sub cmdShow_Click()
Dim numStudents As Integer, nTemp As String, sTemp As Integer
Dim student As Integer, total As Integer, average As Single

166 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

’Determine amount of data to be processed

numStudents = 0

Open “SCORES.TXT” For Input As #1

Do While Not EOF(1)

Input #1, nTemp, sTemp

numStudents = numStudents + 1

Loop

Close #1

‘Create arrays for names and scores

ReDim nom(1 To numStudents) As String, score(1 To numStudents) As Integer

Open “SCORES.TXT” For Input As #1

For student = 1 To numStudents

Input #1, nom(student), score(student)

Next student Close #1

‘Analyze exam scores

total = 0

For student = 1 To numStudents

total = total + score(student)

Next student

average = total / numStudents

‘Display all names with above-average grades

picTopStudents.Cls

For student = 1 To numStudents

If score(student) > average Then

picTopStudents.Print nom(student)

End If

Next student

End Sub

An alternative approach to program flexibility that does not require reading the data file twice
is to require that the data file begin with a line that holds the number of records to be processed.
If SCORES.TXT is modified by adding a new first line that gives the number of students,
then the fourth through eighteenth lines of Example 4 can be replaced with

’Create arrays for names and scores

Open “SCORES.TXT” For

Input As #1

Input #1, numStudents

ReDim nom(1 To numStudents) As String, score(1 To numStudents) As Integer

For student = 1 To numStudents

Input #1, nom(student), score(student)

Next student

Close #1

In Example 4, the ReDim statement allowed us to create arrays whose size was not
known before the program was run. On the other hand, the arrays that were created were local
to the event procedure cmdShow_Click. Many applications require form-level arrays whose
size is not known in advance. Unfortunately, Dim statements cannot use variables or expres-
sions to specify the subscript range. The solution offered by Visual Basic is to allow the
(Declarations) section of (General) to contain Dim statements of the form

Dim arrayName() As varType

where no range for the subscripts of the array is specified. An array created in this manner will
be form-level but cannot be used until a ReDim statement is executed in a procedure to establish
the range of subscripts. The “As varType” clause can be omitted from the ReDim statement.

C r e a t i n g a n d A c c e s s i n g A r r a y s 167

EXAMPLE 5

Suppose the data file WINNERS.TXT contains the names of the teams who have won each of the World

Series, with the first line of the file giving the number of World Series that have been played. Write a pro-

gram that displays the numbers, if any, of the World Series that were won by a team specified by the user.

’Create form-level array

Dim teamName() As String

Dim seriesCount As Integer

Private Sub cmdDidTheyWin_Click()

Dim teamToFind As String, numWon As Integer, series As Integer

’Search for World Series won by user’s team

teamToFind = UCase(txtName.Text)

numWon = 0

picSeriesWon.Cls

For series = 1 To seriesCount

If UCase(teamName(series)) = teamToFind Then

numWon = numWon + 1

If numWon = 1 Then

picSeriesWon.Print “The ”; teamName(series);

picSeriesWon.Print “ won the following World Series: ”;

Else

‘Separate from previous

picSeriesWon.Print “,”;

If (numWon = 5) Or (numWon = 16) Then

‘Start a new line at 5th and 16th win

picSeriesWon.Print

End If

End If

‘First world series played in 1903

picSeriesWon.Print Str(series + 1902);

End If

Next series

If numWon = 0 Then

picSeriesWon.Print “The ”; teamToFind; “ did not win any World Series.”

End If

End Sub

Private Sub Form_Load()

Dim series As Integer

‘Fill array with World Series winners

Open “WINNERS.TXT” For Input As #1

Input #1, seriesCount

ReDim teamName(1 To seriesCount) As String

For series = 1 To seriesCount

Input #1, teamName(series)

Next series

Close #1

End Sub

[Run, type Yankees into the text box, and click the command button.]

168 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

The range of an array need not just begin with 1. A statement of the form

Dim arrayName(m To n) As varType

where m is less than or equal to n, creates an array with elements arrayName(m), arrayName(m
+ 1), arrayName(m + 2), . . . , arrayName(n). The same holds for ReDim.

EXAMPLE 6

The following program segment stores the names of the 13th, 14th, and 15th Chief Justices of the U.S.
Supreme Court in the array pictured in Figure 6-4.

‘Place names of last three Chief Justices in an array
Dim chiefJustice(13 To 15) As String

Private Sub Form_Load()
chiefJustice(13) = “Earl Warren”
chiefJustice(14) = “Warren Burger”
chiefJustice(15) = “William Rehnquist”

End Sub

FIGURE 6-4 The Array Created by Example 6

An array can be used as either a checklist or frequency table, as in the next example. The
function Asc associates each character with its position in the ANSI table.

EXAMPLE 7

The following program requests a sentence as input and records the number of occurrences of each letter
of the alphabet. The array charCount() has range Asc(“A”) To Asc(“Z”), that is, 65 To 90. The number
of occurrences of each letter is stored in the element whose subscript is the ANSI value of the uppercase
letter.

Private Sub cmdAnalyze_Click()
Dim index As Integer, letterNum As Integer, sentence As String
Dim letter As String, column As Integer
‘Count occurrences of different letters in a sentence
ReDim charCount(Asc(“A”) To Asc(“Z”)) As Integer
For index = Asc(“A”) To Asc(“Z”)

charCount(index) = 0
Next index
‘Consider and tally each letter of sentence
sentence = UCase(txtSentence.Text)
For letterNum = 1 To Len(sentence)

letter = Mid(sentence, letterNum, 1)
If (letter >= “A”) And (letter <= “Z”) Then

C r e a t i n g a n d A c c e s s i n g A r r a y s 169

index = Asc(letter)
charCount(index) = charCount(index) + 1

End If
Next letterNum
‘List the tally for each letter of alphabet
picLetterCount.Font = “Courier”
picLetterCount.Cls
column = 1 ‘Next column at which to display letter & count

For letterNum = Asc(“A”) To Asc(“Z”)
letter = Chr(letterNum)
picLetterCount.Print Tab(column); letter;
picLetterCount.Print Tab(column + 1); charCount(letterNum);
column = column + 6
If column > 42 Then ‘only room for 7 sets of data in a line

picLetterCount.Print
column = 1

End If
Next letterNum

End Sub

[Run, type in the given sentence, and click the command button.]

COMMENTS

1. Arrays must be dimensioned in a Dim or ReDim statement before they are used.
If a statement such as a(6) = 3 appears without a previous Dim or ReDim of the
array a(), then the error message “Sub or Function not defined” will be dis-
played when an attempt is made to run the program.

2. Subscripts in ReDim statements can be numeric expressions. Subscripts whose
values are not whole numbers are rounded to the nearest whole number. Sub-
scripts outside the range of the array produce an error message as shown below
when the last line of the event procedure is reached.

170 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

3. The two arrays in Example 3 are referred to as parallel arrays because sub-
scripted variables having the same subscript are related.

4. The integers m and n in the statement Dim arrayName(m To n) As varType can
be positive, negative, or zero. The only restriction is that m cannot be greater
than n. The same holds true for ReDim statements.

5. Until a value is assigned to an element of an array, the element has its default
value. Numeric variables have a default value of 0, and string variables have the
default value “”, the empty string.

6. The statement Dim arrayName(0 To n) As varType can be replaced by the state-
ment Dim arrayName(n) As varType. The same holds for the ReDim statement.

7. An array whose range has been specified by a ReDim statement is said to be
dynamic. If array1() is a dynamic array, and array2() is another array of the
same data type (such as String), then the line

array1 = array2

makes array1() an exact duplicate of array2(). It will have the same size and
contain the same information. This feature was added in Visual Basic 6.0.

8. A dynamic array can be resized with another ReDim statement. However, the
resized array loses all its information. If it is resized with the words ReDim
Preserve, as much information as possible will be retained.

6.2 USING ARRAYS

This section considers three aspects of the use of arrays: processing ordered arrays, reading
part of an array, and passing arrays to procedures.

■ ORDERED ARRAYS

An array is said to be ordered if its values are in either ascending or descending order. The
following arrays illustrate the different types of ordered and unordered arrays. In an ascend-
ing ordered array, the value of each element is less than or equal to the value of the next ele-
ment. That is,

[each element] ≤ [next element].

For string arrays, the ANSI table is used to evaluate the “less than or equal to” condition.

U s i n g A r r a y s 171

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/stringvariable.html

Ordered arrays can be searched more efficiently than unordered arrays. In this section
we use their order to shorten the search. The technique used here is applied to searching
sequential files in Section 7.

EXAMPLE 1

The following program places an ordered list of names into an array, requests a name as input, and
informs the user if the name is in the list. Because the list is ordered, the search of the array ends when
an element is reached whose value is greater than or equal to the input name. On average, only half the
ordered array will be searched. Figure 6-5 shows the flowchart for this search.

‘Create array to hold 10 strings

Dim nom(1 To 10) As String

Private Sub cmdSearch_Click()

Dim n As Integer, name2Find As String

‘Search for a name in an ordered list

name2Find = UCase(Trim(txtName.Text))

n = 0 ‘n is the subscript of the array

Do

n = n + 1

Loop Until (nom(n) >= name2Find) Or (n = 10)

‘Interpret result of search

picResult.Cls

If nom(n) = name2Find Then

picResult.Print “Found.”

Else

picResult.Print “Not found.”

End If

End Sub

Private Sub Form_Load()

‘Place the names into the array

‘All names must be in uppercase

nom(1) = “AL”

nom(2) = “BOB”

nom(3) = “CARL”

nom(4) = “DON”

nom(5) = “ERIC”

nom(6) = “FRED”

nom(7) = “GREG”

nom(8) = “HERB”

nom(9) = “IRA”

nom(10) = “JUDY”

End Sub

[Run, type Don into the text box, and click the command button.]

172 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/sequentialfile.html

FIGURE 6-5 Flowchart for a Search of an Ordered Array

■ USING PART OF AN ARRAY

In some programs, we must dimension an array before knowing how many pieces of data are
to be placed into it. In these cases, we dimension the array large enough to handle all reason-
able contingencies. For instance, if the array is to hold exam grades, and classes sizes vary from
5 to 100 students, we use a statement such as Dim grades(1 To 100) As Integer. In such situ-
ations we must employ a counter variable to keep track of the number of values actually
stored in the array. We create this counter variable using a Dim statement in the (Declarations)
section of (General) so that all procedures will have access to it.

EXAMPLE 2

The following program requests a list of companies and then displays them along with a count.

‘Demonstrate using only part of an array
Dim stock(1 To 100) As String
Dim counter As Integer

Private Sub cmdResult_Click()
If (counter < 100) Then

counter = counter + 1
stock(counter) = txtCompany.Text
txtCompany.Text = “”
txtCompany.SetFocus
Else

MsgBox “No space to record additional companies.”, , “”
txtCompany.Text = “”
cmdSummarize.SetFocus

End If
End Sub

U s i n g A r r a y s 173

Private Sub cmdSummarize_Click()

Dim i As Integer

‘List stock companies that have been recorded

picStocks.Cls

picStocks.Print “You own the following”; counter; “stocks.”

For i = 1 To counter

picStocks.Print stock(i) & “ ”;

‘Move to new line after every 5 stocks

If Int(i / 5) = i / 5 Then

picStocks.Print

End If

Next i

End Sub

Private Sub Form_Load()

‘Initialize count of companies

counter = 0

End Sub

[Run, type in eleven companies (press Record Name after each company) and press Summarize.]

Suppose you have two ordered lists of customers (possibly with some customers on both
lists) and you want to consolidate them into a single ordered list. The technique for creating
the third list, called the merge algorithm, is as follows.

1. Compare the two names at the top of the first and second lists.

(a) If one name alphabetically precedes the other, copy it onto the third list and
cross it off its original list.

(b) If the names are the same, copy the name onto the third list and cross out
the name from the first and second lists.

2. Repeat Step 1 with the current top names until you reach the end of either list.

3. Copy the names from the remaining list onto the third list.

EXAMPLE 3

The following program stores two lists of names in arrays and merges them into a third list. Although at
most 10 names will be placed into the third array, duplications will reduce this number. Because the vari-
able r identifies the next position to insert a name in the third array, r – 1 is the number of names in the
array.

‘Create arrays to hold list of names

Dim list1(1 To 5) As String, list2(1 To 5) As String

Dim newList(1 To 10) As String

174 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/algorithms.html

Private Sub cmdMerge_Click()
Dim m As Integer, n As Integer, r As Integer
Dim numNames As Integer, i As Integer
‘Merge two lists of names
m = 1 ‘Subscript for first array
n = 1 ‘Subscript for second array
r = 1 ‘Subscript and counter for third array
Do While (m <= 5) And (n <= 5)

Select Case list1(m)
Case Is < list2(n)

newList(r) = list1(m)
m = m + 1

Case Is < list2(n)
newList(r) = list2(n)
n = n + 1

Case list2(n)
newList(r) = list1(m)
m = m + 1
n = n + 1

End Select
r = r + 1

Loop
‘If one of the lists has items left over, copy them into the third list
‘At most one of the following two loops will be executed
Do While m <= 5 ‘Copy rest of first array into third

newList(r) = list1(m)
r = r + 1
m = m + 1

Loop
Do While n <= 5 ‘Copy rest of second array into third

newList(r) = list2(n)
r = r + 1
n = n + 1

Loop
numNames = r - 1
‘Show result of merging lists
picMergedList.Cls
For i = 1 To numNames

picMergedList.Print newList(i) & “ ”;
Next i

End Sub

Private Sub Form_Load()
‘Fill list1 with names
list1(1) = “Al”
list1(2) = “Carl”
list1(3) = “Don”
list1(4) = “Greg”
list1(5) = “Judy”
‘Fill list2 with names
list2(1) = “Bob”
list2(2) = “Carl”
list2(3) = “Eric”
list2(4) = “Greg”
list2(5) = “Herb”

End Sub

U s i n g A r r a y s 175

[Run and click the command button.]

■ PASSING ARRAYS BETWEEN PROCEDURES

An array that is not dimensioned in the (Declarations) section of (General) but rather is de-
clared in a procedure is local to that procedure and unknown in all other procedures. However,
an entire local array can be passed to another procedure. The name of the array, followed by
an empty set of parentheses, must appear as an argument in the calling statement, and an array
variable name of the same type must appear as a corresponding parameter in the procedure de-
finition of the procedure that is to receive the array.

EXAMPLE 4

The following program illustrates passing an array to both a Sub procedure and a Function procedure.

Private Sub cmdDisplayAverage_Click()
‘Pass array to Sub procedure and Function procedure
Dim score(1 To 10) As Integer
Call FillArray(score())
picAverage.Cls
picAverage.Print “The average score is”; Sum(score()) / 10

End Sub

Private Sub FillArray(s() As Integer)
‘Fill array with scores
s(1) = 85
s(2) = 92
s(3) = 75
s(4) = 68
s(5) = 84
s(6) = 86
s(7) = 94
s(8) = 74
s(9) = 79
s(10) = 88

End Sub]

Private Function Sum(s() As Integer) As Integer
Dim total As Integer, index As Integer
‘Add up scores
total = 0
For index = 1 To 10

total = total + s(index)
Next index
Sum = total

End Function

[Run and click the command button.]

176 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html

Sometimes it is also necessary to pass a form-level array from one procedure to anoth-
er. For example, you might have a sorting procedure (discussed in Section 6.3) and three
form-level arrays to be sorted. The sorting procedure would be called three times, each time
passing a different form-level array. The method for passing a form-level array to another
procedure is the same as the method for passing a local array.

EXAMPLE 5

The following program incorporates all three topics discussed in this section. It reads ordered lists of com-
puter languages and spoken languages into form-level arrays, requests a new language as input, and
inserts the language into its proper array position (avoiding duplication). The language arrays are dimen-
sioned to hold up to 20 names; the variables numCompLangs and numSpokLangs record the actual num-
ber of languages in each of the ordered arrays. The original contents of the data files are

COMPLANG.TXT:ADA, C, Cobol, Fortran, Pascal, Visual Basic
SPOKLANG.TXT:Cantonese, English, French, Mandarin, Russian, Spanish

Object Property Setting

frmAdding Caption Adding to an Ordered
Array

lblNew Caption New language:
txtLang Text (blank)
cmdAddComp Caption Add to Computer List
cmdAddSpok Caption Add to Spoken List
picAllLang

Dim compLang(1 To 20) As String
Dim spokLang(1 To 20) As String

Dim numCompLangs As IntegerDim numSpokLangs As Integer

Private Sub AddALang(lang() As String, langCount As Integer)
Dim language As String, n As Integer, i As Integer
‘Insert a language into an ordered array of languages
language = Trim(txtLang.Text)
n = 0
Do

n = n + 1
Loop Until (UCase(lang(n))>= UCase(language)) Or (n = langCount)
If UCase(lang(n)) < UCase(language) Then ‘Insert new language at end

lang(langCount + 1) = language
langCount = langCount + 1

ElseIf UCase(lang(n)) > UCase(language) Then ‘Insert before item n
For i = langCount To n Step -1

lang(i + 1) = lang(i)
Next i
lang(n) = language
langCount = langCount + 1

End If
End Sub

Private Sub cmdAddComp_Click()
‘Insert language into ordered array of computer languages
Call AddALang(compLang(), numCompLangs)
Call DisplayArray(compLang(), numCompLangs)

End Sub

Private Sub cmdAddSpok_Click()
‘Insert language into ordered array of spoken languages
Call AddALang(spokLang(), numSpokLangs)

U s i n g A r r a y s 177

Call DisplayArray(spokLang(), numSpokLangs)
End Sub

Private Sub DisplayArray(lang() As String, howMany As Integer)
Dim i As Integer
‘Display the languages in the array
picAllLang.Cls
For i = 1 To howMany

picAllLang.Print lang(i) & “ ”;
Next i

End Sub

Private Sub Form_Load()
‘Fill computer language array from COMPLANG.TXT
numCompLangs = 0 Open “COMPLANG.TXT” For Input As #1
Do While (Not EOF(1)) And (numCompLangs < 20)

numCompLangs = numCompLangs + 1
Input #1, compLang(numCompLangs)

Loop
Close #1
‘Fill spoken language array from SPOKLANG.TXT
numSpokLangs = 0
Open “SPOKLANG.TXT” For Input As #1
Do While (Not EOF(1)) And (numSpokLangs < 20)

numSpokLangs = numSpokLangs + 1
Input #1, spokLang(numSpokLangs)

Loop
Close #1

End Sub

[Run, type in German, and click Add to Spoken List.]

[Type in FORTRAN and click Add to Computer List.]

COMMENTS

1. In Examples 1 and 5 we searched successive elements of an ordered list begin-
ning with the first element. This is called a sequential search. An efficient
alternative to the sequential search is the binary search, which is considered in
the next section.

2. A single element of an array can be passed to a procedure just like any ordinary
numeric or string variable.

Private Sub cmdButton_Click()
Dim num(1 To 20) As Integer

178 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/stringvariable.html
http://www.pearsoncustom.com/link/visualbasic/sequentialsearch.html
http://www.pearsoncustom.com/link/visualbasic/binarysearch.html

num(5) = 10
picOutput.Print Triple(num(5))

End Sub

Private Function Triple(x As Integer) As Integer
Triple = 3 * x

End Function

When the program is run and the command button clicked, 30 will be displayed.

3. Visual Basic provides two functions that simplify working with arrays that have
been passed to a procedure. If an array has been dimensioned with the range m
To n, then the values of the functions LBound(arrayName) and UBound(array-
Name) are m and n, respectively.

Private Sub cmdButton_Click()
Dim chiefJustice(13 To 15) As String
chiefJustice(13) = “Warren”
chiefJustice(14) = “Burger”
chiefJustice(15) = “Rehnquist”
Call Display(pres())

End Sub

Private Sub Display(a() As String)
Dim i As Integer
For i = LBound(a) To UBound(a)

picOutput.Print a(i) & “ ”;
Next i

End Sub

When the program is run and the command button clicked, “Warren Burger
Rehnquist” will be displayed.

6.3 CONTROL ARRAYS

We have seen many examples of the usefulness of subscripted variables. They are essential for
writing concise solutions to many programming problems. Because of the great utility that
subscripts provide, Visual Basic also provides a means of constructing arrays of text boxes, la-
bels, command buttons, and so on. Because text boxes, labels, and command buttons are re-
ferred to generically in Visual Basic as controls, arrays of these objects are called control
arrays.

Unlike variable arrays, which can only be created by Dim and ReDim statements once a
program is running, at least one element of a control array must be created when the form is
designed. The remaining elements can be created either during form design, or, perhaps more
typically, with the Load statement when the program is run.

To create the first element of an array of text boxes, create an ordinary text box, then
access the Properties window, and select the property called Index. By default this property
is blank. Change the Index property to 0 (zero). Your text box is now the first element in a
subscripted control array. If the name of a text box is txtBox and its Index property is 0, then
assigning a value to the text box during run time requires a statement of the form

txtBox(0).Text = value

Arrays are not of much use if they contain only a single element. To create additional
elements of the txtBox() control array during form design, make sure that the element you
just created is active by clicking on it. Next, press Ctrl+C (or open the Edit menu and select
Copy). Visual Basic has now recorded all the properties associated with txtBox(0) and is

C o n t r o l A r r a y s 179

http://www.pearsoncustom.com/link/visualbasic/controlarray.html
http://www.pearsoncustom.com/link/visualbasic/controlarray.html

ready to reproduce as many copies as you desire. To create a copy, press Ctrl+V (or open the
Edit menu and select Paste). The copy of txtBox(0) appears in the upper-left corner of the
form. The value of the Index property for this new text box is 1; thus the text box is referred
to as txtBox(1). Move this text box to the desired position. Press Ctrl+V again and another
copy of txtBox(0) appears in the upper left corner of the form. Its Index property is 2. Move
txtBox(2) to an appropriate position. Continue copying txtBox(0) in this manner until all
desired controls have been created.

It is important to note that all property settings of txtBox(0) are being passed (as default
settings) to the other elements of the txtBox() control array, with the exception of the Index,
Top, and Left settings. Thus, as a matter of efficiency, before you begin copying txtBox(0),
set all properties that you want carried over to all elements of txtBox(). For example, if you
desire to have the Text property blank for all txtBox() elements, set the Text property of
txtBox(0) to (blank) before starting the copying process.

The preceding discussion gave a process for creating an array of text boxes. This same
process applies to creating arrays of labels or any other control. In summary, the following
steps create an array of controls while designing a form:

1. Add one instance of the desired control to the form.

2. Set the Index property of this control to 0.

3. Set any other properties of the control that will be common to all elements of
the array.

4. Click on the control and then press Ctrl+C to prepare to make a copy of the con-
trol.

5. Press Ctrl+V to create a copy of the control. Position this control as desired.

6. Repeat Step 5 until all desired elements of the control array have been created.

EXAMPLE 1

A department store has five departments. The following program requests the amount of sales for each
department and displays the total sales. We use a control array of five labels and a control array of five
text boxes to handle the input. For the label captions we use “Department 1”, “Department 2”, and so on.
Because these labels are the same except for the number, we wait until run time and use a For...Next loop
inside the Form_Load () event procedure to assign the captions to each element of the lblDepart() con-
trol array. At design time, before making copies of lblDepart(0), we set the Alignment property to “1 –
Right Justify” so that all elements of the array inherit this property. Similarly, the Text property of
txtSales(0) is set to (blank) before copying.

Object Property Setting

frm7_3_1 Caption (blank)
lblDepart() Index 0 to 4

Alignment 1 – Right Justify
txtSales() Index 0 to 4

Text (blank)
cmdCompute Caption Compute Total Sales
picTotal

Private Sub Form_Load()
Dim depNum As Integer
For depNum = 0 To 4

lblDepart(depNum).Caption = “Department” & Str(depNum + 1)
Next depNum

End Sub

Private Sub cmdCompute_Click()
Dim depNum As Integer, sales As Single

180 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/controlarray.html

sales = 0
For depNum = 0 To 4

sales = sales + Val(txtSales(depNum).Text)
Next depNum
picTotal.Cls
picTotal.Print “Total sales were ”; FormatCurrency(sales)

End Sub

[Run, type the following data into the text boxes, and click the command button.]

■ CONTROL ARRAY EVENT PROCEDURES

In Section 3 we discussed several events related to text boxes. One example was the GotFocus
event procedure. If txtBox is an ordinary text box, then the GotFocus event procedure begins
with the statement

Private Sub txtBox_GotFocus()

If, on the other hand, we make txtBox a control array, the GotFocus event procedure begins with
the statement

Private Sub txtBox_GotFocus(Index As Integer)

Two points should be noted. First, even though we may have a dozen or more elements in the
txtBox() control array, we will have just one txtBox_GotFocus event procedure to deal with.
Second, Visual Basic passes to this one event procedure the value of the Index property for the
element of the control array that has just received the focus. We may wish to respond in the
same manner whenever any element of txtBox() has the focus, in which case we simply ignore
the value of Index. If, on the other hand, we wish to respond in different ways, depending on
which element has the focus, then we write the GotFocus event procedure in the form

Private Sub txtBox_GotFocus(Index As Integer)
Select Case Index

Case 0
action when txtBox() gets the focus

Case 1
action when txtBox(1) gets the focus . .

End Select
End Sub

In general, all event procedures for a control array have the additional parameter Index As
Integer. This additional parameter can be used, if desired, to base the action taken by the event
procedure on which element of the control array underwent the event.

EXAMPLE 2

The following program creates an electronic dialing pad. The form contains a control array of 10 com-
mand buttons. Each time a command button is clicked, the Index parameter conveys the digit to be added
onto the phone number. This program illustrates using the Index parameter without employing a Select
Case statement.

C o n t r o l A r r a y s 181

http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/controlarray.html

Object Property Setting

frm7_3_2 Caption (blank)
cmdDigit() Index 0 to 9
Caption (same as Index)
lblPhoneNum BorderStyle 1 - Fixed Single
Caption (blank)

Private Sub cmdDigit_Click(Index As Integer)
lblPhoneNum.Caption = lblPhoneNum.Caption & Right(str(index), 1)
If Len(lblPhoneNum.Caption) = 3 Then

lblPhoneNum.Caption = lblPhoneNum.Caption & ”-”
ElseIf Len(lblPhoneNum.Caption) = 8 Then

MsgBox “Dialing ...”, , “”
lblPhoneNum.Caption = “”

End If
End Sub

■ CREATING CONTROL ARRAYS AT RUN TIME

We have discussed the process for creating an entire control array while designing a form, that is,
at design time. However, copying and positioning control array elements can become tedious if the
number of elements is large. Also, the actual number of elements needed in a control array may not
be known until a response from the user is processed at run time. In light of these concerns, Visual
Basic provides a solution via the Load statement that only requires us to create the first element of
a control array during design time. The remaining elements are then created as needed at run time.
Before we discuss creating arrays at run time, we must consider a preliminary topic—the Left, Top,
Width, and Height properties of controls. These properties specify the location and size of controls.

The standard unit of measurement in Visual Basic is called a twip. There are about 1440 twips
to the inch. At design time, when a control is active the two panels on the right side of the toolbar
give the location and size of the control, respectively. Figure 6-6(a) shows an active text box, named
Text1. The first panel says that the left side of the text box is 960 twips from the left side of the
form, and the top of the text box is 720 twips down from the title bar of the form. In terms of prop-
erties, Text1.Left is 960, and Text1.Top is 720. Similarly, the numbers 1935 and 975 in the second
panel give the width and height of the text box in twips. In terms of properties, Text1.Width is 1935
and Text1.Height is 975. Figure 6-6(b) shows the meanings of these four properties.

The location and size properties of a control can be altered at run time with statements
such as

Text1.Left = 480

which moves the text box to the left or

Text2.Top = Text1.Top + 1.5 * Text1.Height

which places Text2 a comfortable distance below Text1. As a result of the second statement,
the distance between the two text boxes will be half the height of Text1.

FIGURE 6-6 The Location and Size of a Control

182 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/controlarray.html

If controlName is the name of a control whose Index property was assigned a value dur-
ing form design (thus creating the beginnings of a control array) and num is a whole number
that has not yet been used as an index for the controlName() array, then the statement

Load controlName(num)

copies all the properties of controlName(0), including the Top and Left properties, and creates
the element controlName(num) of the controlName() array. The only property of
controlName(num) that may differ from that of controlName(0) is the Visible property. The
Load statement always sets the Visible property of the created element to False. After creat-
ing a new element of a control array, you will want to adjust the Top and Left properties so that
the new element has its own unique location on the form, and then set the Visible property of
the new element to True.

EXAMPLE 3

Write a program to create a control array of 12 labels and a control array of 12 text boxes. Position the
labels and text boxes so that they form two columns, with the labels to the left of the text boxes and the
text boxes one immediately below the other. Use text boxes whose height is as small as possible. Use
labels whose height is just large enough to display a single line. Assign the captions Jan, Feb, and so on,
to the labels.

SOLUTION:
When designing the form, we place the first label to the left of the first text box and set the Index prop-
erty of both controls to 0. The height of the shortest text box is 288 units and the height of a label just tall
enough for a single line is 252 units. We use the text box’s Height property as the unit of vertical spacing
for both the new text box elements and the new label elements. The following is the form at design time
and at run time.

Object Property Setting

frm 7_3_3 Caption Year
lblMonth() Index 0
Caption Jan
Height 252
txtInfo() Index 0
Text (blank)
Height 288

Private Sub Form_Load()

Dim i As Integer, monthNames As String

monthNames = “FebMarAprMayJunJulAugSepOctNovDec”

For i = 1 To 11

Load lblMonth(i)

Load txtInfo(i)

lblMonth(i).Top = lblMonth(i - 1).Top +

txtInfo(0).Height txtInfo(i).Top = txtInfo(i - 1).Top + txtinfo(0).Height

lblMonth(i).Caption = Mid(monthNames, 3 * i - 2, 3)

lblMonth(i).Visible = True

txtInfo(i).Visible = True

Next i

End Sub

C o n t r o l A r r a y s 183

http://www.pearsoncustom.com/link/visualbasic/controlarray.html

COMMENTS

1. In the discussion and examples of control arrays, the initial index was always 0.
For a particular application it may be more natural to have the lowest index of
a control array be 1 or even 1995. To achieve this when creating just the first
element at design time and the remaining controls at run time, set the Index
property of the first element to the desired lowest index value at design time,
then Load the other elements using the desired indexes at run time. (The Load
statement copies the properties of the element with the lowest index, whatever
that lowest index may be.) For example, at design time you might create
txtSales(1995) and then at run time execute the statements

For yearNum = 1996 to 2005

Load txtSales(yearNum)

Next yearNum

To create an entire control array at design time with indexes starting at a value
other than 0, first create the control array using an initial index of 0. Once all
elements have been created, use the Properties window to adjust the index of
each element of the control array, starting with the element having the highest
index.

6.4 SORTING AND SEARCHING

A sort is an algorithm for ordering an array. Of the many different techniques for sorting an
array we discuss two, the bubble sort and the Shell sort. Both require the interchange of val-
ues stored in a pair of variables. If var1, var2, and temp are all variables of the same data type
(such as all String), then the statements

temp = var1

var1 = var2

var2 = temp

assign var1’s value to var2, and var2’s value to var1.

EXAMPLE 1

Write a program to alphabetize two words supplied in text boxes.

SOLUTION:

Private Sub cmdAlphabetize_Click()

Dim firstWord As String, secondWord As String, temp As String

‘Alphabetize two words

firstWord = txtFirstWord.Text

secondWord = txtSecondWord.Text

If firstWord > secondWord Then

temp = firstWord

firstWord = secondWord

secondWord = temp

End If

picResult.Cls

picResult.Print firstWord; “ before ”; secondWord

End Sub

[Run, type the following text shown into the text boxes, and click the command button.]

184 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/sort.html
http://www.pearsoncustom.com/link/visualbasic/controlarray.html
http://www.pearsoncustom.com/link/visualbasic/algorithms.html

■ BUBBLE SORT

The bubble sort is an algorithm that compares adjacent items and swaps those that are out of
order. If this process is repeated enough times, the list will be ordered. Let’s carry out this
process on the list Pebbles, Barney, Wilma, Fred, Dino. The steps for each pass through the list
are as follows:

1. Compare the first and second items. If they are out of order, swap them.

2. Compare the second and third items. If they are out of order, swap them.

3. Repeat this pattern for all remaining pairs. The final comparison and possible
swap are between the second-to-last and last elements.

The first time through the list, this process is repeated to the end of the list. This is called
the first pass. After the first pass, the last item (Wilma) will be in its proper position. There-
fore, the second pass does not have to consider it and so requires one less comparison. At the
end of the second pass, the last two items will be in their proper position. (The items that
must have reached their proper position have been underlined.) Each successive pass requires
one less comparison. After four passes, the last four items will be in their proper positions,
and hence, the first will be also.

S o r t i n g a n d S e a r c h i n g 185

http://www.pearsoncustom.com/link/visualbasic/sort.html
http://www.pearsoncustom.com/link/visualbasic/algorithms.html

EXAMPLE 2

Write a program to alphabetize the names Pebbles, Barney, Wilma, Fred, Dino.

SOLUTION:
Sorting the list requires a pair of nested loops. The inner loop performs a single pass, and the outer loop
controls the number of passes.

Dim nom(1 To 5) As String

Private Sub cmdSort_Click()
Dim passNum As Integer, i As Integer, temp As String
‘Bubble sort names
For passNum = 1 To 4 ‘Number of passes is 1 less than number of items

For i = 1 To 5 - passNum ‘Each pass needs 1 less comparison
If nom(i) > nom(i + 1) Then

temp = nom(i)
nom(i) = nom(i + 1)
nom(i + 1) = temp

End If
Next i

Next passNum
‘Display alphabetized list

picNames.Cls
For i = 1 To 5
picNames.Print nom(i),
Next i

End Sub

Private Sub Form_Load()
‘Fill array with names
nom(1) = “Pebbles”
nom(2) = “Barney”
nom(3) = “Wilma”
nom(4) = “Fred”
nom(5) = “Dino”

End Sub

[Run, and click the command button.]

EXAMPLE 3

Table 6.2 contains facts about the 10 most populous metropolitan areas with listings in ascending order
by city name. Sort the table in descending order by population.

TABLE 6.2
The 10 Most Populous Metropolitan Areas

Population Median Income % Native % Advanced
Metro Area in Millions per Household to State Degree

Boston 4.2 $40,666 73 12
Chicago 8.1 $35,918 73 8
Dallas 3.9 $32,825 64 8
Detroit 4.7 $34,729 76 7

186 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

Houston 3.7 $31,488 67 8
Los Angeles 14.5 $36,711 59 8
New York 18.1 $38,445 73 11
Philadelphia 5.9 $35,797 70 8
San Francisco 6.3 $41,459 60 11
Washington 3.9 $47,254 32 17

Note: Column 4 gives the percentage of residents who were born in their current state of residence. Col-
umn 5 gives the percentage of residents age 25 or older with a graduate or professional degree.

Source: The 1990 Census

SOLUTION:
Data are read from a file into parallel arrays by the Form_Load event procedure. When cmdDisplayStats
is clicked, the collection of parallel arrays is sorted based on the array pop(). Each time two items are
interchanged in the array pop(), the corresponding items are interchanged in each of the other arrays. This
way, for each city, the items of information remain linked by a common subscript.

Dim city(1 To 10) As String, pop(1 To 10) As Single, income(1 To 10) As Single
Dim natives(1 To 10) As Single, advDeg(1 To 10) As Single

Private Sub cmdDisplayStats_Click()
Call SortData
Call ShowData
End Sub
Private Sub Form_Load()
Dim i As Integer
‘Assume the data for city name, population, medium income, % native,
‘and % advanced degree have been placed in the file “CITYSTAT.TXT”
‘(First line of file is “Boston”, 4.2, 40666, 73, 12)
Open “CITYSTAT.TXT” For Input As #1
For i = 1 To 10

Input #1, city(i), pop(i), income(i), natives(i), advDeg(i)
Next i
Close #1

End Sub

Private Sub ShowData()
Dim i As Integer
‘Display ordered table
picTable.Cls
picTable.Print , “Pop. in”, “Med. income”, “% Native”, “% Advanced”
picTable.Print “Metro Area”, “millions”, “per hsd”, “to State”, “Degree”
picTable.Print For i = 1 To 10

picTable.Print city(i); Tab(16); pop(i), income(i), natives(i), advDeg(i)
Next i

End Sub

Private Sub SortData()
Dim passNum As Integer, index As Integer
‘Bubble sort table in descending order by population
For passNum = 1 To 9

For index = 1 To 10 - passNum
If pop(index) < pop(index + 1) Then Call

SwapData(index)
End If

Next index
Next passNum

End Sub

S o r t i n g a n d S e a r c h i n g 187

Private Sub SwapData(index As Integer)
‘Swap entries
Call SwapStr(city(index), city(index + 1))
Call SwapNum(pop(index), pop(index + 1))
Call SwapNum(income(index), income(index + 1))
Call SwapNum(natives(index), natives(index + 1))
Call SwapNum(advDeg(index), advDeg(index + 1))

End Sub

Private Sub SwapNum(a As Single, b As Single)
Dim temp As Single
‘Interchange values of a and b
temp = a
a = b
b = temp

End Sub

Private Sub SwapStr(a As String, b As String)
Dim temp As String
‘Interchange values of a and b
temp = a
a = b
b = temp

End Sub

[Run, and click the command button.]

■ SHELL SORT

The bubble sort is easy to understand and program. However, it is too slow for really long
lists. The Shell sort, named for its inventor, Donald L. Shell, is much more efficient in such
cases. It compares distant items first and works its way down to nearby items. The interval sep-
arating the compared items is called the gap. The gap begins at one-half the length of the list
and is successively halved until eventually each item is compared with its neighbor as in the
bubble sort. The algorithm for a list of n items is as follows:

1. Begin with a gap of g = Int(n / 2).

2. Compare items 1 and 1 + g, 2 and 2 + g, . . . , n – g and n. Swap any pairs that
are out of order.

3. Repeat Step 2 until no swaps are made for gap g.

4. Halve the value of g.

5. Repeat Steps 2, 3, and 4 until the value of g is 0.

188 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/sort.html
http://www.pearsoncustom.com/link/visualbasic/algorithms.html

The Shell sort is illustrated in what follows. Crossing arrows indicate that a swap occurred.
Initial Gap = Int([Number of Items] / 2) = Int(5 / 2) = 2

Because there was a swap, use the same gap for the second pass.

Again, there was a swap, so keep the current gap.

There were no swaps for the current gap of 2, so

Next Gap = Int([Previous Gap] / 2) = Int(2 / 2) = 1

Because there was a swap (actually two swaps), keep the same gap.

Because there were no swaps for the current gap, then

Next Gap = Int([Previous Gap] / 2) = Int(1 / 2) = 0

and the Shell sort is complete.
Notice that the Shell sort required 14 comparisons to sort the list whereas the bubble sort

required only 10 comparisons for the same list. This illustrates the fact that for very short
lists, the bubble sort is preferable; however, for lists of 30 items or more, the Shell sort will
consistently outperform the bubble sort. Table 6.3 shows the average number of comparisons
required to sort arrays of varying sizes.

S o r t i n g a n d S e a r c h i n g 189

http://www.pearsoncustom.com/link/visualbasic/sort.html

TABLE 6.3
Efficiency of Bubble and Shell Sorts

Array Elements Bubble Sort Comparisons Shell Sort Comparisons

5 10 15
10 45 57
15 105 115
20 190 192
25 300 302
30 435 364
50 1225 926

100 4950 2638
500 124,750 22,517

1000 499,500 58,460

EXAMPLE 4

Use the Shell sort to alphabetize the parts of a running shoe (see Figure 6-7).

FIGURE 6-7 Running Shoe

SOLUTION:
In the following program, the data are read into an array that has been dimensioned so as to guarantee
more than enough space. In the event procedure Form_Load, the variable numParts provides the sub-
scripts for the array and serves as a counter. The final value of numParts is available to all procedures
because the variable was created in the (Declarations) section of (General). The Sub procedure SortData
uses a flag to indicate if a swap has been made during a pass.

Dim part(1 To 50) As String
Dim numParts As Integer

Private Sub cmdDisplayParts_Click()
‘Sort and display parts of running shoe
Call SortData
Call ShowData

End Sub

Private Sub Form_Load()
‘Read part names numParts = 0 ‘Number of parts

190 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

Open “SHOEPART.TXT”
For Input As #1
Do While (Not EOF(1)) And (numParts < UBound(part))

numParts = numParts + 1
Input #1, part(numParts)

Loop
Close #1

End Sub

Private Sub ShowData()
Dim i As Integer ‘Display sorted list of parts
picParts.Cls
For i = 1 To numParts

picParts.Print part(i),
If i Mod 5 = 0 Then ‘only put 5 items per line

picParts.Print
End If

Next i
End Sub

Private Sub SortData()
Dim gap As Integer, doneFlag As Boolean
Dim index As Integer, temp As String
‘Shell sort shoe parts
gap = Int(numParts / 2)
Do While gap >= 1

Do
doneFlag = True
For index = 1 To numParts - gap

If part(index) > part(index + gap)
Then temp = part(index)
part(index) = part(index + gap)
part(index + gap) = temp
doneFlag = False

End If
Next index

Loop Until doneFlag = True ‘Can also be written Loop Until doneFlag
gap = Int(gap / 2) ‘Halve the length of the gap

Loop
End Sub

[Run and click the command button.]

■ SEARCHING

Suppose we had an array of 1000 names in alphabetical order and wanted to locate a specif-
ic person in the list. One approach would be to start with the first name and consider each name
until a match was found. This process is called a sequential search. We would find a person

S o r t i n g a n d S e a r c h i n g 191

http://www.pearsoncustom.com/link/visualbasic/sequentialsearch.html

whose name begins with “A” rather quickly, but 1000 comparisons might be necessary to find
a person whose name begins with “Z.” For much longer lists, searching could be a time-con-
suming matter. However, when the list has already been sorted into either ascending or de-
scending order, there is a method, called a binary search, that shortens the task considerably.

Let us refer to the sought item as quarry. The binary search looks for quarry by deter-
mining in which half of the list it lies. The other half is then discarded, and the retained half
is temporarily regarded as the entire list. The process is repeated until the item is found. A
flag can indicate if quarry has been found.

The algorithm for a binary search of an ascending list is as follows (Figure 6-8 shows
the flowchart for a binary search):

1. At each stage, denote the subscript of the first item in the retained list by first
and the subscript of the last item by last. Initially, the value of first is 1, the
value of last is the number of items in the list, and the value of flag is False.

2. Look at the middle item of the current list, the item having the subscript mid-
dle = Int((first + last) / 2).

3. If the middle item is quarry, then flag is set to True and the search is over.

4. If the middle item is greater than quarry, then quarry should be in the first half
of the list. So the subscript of quarry must lie between first and middle [minus]
1. That is, the new value of last is middle – 1.

5. If the middle item is less than quarry, then quarry should be in the second half
of the list of possible items. So the subscript of quarry must lie between middle
+ 1 and last. That is, the new value of first is middle + 1.

6. Repeat Steps 2 through 5 until quarry is found or until the halving process uses
up the entire list. (When the entire list has been used up, first > last.) In the sec-
ond case, quarry was not in the original list.

FIGURE 6-8 Flowchart for a Binary Search

192 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/binarysearch.html
http://www.pearsoncustom.com/link/visualbasic/algorithms.html

EXAMPLE 5

In the following program the array firm() contains the alphabetized names of up to 100 corporations. The
program requests the name of a corporation as input and uses a binary search to determine whether or not
the corporation is in the array.

Dim firm(1 TO 100) As String

Dim numFirms As Integer

Private Sub BinarySearch(corp As String, result As String)

Dim foundFlag As Boolean

Dim first As Integer, middle As Integer, last As Integer

‘Array firm() assumed already ordered alphabetically

‘Binary search of firm() for corp

foundFlag = False

first = 1

last = numFirms

Do While (first <= last) And (Not foundFlag)

middle = Int((first + last) / 2)

Select Case UCase(firm(middle))

Case corp

foundFlag = True

Case Is > corp

last = middle - 1

Case Is <

corp first = middle + 1

End Select

Loop

If foundFlag Then

result = “found”

Else

result = “not found”

End If

End Sub

Private Sub cmdSearch_Click()

Dim corp As String, result As String

corp = UCase(Trim(txtCorporation.Text))

Call BinarySearch(corp, result)

‘Display results of search

picResult.Cls

picResult.Print corp; “ ”; result

End Sub

Private Sub Form_Load()

‘Fill array with data from FIRMS.TXT

Open “FIRMS.TXT” For Input As #1 ‘Contains up to 100 companies

numFirms = 0

Do While (Not EOF(1)) And (numFirms < UBound(firm))

numFirms = numFirms + 1

Input #1, firm(numFirms)

Loop Close #1

End Sub

S o r t i n g a n d S e a r c h i n g 193

Run, type IBM into the text box, and click the command button.]

Suppose the array contains 100 corporations and the corporation input in Example 5 is in
the second half of the array. On the first pass, middle would be assigned Int((1 + 100)/2) =
Int(50.5) = 50 and then first would be altered to 50 + 1 = 51. On the second pass, middle would
be assigned Int((51 + 100)/2) = Int(75.5) = 75. If the corporation is not the array element with
subscript 75, then either last would be assigned 74 or first would be assigned 76, depending
on whether the corporation appears before or after the 75th element. Each pass through the
loop halves the range of subscripts containing the corporation until the corporation is located.

In Example 5, the binary search merely reported whether or not an array contained a cer-
tain item. After finding the item, its array subscript was not needed. However, if related data
are stored in parallel arrays (as in Table 6.2), the subscript of the found item can be used to
retrieve the related information in the other arrays. This process, called a table lookup, is
used in the following example.

EXAMPLE 6

Use a binary search procedure to locate the data for a city from Example 3 requested by the user.

SOLUTION:
The following program does not include a sort of the data file CITYSTAT.TXT because the file is already
ordered alphabetically.

Dim city(1 To 10) As String, pop(1 To 10) As Single, income(1 To 10) As Single
Dim natives(1 To 10) As Single, advDeg(1 To 10) As Single

Private Sub cmdDisplayStats_Click()
Dim searchCity As String, result As Integer
‘Search for city in the metropolitan areas table
Call GetCityName(searchCity)
Call FindCity(searchCity, result)
picResult.Cls
If result > 0 Then

Call ShowData(result)
Else

picResult.Print searchCity & “ not in file”
End If

End Sub

Private Sub FindCity(searchCity As String, result As Integer)
Dim first As Integer, middle As Integer, last As Integer
Dim foundFlag As Boolean
‘Binary search table for city name
first = 1
last = 10
foundFlag = False
Do While (first <= last) And (Not foundFlag)

middle = Int((first + last) / 2)
Select Case UCase(city(middle))

Case searchCity
foundFlag = True

Case Is > searchCity

194 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/binarysearch.html

last = middle - 1

Case Is < searchCity

first = middle + 1

End Select

Loop

If foundFlag Then

result = middle

Else

result = 0

End If

End Sub

Private Sub Form_Load()

Dim i As Integer

‘Assume that the data for city name, population, medium income, % native,

‘and % advanced degree have been placed in the file “CITYSTAT.TXT”

‘(First line of file is “Boston”, 4.2, 4066, 73, 12)

Open “CITYSTAT.TXT” For Input As #1

For i = 1 To 10

Input #1, city(i), pop(i), income(i), natives(i), advDeg(i)

Next i

Close #1

End Sub

Private Sub GetCityName(searchCity As String)

‘Request name of city as input

searchCity = UCase(Trim(txtCity.Text))

End Sub

Private Sub ShowData(index As Integer)

‘Display city and associated information

picResult.Print , “Pop. in”, “Med. income”, “% Native”, “% Advanced”

picResult.Print “Metro Area”, “millions”, “per hsd”, “to State”, “Degree”

picResult.Print picResult.Print city(index), pop(index), income(index),

picResult.Print natives(index), advDeg(index)

End Sub

[Run, type San Francisco into the text box, and click the command button.]

COMMENTS

1. Suppose our bubble sort algorithm is applied to an ordered list. The algorithm
will still make n – 1 passes through the list. The process could be shortened for
some lists by flagging the presence of out-of-order items as in the Shell sort. It
may be preferable not to use a flag, because for greatly disordered lists the flag
would slow down an already sluggish algorithm.

S o r t i n g a n d S e a r c h i n g 195

http://www.pearsoncustom.com/link/visualbasic/sort.html
http://www.pearsoncustom.com/link/visualbasic/algorithms.html

2. In Example 3, parallel arrays already ordered by one field were sorted by anoth-
er field. Usually, parallel arrays are sorted by the field to be searched when
accessing the file. This field is called the key field.

3. Suppose an array of 2000 items is searched sequentially—that is, one item after
another—in order to locate a specific item. The number of comparisons would
vary from 1 to 2000, with an average of 1000. With a binary search, the num-
ber of comparisons would be at most 11 because 211 > 2000.

4. The built-in function UCase converts all the characters in a string to uppercase.
UCase is useful in sorting and searching arrays of strings when the alphabetic
case (upper or lower) is unimportant. For instance, Example 5 includes UCase
in the Select Case comparisons, and so the binary search will locate “Mobil” in
the array even if the user entered “MOBIL”.

5. The Visual Basic function Timer can be used to determine the speed of a sort. Pre-
cede the sort with the statement t = Timer. After the sort has executed, the state-
ment picOutput.Print Timer – t will display the duration of the sort in seconds.

6.5 TWO-DIMENSIONAL ARRAYS

Each array discussed so far held a single list of items. Such array variables are called single-
subscripted variables. An array can also hold the contents of a table with several rows and
columns. Such arrays are called two-dimensional arrays or double-subscripted variables.
Two tables follow. Table 6.4 gives the road mileage between certain cities. It has four rows and
four columns. Table 6.5 shows the leading universities in three disciplines. It has three rows
and five columns.

TABLE 6.4
Road Mileage Between Selected U.S. Cities

Chicago Los Angeles New York Philadelphia

Chicago 0 2054 802 738
Los Angeles 2054 0 2786 2706
New York 802 2786 0 100
Philadelphia 738 2706 100 0

TABLE 6.5
University Rankings

1 2 3 4 5

Business U of PA U of IN U of MI UC Berk U of VA
Comp Sci. MIT Cng-Mellon UC Berk Cornell U of IL
Engr/Gen. U of IL U of OK U of MD Cng-Mellon CO Sch. of Mines

Source: A Rating of Undergraduate Programs in American and International Universities, Dr. Jack
Gourman, 1998

Two-dimensional array variables store the contents of tables. They have the same types
of names as other array variables. The only difference is that they have two subscripts, each
with its own range. The range of the first subscript is determined by the number of rows in
the table, and the range of the second subscript is determined by the number of columns. The
statement

196 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/twodimensionalarrays.html
http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/sort.html
http://www.pearsoncustom.com/link/visualbasic/binarysearch.html

dimensions an array of type varType corresponding to a table with rows labeled from m1 To
n1 and columns labeled from m2 To n2. The entry in the jth row, kth column is arrayName (j,k).
For instance, the data in Table 6.4 can be stored in an array named rm(). The statement

Dim rm(1 To 4, 1 To 4) As Single

will dimension the array. Each element of the array has the form rm(row, column). The entries
of the array are

rm(1,1)=0 rm(1,2)=2054 rm(1,3)=802 rm(1,4)=738
rm(2,1)=2054 rm(2,2)=0 rm(2,3)=2786 rm(2,4)=2706
rm(3,1)=802 rm(3,2)=2786 rm(3,3)=0 rm(3,4)=100
rm(4,1)=738 rm(4,2)=2706 rm(4,3)=100 rm(4,4)=0

As with one-dimensional arrays, when a two-dimensional array is created using Dim in the
(Declarations) section of (General), the array becomes a form-level subscripted variable, and is
therefore accessible in all event procedures and general procedures and retains whatever values
are assigned until the program is terminated. Two-dimensional arrays also can be created with
Dim that are local to a procedure and cease to exist once the procedure is exited. When the
range of the subscripts is given by one or more variables, the proper statement to use is

ReDim arrayName(m1 To n1, m2 To n2) As varType

The data in Table 7.10 can be stored in a two-dimensional string array named univ().
The statement

Dim univ(1 To 3, 1 To 5) As String

will dimension the array as form-level. Some of the entries of the array are

univ(1,1) = “U of PA”
univ(2,3) = “UC Berk”
univ(3,5) = “CO Sch. of Mines”

EXAMPLE 1

Write a program to store and access the data from Table 6.4.

SOLUTION:
Data are read from the data file DISTANCE.TXT into a two-dimensional form-level array using a pair of
nested loops. The outer loop controls the rows and the inner loop controls the columns.

Object Property Setting

frmDist Caption Intercity Distances
lblCh Caption 1. Chicago
lblLA Caption 2. Los Angeles
lblNY Caption 3. New York
lblPh Caption 4. Philadelphia
lblOrig Caption Origin
txtOrig Text (blank)
lblDest Caption Destination
txtDest Text (blank)
cmdShow Caption Show Mileage

between Origin
and Destination

picMiles

Dim rm(1 To 4, 1 To 4) As Single ‘In (Declarations) section of (General)
Private Sub cmdShow_Click()
Dim row As Integer, col As Integer
‘Determine road mileage between cities
row = Val(txtOrig.Text)
col = Val(txtDest.Text)

T w o - D i m e n s i o n a l A r r a y s 197

http://www.pearsoncustom.com/link/visualbasic/twodimensionalarrays.html
http://www.pearsoncustom.com/link/visualbasic/strings.html

If (row>= 1 And row <= 4) And (col >= 1 And col <= 4)
Then

Call ShowMileage(rm(), row, col)
Else

MsgBox “Origin and Destination must be numbers from 1 to 4”, , ”Error”
End If
txtOrig.SetFocus

End Sub

Private Sub Form_Load()
Dim row As Integer, col As Integer
‘Fill two-dimensional array with intercity mileages
‘Assume the data have been placed in the file “DISTANCE.TXT”
‘(First line of the file is 0, 54, 802, 738)
Open “DISTANCE.TXT” For Input As #1
For row = 1 To 4

For col = 1 To 4
Input #1, rm(row, col)

Next col
Next row
Close #1

End Sub

Private Sub ShowMileage(rm() As Single, row As Integer, col As Integer)
‘Display mileage between cities
picMiles.Cls
picMiles.Print “The road mileage is”; rm(row, col)

End Sub

[Run, type 3 into the Origin box, type 1 into the Destination box, and click the command
button.]

So far, two-dimensional arrays have been used only to store data for convenient lookup.
In the next example, an array is used to make a valuable computation.

EXAMPLE 2

The Center for Science in the Public Interest publishes The Nutrition Scorebook, a highly respected rat-
ing of foods. The top two foods in each of five categories are shown in Table 6.6 along with some infor-
mation on their composition. Write a program to compute the nutritional content of a meal. The table
should be read into an array and then the program should request the quantities of each food item that is
part of the meal. The program should then compute the amounts of each nutritional component consumed
by summing each column with each entry weighted by the quantity of the food item.

TABLE 6.6
Composition of 10 Top-Rated Foods

Protein Fat Calcium
Calories (grams) (grams) Vit A(IU) (mg)

spinach (1 cup) 23 3 0.3 8100 93
sweet potato (1 med.) 160 2 1 9230 46
yogurt (8 oz.) 230 10 3 120 343
skim milk (1 cup) 85 8 0 500 302
whole wheat bread (1 slice) 65 3 1 0 24
brown rice (1 cup) 178 3.8 0.9 0 18
watermelon (1 wedge) 110 2 1 2510 30
papaya (1 lg.) 156 2.4 0.4 7000 80
tuna in water (1 lb) 575 126.8 3.6 0 73
lobster (1 med.) 405 28.8 26.6 984 190

198 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/twodimensionalarrays.html

SOLUTION:
Coding is simplified by using a control array of labels to hold the food names and a control array of text
boxes to hold the amount input by the user. In the following template, the label captions have been
assigned an initial value “(food name)” so that the labels can be seen. The five nutrients of interest and
the actual names and nutrient values of the foods to be used in building a meal are read from the data file
NUTTABLE.TXT.

Object Property Setting

frmMeal Caption Nutrition in a
Meal

lblFood() Caption (food name)
Index 0 – 9

lblQnty Caption Quantity in Meal
txtQnty() Text (blank)

Index 0 – 9
cmdAnalyze Caption Analyze Meal

Nutrition
picAnalysis

Dim nutName(1 To 5) As String ‘nutrient names
Dim nutTable(1 To 10, 1 To 5) As Single ‘nutrient values for each food

Private Sub cmdAnalyze_Click()
‘Determine the nutritional content of a meal
Dim quantity(1 To 10) As Single ‘amount of food in meal
Call GetAmounts(quantity())
Call ShowData(quantity())

End Sub

Private Sub Form_Load()
Dim i As Integer, j As Integer, foodName As String
‘Fill arrays; assign label captions
Open “NUTTABLE.TXT” For Input As #1
For i = 1 To 5

Input #1, nutName(i)
Next i
For i = 1 To 10

Input #1, foodName
lblFood(i - 1).Caption = foodName
For j = 1 To 5

Input #1, nutTable(i, j)
Next j

Next i
Close #1

End Sub

Private Sub GetAmounts(quantity() As Single)
Dim i As Integer
‘Obtain quantities of foods consumed

For i = 1 To 10 quantity(i) = Val(txtQnty(i - 1).Text)
Next i

End Sub

Private Sub ShowData(quantity() As Single)
Dim col As Integer, row As Integer

T w o - D i m e n s i o n a l A r r a y s 199

Dim amount As Single, nutWid As Single

‘Display amount of each component

picAnalysis.Cls

picAnalysis.Print “This meal contains the”

picAnalysis.Print “following quantities”

picAnalysis.Print “of these nutritional”

picAnalysis.Print “components:”

picAnalysis.Print For col = 1 To 5

amount = 0

For row = 1 To 10

amount = amount + quantity(row) * nutTable(row, col)

Next row

picAnalysis.Print nutName(col) & “:”; Tab(16); amount

Next col

End Sub

[Run, type the following quantities into each text box, and click the command button.]

COMMENT

1. We can define three- (or higher-) dimensional arrays much as we do two-dimen-
sional arrays. A three-dimensional array uses three subscripts, and the assign-
ment of values requires a triple-nested loop. As an example, a meteorologist
might use a three-dimensional array to record temperatures for various dates,
times, and elevations. The array might be created by the statement

Dim temps(1 To 31, 1 To 24, 0 To 14) As Single

6.6 A CASE STUDY: CALCULATING WITH A
SPREADSHEET

Spreadsheets are one of the most popular types of software used on personal computers. A
spreadsheet is a financial planning tool in which data are analyzed in a table of rows and
columns. Some of the items are entered by the user. Other items, often totals and balances, are
calculated using the entered data. The outstanding feature of electronic spreadsheets is their
ability to recalculate an entire table after changes are made in some of the entered data, there-
by allowing the user to determine the financial implications of various alternatives. This is
called “What if?” analysis.

200 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/twodimensionalarrays.html
http://www.pearsoncustom.com/link/visualbasic/twodimensionalarrays.html

■ THE DESIGN OF THE PROGRAM

Figure 6-9 contains an example of a spreadsheet used to analyze a student’s financial projec-
tions for the four quarters of a year. Column F holds the sum of the entries in columns B
through E, rows 6 and 14 hold sums of the entries in rows 3 through 5 and 9 through 13, re-
spectively, and row 16 holds the differences of the entries in rows 6 and 14. Because the total
balance is negative, some of the amounts in the spreadsheet must be changed and the totals and
balances recalculated.

A B C D E F

1 Fall Winter Spring Summer Total
2 Income
3 Job 1000 1300 1000 2000 5300
4 Parents 200 200 200 0 600
5 Scholarship 150 150 150 0 450
6 Total 1350 1650 1350 2000 6350
7
8 Expenses
9 Tuition 400 0 400 0 800
10 Food 650 650 650 650 2600
11 Rent 600 600 600 400 2200
12 Books 110 0 120 0 230
13 Misc 230 210 300 120 860
14 Total 1990 1460 2070 1170 6690
15
16 Balance –640 190 –720 830 –340

FIGURE 6-9 Spreadsheet for Student’s Financial Projections

The 96 locations in the spreadsheet that hold information are called cells. Each cell is
identified by its row number and column letter. For instance, cell 14, C contains the amount
1460. For programming purposes, each column is identified by a number, starting with 1 for
the leftmost column. Thus cell 14, C will be cell 14, 3 in our program.

This case study develops a program to produce a spreadsheet with the five columns of
numbers shown in Figure 6-11, three user-specified categories of income, and five user-spec-
ified categories of expenses. The following tasks are to be selected by command buttons:

1. Start a new spreadsheet. All current category names and values are erased and
the cursor is placed in the text box of the first income category.

2. Quit.

Three additional tasks need to be performed as the result of other events:

1. Create the spreadsheet when the form is loaded.

2. Limit the user to editing category names and quarterly values.

3. Display totals after a change is made in the spreadsheet.

■ THE USER INTERFACE

Each cell in the spreadsheet will be an element of a text box control array. A control array of
labels is needed for the numeric labels to the left of each row and another control array of la-
bels for the alphabetic labels at the top of each column. Finally, two command buttons are re-
quired. The task of controlling which cells the user can edit will be handled by a GotFocus
event. The task of updating the totals will be handled by a LostFocus event. Figure 6-10 shows
one possible form design with all control elements loaded. For this application of a spreadsheet,
the headings that have been assigned to cells in rows 1, 2, 6, 8, 14, and 16 are fixed; the user
will not be allowed to edit them. The other entries in column A, the category names, may be
edited by the user, but we have provided the set from Figure 6-9 as the default.

A C a s e S t u d y : C a l c u l a t i n g w i t h a S p r e a d s h e e t 201

http://www.pearsoncustom.com/link/visualbasic/controlarray.html

FIGURE 6-10 Template for Spreadsheet

Because processing the totals for the spreadsheet involves adding columns and rows of
cells, coding is simplified by using a control array of text boxes so that an index in a
For...Next loop can step through a set of cells. A two-dimensional array of text boxes seems
natural for the spreadsheet. Unfortunately, only a single index is available for control arrays
in Visual Basic. However, a single dimensional array of text boxes can be used without much
difficulty if we define a function Indx that connects a pair of row (1 to 16) and column (1 to
6) values to a unique index (1 to 96) value. An example of such a rule would be Indx(row,col-
umn)=(row–1)*6+column. Successive values of this function are generated by going from
left to right across row 1, then left to right across row 2, and so on.

A solution to the spreadsheet problem that uses one control array of text boxes and two
control arrays of labels follows. The text box control array txtCell() provides the 96 text boxes
needed for the spreadsheet cells. Because the proposed Indx function advances by one as we
move from left to right across a row of cells, the cells must be positioned in this order as they
are loaded. The label control array lblRowLab() provides a label for each of the rows of cells,
while label control array lblColLab() provides a label for each column of cells. Figure 6-11
shows the layout of the form at design time. The properties for the controls are given in Table
6.7. The Height and Width properties given for the text box will assure enough room on the
screen for all 96 cells. These dimensions can be obtained by creating a normal size text box,
then reducing its width by one set of grid marks and its height by two sets of grid marks.

FIGURE 6-11 Controls at Design Time

TABLE 6.7
Objects and Their Properties

Object Property Setting

frmSpreadsheet Caption Spreadsheet
cmdNew Caption New
cmdQuit Caption Quit
lblRowLab() Caption 1

202 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/twodimensionalarrays.html
http://www.pearsoncustom.com/link/visualbasic/fornextloop.html
http://www.pearsoncustom.com/link/visualbasic/controlarray.html

Index 1
lblColLab() Caption A
Index 1
txtCell() Text (blank)
Index 1
Height 1095
Width 285

■ CODING THE PROGRAM

The top row of Figure 6-12 shows the different events to which the program must respond.
Table 6.8 identifies the corresponding event procedures and the general procedures they call.
Let’s examine each event procedure.

1. Form_Load assigns the number of rows (16) and columns (6) in our spread-
sheet to the form-level variables maxRow and maxCol. Form_Load then calls
three general procedures to create and initialize the spreadsheet.

The procedure CreateSpreadsheet loads each element of the txtCell() control
array in order from left to right, top to bottom. Cell 1, which is to be the first
cell in the first row, is not loaded because it was created at design time. The Top
property of a new cell is set so that the top edge of the new cell overlaps the
bottom edge of the previous cell in the column. The Top property of the first
cell in a column is not modified, and so the value of the Top property is the
same as cell 1. Similarly, the Left property of a new cell is set so that the left
edge of the new cell overlaps the right edge of the previous cell in the row. The
Left property of the first cell in a row is not modified, and so the value of the
Left property is the same as cell 1. CreateSpreadsheet also loads the additional
row and column label elements and assigns an appropriate caption. Create-
Spreadsheet’s final task is to set the Height and Width properties of frm-
SpreadSheet to accommodate all the objects that have been loaded. The
numbers 500 and 200, which appear in these statements, were obtained by trial
and error and are necessary to account for the space used by the form caption
and borders.

The procedure SetStructure assigns heading values to various cells of the
spreadsheet in accordance with the specific application we were asked to pro-
gram. The user will not be able to alter the value in these cells, because the rules
for which cells are to be totaled, and where these totals are to be placed are
“hard wired” into the program and cannot be changed by the user. SetStructure
also assigns values to a set of form-level variables so that other procedures in
the program can be coded using meaningful names rather than possibly obscure
numbers. Besides Form_Load, SetStructure is also called by the
cmdNew_Click event procedure.

The procedure SetDefaults assigns the income and expense category headings
shown in Figure 6-9 to the appropriate cells. The user may change these head-
ings at any time, and must supply them if the “New” command is issued.

2. txtCell_GotFocus checks to see if the cell that has received the focus may,
according to the rules of this application, be edited by the user. The row and col-
umn numbers for the cell are computed from the cell’s index. If the cell that has
received the focus is in a column after stopCol, the last editable column, then the
column to be edited is changed to startCol, the first editable column, and the row
to be edited is advanced by one. If the row to be edited does not contain any
editable cells, then the row to be edited is advanced to the next row containing
editable cells. (When the focus goes past the last row of editable cells, the next
editable row is the first editable row, that is, incStartRow.) Finally, focus is set to
the adjusted row and column, but only if an adjustment has been made. If the test
Indx(row,col)<>Index were not made and focus were reset to a cell that already

A C a s e S t u d y : C a l c u l a t i n g w i t h a S p r e a d s h e e t 203

http://www.pearsoncustom.com/link/visualbasic/formlevelvariable.html
http://www.pearsoncustom.com/link/visualbasic/controlarray.html
http://www.pearsoncustom.com/link/visualbasic/controlarray.html

had the focus, then the GotFocus event procedure would be invoked again as a
result of the SetFocus, and then again as a result of the SetFocus performed by
this invocation of GotFocus, and so on, resulting in an infinite loop.

3. txtCell_LostFocus invokes the general procedure DisplayTotals when the cursor
leaves one of the spreadsheet cells. DisplayTotals in turn invokes five general pro-
cedures that each compute one set of needed totals and display the results by
assigning values to appropriate text boxes. TotalIncome adds up the income for
each quarter and saves the results in the array iTot(). Similarly, TotalExpenses
adds up the expenses for each quarter and saves the results in the array eTot().
ComputeBalances takes the results stored in iTot() and eTot() and subtracts them
to determine the balance for each quarter. TotalRows adds the four quarters for
each category and assigns the results to the text boxes at the right end of each row.
Finally, DetermineGrandTotals adds the values in iTot() and eTot() to determine
the values for the right end of the “balance” row and each “total” row.

4. cmdNew_Click prepares for the entry of a new spreadsheet by setting the Text
property of each element of the control array txtCell() to the null string and
then setting focus to the first cell in the spreadsheet.

5. cmdQuit_Click ends the program.

FIGURE 6.12 Hierarchy Chart for Spreadsheet Program

TABLE 6.8
Tasks and Their Procedures

1. Create & Initialize spreadsheet Form_Load

1.1 Create & position cells & labels CreateSpreadsheet

1.2 Display fixed headings SetStructure

1.3 Display default categories SetDefaults

2. Prevent editing of wrong cells txtCell_GotFocus

3. Update totals when cursor leaves a cell txtCell_LostFocus (Display
Totals)

3.1 Total income each quarter TotalIncome

3.2 Total expenses each quarter TotalExpenses

3.3 Compute balances each quarter ShowBalances

3.4 Total each income & expense category TotalRows

3.5 Determine grand totals ShowGrandTotals

4. Start a new spreadsheet cmdNew_Click

5. End program cmdQuit_Click

204 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/controlarray.html

Dim maxCol As Integer ‘Number of columns in spreadsheet
Dim maxRow As Integer ‘Number of rows in spreadsheet
Dim incStartRow As Integer ‘Row where income categories begin
Dim incStopRow As Integer ‘Row where income categories end
Dim incTotRow As Integer ‘Row where income total is displayed
Dim expStartRow As Integer ‘Row where expense categories begin
Dim expStopRow As Integer ‘Row where expense categories end
Dim expTotRow As Integer ‘Row where expense total is displayed
Dim balRow As Integer ‘Row where balance is displayed
Dim startCol As Integer ‘Column where numeric data begins
Dim stopCol As Integer ‘Column where numeric data ends
Dim totCol As Integer ‘Column where total for each row is dis-
played
’Control Arrays’txtCell() Control array for data cells
’lblRowLab() Control array for numeric row labels

’lblColLab() Control array for alphabetic column labels

Private Sub cmdNew_Click()
Dim row As Integer, col As Integer
‘Clear all data and total text boxes
For col = 1 To maxCol

For row = 1 To maxRow
txtCell(Indx(row, col)).Text = “”

Next row
Next col
Call SetStructure
‘Place cursor in first data txtCell
txtCell(Indx(1, 1)).SetFocus

End Sub

Private Sub cmdQuit_Click()
End

End Sub

Private Sub CreateSpreadsheet()
Dim row As Integer, col As Integer, i As Integer
Dim cellHeight As Single, cellWidth As Single
Dim cellTop As Single, cellLeft As Single
cellHeight = txtCell(1).Height
cellWidth = txtCell(1).Width
‘Create cells For row = 1 To maxRow

For col = 1 To maxCol
i = Indx(row, col)
If Not (col = 1 And row = 1) Then

Load txtCell(i)
End If
If row > 1 Then

cellTop = txtCell(Indx(row - 1, col)).Top
txtCell(i).Top = cellTop + cellHeight

End If
If col > 1 Then

cellLeft = txtCell(Indx(row, col - 1)).Left
txtCell(i).Left = cellLeft + cellWidth

End If
txtCell(i).Visible = True

Next col

A C a s e S t u d y : C a l c u l a t i n g w i t h a S p r e a d s h e e t 205

Next row
‘Create Row Labels
For row = 2 To maxRow

Load lblRowLab(row)
lblRowLab(row).Top = lblRowLab(row - 1).Top + cellHeight
lblRowLab(row).Caption = LTrim(Str(row))
lblRowLab(row).Visible = True

Next row
‘Create Column Labels
For col = 2 To maxCol

Load lblColLab(col)
lblColLab(col).Left = lblColLab(col - 1).Left + cellWidth
lblColLab(col).Caption = Chr(col + 64)
lblColLab(col).Visible = True

Next col ‘Set form height and width to accommodate all objects
i = Indx(maxRow, maxCol)
frmSpreadsheet.Height = txtCell(i).Top + cellHeight + 500
frmSpreadsheet.Width = txtCell(i).Left + cellWidth + 200

End Sub

Private Sub DisplayTotals()
ReDim itot(startCol To stopCal) As Single
ReDim etot(startCol To stopCal) As Single
‘Calculate and show totals for Income each quarter
Call TotalIncome(itot())
‘Calculate and show totals for Expenses each quarter
Call TotalExpenses(etot())
‘Calculate and show Balances for each quarter
Call ShowBalances(itot(), etot())
‘Calculate and show the Total of each Income & Expense category
Call TotalRows
‘Calculate and show grand totals of quarter totals and balances
Call ShowGrandTotals(itot(), etot())

End Sub

Private Sub Form_Load()
‘Establish number of rows and columns. Trial and error show
‘that a maximum of 20 rows and 8 columns will fit the screen.
‘For this particular application, 16 rows and 6 columns are adequate.
maxRow = 16
maxCol = 6
Call CreateSpreadsheet
Call SetStructure
Call SetDefaults

End Sub

Private Function Indx(row As Integer, col As Integer) As Integer
Indx = (row - 1) * maxCol + col

End Function

Private Sub SetDefaults()
‘Set default values specific to this application
txtCell(Indx(3, 1)).Text = “Job”
txtCell(Indx(4, 1)).Text = “Parents”
txtCell(Indx(5, 1)).Text = “Scholarship”
txtCell(Indx(9, 1)).Text = “Tuition”

206 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

txtCell(Indx(10, 1)).Text = “Food”
txtCell(Indx(11, 1)).Text = “Rent”
txtCell(Indx(12, 1)).Text = “Books”
txtCell(Indx(13, 1)).Text = “Misc”

End Sub

Private Sub SetStructure()
txtCell(Indx(1, 2)).Text = “Fall”
txtCell(Indx(1, 3)).Text = “Winter”
txtCell(Indx(1, 4)).Text = “Spring”
txtCell(Indx(1, 5)).Text = “Summer”
txtCell(Indx(1, 6)).Text = “Total”
txtCell(Indx(1, 6)).ForeColor = vbGreen
txtCell(Indx(2, 1)).Text = “Income”
txtCell(Indx(2, 1)).ForeColor = vbMagenta
txtCell(Indx(6, 1)).Text = “Total”
txtCell(Indx(6, 1)).ForeColor = vbGreen
txtCell(Indx(8, 1)).Text = “Expenses”
txtCell(Indx(8, 1)).ForeColor = vbMagenta
txtCell(Indx(14, 1)).Text = “Total”
txtCell(Indx(14, 1)).ForeColor = vbGreen
txtCell(Indx(16, 1)).Text = “Balance”
txtCell(Indx(16, 1)).ForeColor = vbGreen
incStartRow = 3
incStopRow = 5
incTotRow = 6
expStartRow = 9
expStopRow = 13
expTotRow = 14
balRow = 16
startCol = 2
stopCol = 5
totCol = 6

End Sub

Private Sub ShowBalances(itot() As Single, etot() As Single)
Dim col As Integer
For col = startCol To stopCol

txtCell(Indx(balRow, col)).Text = FormatNumber(itot(col) - etot(col), 0)
Next col

End Sub

Private Sub ShowGrandTotals(itot() As Single, etot() As Single)
Dim col As Integer, iTotal As Single, eTotal As Single
‘Compute and display grand totals for income, expenses, and balance
iTotal = 0
eTotal = 0
For col = startCol
To stopCol

iTotal = iTotal + itot(col)
eTotal = eTotal + etot(col)

Next col
txtCell(Indx(incTotRow, totCol)) = FormatNumber(iTotal, 0)
txtCell(Indx(expTotRow, totCol)) = FormatNumber(eTotal, 0)
txtCell(Indx(balRow, totCol)) = FormatNumber(iTotal - eTotal, 0)

End Sub

A C a s e S t u d y : C a l c u l a t i n g w i t h a S p r e a d s h e e t 207

Private Sub TotalExpenses(etot() As Single)
Dim row As Integer, col As Integer
‘Total expenses for each of four quarters
For col = startCol To stopCol
etot(col) = 0
For row = expStartRow To expStopRow

etot(col) = etot(col) + Val(txtCell(Indx(row, col)).Text)
Next row
txtCell(Indx(expTotRow, col)).Text = FormatNumber(etot(col), 0)
Next col

End Sub

Private Sub TotalIncome(itot() As Single)
Dim row As Integer, col As Integer
‘Total income for each of four quarters
For col = startCol To stopCol
itot(col) = 0
For row = incStartRow To incStopRow

itot(col) = itot(col) + Val(txtCell(Indx(row, col)).Text)
Next row
txtCell(Indx(incTotRow, col)).Text = FormatNumber(itot(col), 0)
Next col

End Sub

Private Sub TotalRows()
Dim row As Integer, col As Integer, rowTot As Single
‘Total each income category
For row = incStartRow To incStopRow

rowTot = 0
For col = startCol To stopCol

rowTot = rowTot + Val(txtCell(Indx(row, col)).Text)
Next col
txtCell(Indx(row, totCol)).Text = FormatNumber(rowTot, 0)

Next row
‘Total each expense category
For row = expStartRow To expStopRow

rowTot = 0
For col = startCol To stopCal

rowTot = rowTot + Val(txtCell(Indx(row, col)).Text)
Next col

txtCell(Indx(row, totCol)).Text = FormatNumber(rowTot, 0)
Next row

End Sub

Private Sub txtCell_GotFocus(Index As Integer)
Dim row As Integer, col As Integer
‘Force focus into a data txtCell for this application
row = Int((Index - 1) / maxCol) + 1
col = ((Index - 1) Mod maxCol) + 1
If col > stopCol Then

row = row + 1
col = startCol

End If
If row < incStartRow Then

208 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

row = incStartRow

ElseIf (row > incStopRow) And (row < expStartRow) Then

row = expStartRow

ElseIf row > expStopRow Then

row = incStartRow

End If

If Indx(row, col)]<> Index Then

txtCell(Indx(row, col)).SetFocus

End If

End Sub

Private Sub txtCell_LostFocus(Indx As Integer)

Call DisplayTotals

End Sub

SUMMARY

1. For programming purposes, tabular data are most efficiently processed if stored
in an array. The ranges of variable arrays are specified by Dim or ReDim state-
ments.

2. An array of labels, text boxes, or command buttons, referred to in general as a
control array, can be created by assigning a value (usually zero) to the Index
property of the control at design time. Additional elements of the control array
are created either at design time by using Ctrl+C and Ctrl+V to copy the first
element in the array or at run time by using the Load statement. New elements
created in either way inherit all the properties of the first element except the
Index, Visible (if created with Load), Top (when copied at design time), and
Left (when copied at design time) properties.

3. Two of the best-known methods for ordering (or sorting) arrays are the bubble
sort and the Shell sort.

4. Any array can be searched sequentially to find the subscript associated with a
sought-after value. Ordered arrays can be searched most efficiently by a bina-
ry search.

5. A table can be effectively stored in a two-dimensional array.

PROGRAMMING PROJECTS

1. Table 6.9 contains some lengths in terms of feet. Write a program that displays
the nine different units of measure, requests the unit to convert from, the unit to
convert to, and the quantity to be converted, and then displays the converted
quantity. A typical outcome is shown in Figure 6-13.

TABLE 6.9
Equivalent Lengths

1 inch = .0833 foot 1 rod = 16.5 feet
1 yard = 3 feet 1 furlong = 660 feet
1 meter = 3.2815 feet 1 kilometer = 3281.5 feet
1 fathom = 6 feet 1 mile = 5280 feet

P r o g r a m m i n g P r o j e c t s 209

http://www.pearsoncustom.com/link/visualbasic/twodimensionalarrays.html
http://www.pearsoncustom.com/link/visualbasic/sort.html
http://www.pearsoncustom.com/link/visualbasic/controlarray.html
http://www.pearsoncustom.com/link/visualbasic/binarysearch.html
http://www.pearsoncustom.com/link/visualbasic/binarysearch.html

FIGURE 6-13 Possible Outcome of Project 1

2. Statisticians use the concepts of mean and standard deviation to describe a
collection of data. The mean is the average value of the items, and the standard
deviation measures the spread or dispersal of the numbers about the mean. For-
mally, if x1, x2, x3, . . . , xn is a collection of data, then

mean = m =

standard deviation = s =

Write a computer program to

(a) Place the exam scores 59, 60, 65, 75, 56, 90, 66, 62, 98, 72, 95, 71, 63, 77,
65, 77, 65, 50, 85, and 62 into an array.

(b) Calculate the mean and standard deviation of the exam scores.

(c) Assign letter grades to each exam score, ES, as follows:

ES ≥ m + 1.5s A
m + .5s ≤ ES < m + 1.5s B
m – .5s ≤ ES < m + .5s C
m – 1.5s ≤ ES < m – .5s D
ES < m – 1.5s F

For instance, if m were 70 and s were 12, then grades of 88 or above would
receive A’s, grades between 76 and 87 would receive B’s, and so on. A
process of this type is referred to as curving grades.

(d) Display a list of the exam scores along with their corresponding grades as
shown in Figure 6-14.

FIGURE 6-14 Output of Project 2

x1 + x2 + x3 + . . . + xn���
n

210 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

����(x1 – m)2 + (x2 – m)2 + (x3 – m)2 + . . . + (xn – m)2
������

n – 1

3. Rudimentary Translator. Table 6.10 gives English words and their French and
German equivalents. Store these words in a data file and read them into three
parallel arrays, one for each language. Write a program that sorts all three
arrays according to the array of English words. The program should then
request an English sentence as input from the keyboard and translate it into
French and German. For example, if the English sentence given is MY PENCIL
IS ON THE TABLE, then the French translation will be MON CRAYON EST
SUR LA TABLE, and the German translation will be MEIN BLEISTIFT IST
AUF DEM TISCH.

TABLE 6.10
English Words and Their French and German Equivalents

YES OUI JA LARGE GROS GROSS
TABLE TABLE TISCH NO NON NEIN
THE LA DEM HAT CHAPEAU HUT
IS EST IST PENCIL CRAYON BLEISTIFT
YELLOW JAUNE GELB RED ROUGE ROT
FRIEND AMI FREUND ON SUR AUF
SICK MALADE KRANK AUTO AUTO AUTO
MY MON MEIN OFTEN SOUVENT, OFT

4. Write a program that allows a list of no more than 50 soft drinks and their per-
cent changes in market share for a particular year to be input and displays the
information in two lists titled gainers and losers. Each list should be sorted by
the amount of the percent change. Try your program on the data for the 8 soft
drinks in Table 6.11. Note: You will need to store the data initially in an array
to determine the number of gainers and losers.

TABLE 6.11
Changes in Market Share from 1996 to 1997 of Leading Soft-Drink Brands

Brand % Change Brand % Change
in Market Share in Market Share

Coke Classic –.2 Sprite .4
Pepsi-Cola –.4 Dr. Pepper .1
Diet Coke –.2 Diet Pepsi –.2
Mt. Dew .5 7-Up 0

Source: Beverage Digest, 1998

5. Each team in a six-team soccer league played each other team once. Table 6.12
shows the winners. Write a program to

(a) Place the team names in a one-dimensional array.

(b) Place the data from Table 6.12 in a two-dimensional array.

(c) Place the number of games won by each team in a one-dimensional array.

(d) Display a listing of the teams giving each team’s name and number of games
won. The list should be in decreasing order by the number of wins.

TABLE 6.12
Soccer League Winners

Jazz Jets Owls Rams Cubs Zips

Jazz — Jazz Jazz Rams Cubs Jazz
Jets Jazz — Jets Jets Cubs Zips
Owls Jazz Jets — Rams Owls Owls
Rams Rams Jets Rams — Rams Rams
Cubs Cubs Cubs Owls Rams — Cubs
Zips Jazz Zips Owls Rams Cubs —

P r o g r a m m i n g P r o j e c t s 211

http://www.pearsoncustom.com/link/visualbasic/twodimensionalarrays.html

6. A poker hand can be stored in a two-dimensional array. The statement

Dim hand(1 TO 4, 1 TO 13) As Integer

declares a 52-element array, where the first dimension ranges over the four suits
and the second dimension ranges over the thirteen denominations. A poker hand
is specified by placing ones in the elements corresponding to the cards in the
hand. See Figure 6-15.

Write a program that requests the five cards as input from the user, creates the
related array, and passes the array to procedures to determine the type of the
hand: flush (all cards have the same suit), straight (cards have consecutive
denominations—ace can come either before 2 or after King), straight flush,
four-of-a-kind, full house (3 cards of one denomination, 2 cards of another
denomination), three-of-a-kind, two pairs, one pair, or none of the above.

A 2 3 4 5 6 7 8 9 10 J Q K

Club 0 0 0 0 0 0 0 0 1 0 0 0 0
Diamond 1 0 0 0 0 0 0 0 0 0 0 0 0
Heart 1 0 0 0 0 0 0 0 0 0 0 1 0
Spade 0 0 0 0 1 0 0 0 0 0 0 0 0

FIGURE 6-15 Array for the Poker Hand A ♥ A ♦ 5 ♠ 9 ♣ Q ♥

7. Airline Reservations. Write a reservation system for an airline flight. Assume
the airplane has 10 rows with 4 seats in each row. Use a two-dimensional array
of strings to maintain a seating chart. In addition, create an array to be used as
a waiting list in case the plane is full. The waiting list should be “first come,
first served,” that is, people who are added early to the list get priority over
those added later. Allow the user the following three options:

(1) Add a passenger to the flight or waiting list.

(a) Request the passenger’s name.

(b) Display a chart of the seats in the airplane in tabular form.

(c) If seats are available, let the passenger choose a seat. Add the passenger
to the seating chart.

(d) If no seats are available, place the passenger on the waiting list.

(2) Remove a passenger from the flight.

(a) Request the passenger’s name.

(b) Search the seating chart for the passenger’s name and delete it.

(c) If the waiting list is empty, update the array so the seat is available.

(d) If the waiting list is not empty, remove the first person from the list, and
give him or her the newly vacated seat.

(3) Quit.

8. The Game of Life was invented by John H. Conway to model some genetic laws
for birth, death, and survival. Consider a checkerboard consisting of an n-by-n
array of squares. Each square can contain one individual (denoted by 1) or be
empty (denoted by –). Figure 6-16(a) shows a 6-by-6 board with four of the
squares occupied. The future of each individual depends on the number of his
neighbors. After each period of time, called a generation, certain individuals
will survive, others will die due to either loneliness or overcrowding, and new
individuals will be born. Each nonborder square has eight neighboring squares.
After each generation, the status of the squares change as follows:

(a) An individual survives if there are two or three individuals in neighboring
squares.

212 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/twodimensionalarrays.html
http://www.pearsoncustom.com/link/visualbasic/strings.html

(b) An individual dies if he has more than three individuals or less than two in
neighboring squares.

(c) A new individual is born into each empty square with exactly three individ-
uals as neighbors.

Figure 6-16(b) shows the status after one generation. Write a program to do the
following:

(a) Dimension an n-by-n array, where n is input by the user, to hold the status
of each square in the current generation. To specify the initial configuration,
have the user input each row as a string of length n, and break the row into
1’s or dashes with Mid.

(b) Dimension an n-by-n array to hold the status of each square in the next gen-
eration. Compute the status for each square and produce the display in
Figure 6-16(b). Note: The generation changes all at once. Only current cells
are used to determine which cells will contain individuals in the next
generation.

(c) Assign the next-generation values to the current generation and repeat as
often as desired.

(d) Display the number of individuals in each generation.

Hint: The hardest part of the program is determining the number of neighbors a cell has. In
general, you must check a 3-by-3 square around the cell in question. Exceptions must be made
when the cell is on the edge of the array. Don’t forget that a cell is not a neighbor of itself.

(Test the program with the initial configuration shown in Figure 6-17. It is known as the fig-
ure-eight configuration and repeats after eight generations.)

FIGURE 6-16 Two Generations FIGURE 6-17 The Figure Eight

9. Simulate the game Concentration. The Form_Load routine should create an
array of 20 command buttons placed vertically on a form. A list of 10 words
should be randomly assigned as potential captions for the buttons, with each
word assigned to two command buttons. Initially, none of the buttons should
show their words. However, when a button is clicked on, its word is revealed as
its caption. After two words have been revealed, either both of the command
buttons should become invisible (if their words match) or their captions should
again become blank (if the two words do not match). When all matches have
been found, a message box should display the number of tries (pairs of words
exposed) and an appropriate remark about the user’s concentration ability. Pos-
sible remarks might be, “You must have ESP” (less than 14 tries), “Amazing
concentration” (14 to 20 tries), “Can’t hide anything from you” (21 to 28 tries),
“Perhaps a nap would recharge your concentration” (29 to 37 tries), and “Bet-
ter find a designated driver” (more than 37 tries).

S e c t i o n 6 P r o g r a m m i n g P r o j e c t s 213

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/messagebox.html

S E C T I O N

SEQUENTIAL FILES

77

217

7.1 SEQUENTIAL FILES

Throughout this text we have processed data from files created with Windows’ Notepad and
saved on a disk. Such files are stored on disk as a sequence of characters. (Two special char-
acters, called the “carriage return” and “line feed” characters, are inserted at the end of each
line to indicate where new lines should be started.) Such files are called sequential files or text
files. In this section, we create sequential files from Visual Basic programs and develop tech-
niques for using sequential files.

■ CREATING A SEQUENTIAL FILE

There are many ways to organize data in a sequential file. The technique presented here is
easy to implement. The following steps create a new sequential file and write data to it.

1. Choose a file name. A file name can contain up to 255 characters consisting of
letters, digits, and a few other assorted characters (including spaces and peri-
ods). In this book we use 8.3 format names; that is, each name has a base name
of at most 8 characters, and optionally a period followed by a three-letter exten-
sion. (Such names are recognized by all utility programs.)

2. Choose a number from 1 through 511 to be the reference number of the file.
While the file is in use, it will be identified by this number.

3. Execute the statement

Open “filespec” For Output As #n

where n is the reference number. This process is referred to as opening a file
for output. It establishes a communications link between the computer and the
disk drive for storing data onto the disk. It allows data to be output from the
computer and recorded in the specified file.

4. Place data into the file with the Write # statement. If a is a string, then the state-
ment

Write #n, a

writes the string a surrounded by quotation marks into the file. If c is a number,
then the statement

Write #n, c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/sequentialfile.html

writes the number c, without any leading or trailing spaces, into file number n.
The statement

Write #n, a, c

writes a and c as before, but with a comma separating them. Similarly, if the
statement Write #n is followed by a list of several strings and/or numbers sep-
arated by commas, then all the strings and numbers appear as before, separated
by commas. After each Write # statement is executed, the “carriage return” and
“line feed” characters are placed into the file.

5. After all the data have been recorded in the file, execute

Close #n

where n is the reference number. This statement breaks the communications
link with the file and dissociates the number n from the file.

EXAMPLE 1

The following program illustrates the different aspects of the Write # statement. Notice the absence of
leading and trailing spaces for numbers and the presence of quotation marks surrounding strings.

Private Sub cmdCreateFile_Click()

Dim name1 As String, name2 As String

‘Demonstrate use of Write # statement

Open “PIONEER.TXT” For Output As #1

Write #1, “ENIAC” Write #1, 1946

Write #1, “ENIAC”, 1946 name1 = “Eckert” name2 = “Mauchly”

Write #1, 14 * 139, “J.P. ” & name1, name2, “John”

Close #1

End Sub

[Run, click the command button, and then load the file PIONEER.TXT into Windows’ Notepad. The fol-
lowing will appear on the screen.]

“ENIAC”
1946
“ENIAC”,1946
1946,“J.P. Eckert”,“Mauchly”,“John”

Caution: If an existing sequential file is opened for output, the computer will erase the exist-
ing data and create a new empty file.

Write # statements allow us to create files just like the Notepad files that appear
throughout this text. We already know how to read such files with Input # statements. The
remaining major task is adding data to the end of sequential files.

■ ADDING ITEMS TO A SEQUENTIAL FILE

Data can be added to the end of an existing sequential file with the following steps.

1. Choose a number from 1 through 511 to be the reference number for the file. It
need not be the number that was used when the file was created.

2. Execute the statement

Open “filespec” For Append As #n

where n is the reference number. This procedure is called opening a file for
append. It allows data to be output and recorded at the end of the specified file.

3. Place data into the file with Write # statements.

218 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/sequentialfile.html

4. After all the data have been recorded into the file, close the file with the state-
ment Close #n.

The Append option for opening a file is intended to add data to an existing file. However, it
also can be used to create a new file. If the file does not exist, then the Append option acts just
like the Output option and creates the file.

The three options, Output, Input, and Append, are referred to as modes. A file should
not be open in two modes at the same time. For instance, after a file has been opened for out-
put and data have been written to the file, the file should be closed before being opened for
input.

An attempt to open a nonexistent file for input terminates the program with the “File not
found” error message. There is a function that tells us whether a certain file has already been
created. If the value of

Dir(“filespec”)

is the empty string “”, then the specified file does not exist. (If the file exists, the value will
be the file name.) Therefore, prudence often dictates that files be opened for input with code
such as

If Dir(“filespec”) <> “” Then
Open “filespec” For Input As #1

Else
message = “Either no file has yet been created or ”
message = message & “the file is not where expected.”
MsgBox message, , “File Not Found”

End If

There is one file-management operation that we have yet to discuss—deleting an item of
information from a file. An individual item of a file cannot be changed or deleted directly. A
new file must be created by reading each item from the original file and recording it, with
the single item changed or deleted, into the new file. The old file is then erased and the new
file renamed with the name of the original file. Regarding these last two tasks, the Visual
Basic statement

Kill “filespec”

removes the specified file from the disk and the statement

Name “oldfilespec” As “newfilespec”

changes the filespec of a file. (Note: The Kill and Name statements cannot be used with open
files. So doing generates a “File already open” message.)

EXAMPLE 2

The following program creates and manages a file of names and years of birth.

Object Property Setting

frm8_1_2 Caption Access YOB.TXT
lblName Caption Name
txtName Text (blank)
lblYOB Caption Year of Birth
txtYOB Text (blank)
cmdAdd Caption Add Above Person to File
cmdLookUp Caption Look up Year of Birth
cmdDelete Caption Delete Above Person from
File

Private Sub cmdAdd_Click()
Dim message As String

S e q u e n t i a l F i l e s 219

http://www.pearsoncustom.com/link/visualbasic/strings.html

‘Add a person’s name and year of birth to file
If (txtName.Text <> “”) And (txtYOB.Text “”) Then

Open “YOB.TXT” For Append As #1
Write #1, txtName.Text, Val(txtYOB.Text)
Close #1
txtName.Text = “”
txtYOB.Text = “”
txtName.SetFocus

Else
message = “You must enter a name and year of birth.”
MsgBox message, , “Information Incomplete”

End If
End Sub

Private Sub cmdLookUp_Click()
Dim message As String
‘Determine a person’s year of birth
If txtName.Text <> “” Then

If Dir(“YOB.TXT”) <> “” Then
Call DisplayYearOfBirth

Else
message = “Either no file has yet been created or ”
message = message & “the file is not where expected.”
MsgBox message, , “File Not Found”

End If
Else

MsgBox “You must enter a name.”, , “Information Incomplete”
End If
txtName.SetFocus

End Sub

Private Sub cmdDelete_Click()
Dim message As String
‘Remove a person from the file
If txtName.Text <> “” Then

If Dir(“YOB.TXT”) <> “” Then
Call DeletePerson

Else
message = “Either no file has yet been created or ”
message = message & “the file is not where expected.”
MsgBox message, , “File Not Found.”

End If
Else

MsgBox “You must enter a name.”, , “Information Incomplete”
End If
txtName.SetFocus

End Sub

Private Sub DeletePerson()
Dim nom As String, yob As Integer, foundFlag As Boolean
foundFlag = False Open “YOB.TXT” For Input As #1
Open “TEMP” For Output As #2
Do While Not EOF(1)

Input #1, nom, yob
If nom <> txtName.Text Then

220 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

Write #2, nom, yob

Else

foundFlag = True

End If

Loop

Close #1

Close #2

Kill “YOB.TXT”

Name “TEMP” As “YOB.TXT”

If Not foundFlag Then

MsgBox “The name was not found.”, , “”

Else

txtName.Text = “”

txtYOB.Text = “”

End If

End Sub

Private Sub DisplayYearOfBirth()

Dim nom As String, yob As Integer

‘Find the year of birth for the name in txtName

txtYOB.Text = “”

Open “YOB.TXT” For Input As #1

nom = “”

Do While (nom <> txtName.Text) And (Not EOF(1))

Input #1, nom, yob

Loop

If nom = txtName.Text Then

txtYOB.Text = Str(yob)

Else

MsgBox “Person is not in file.”, , “”

txtName.Text = “”

End If

Close #1

End Sub

[Run. After several names have been added, the file might look as shown in Figure 7-1.]

“Barbra”,1942

“Ringo”,1940

“Sylvester”,1946

FIGURE 7-1 Sample Contents of YOB.TXT

■ ERROR TRAPPING

If you try to Open a file on a diskette in drive A and there is no diskette in drive A, the pro-
gram will crash with the error message “Disk not ready.” Visual Basic has a device, called
error-trapping, for preventing this and many other types of errors. If an error occurs while
error-trapping is active, two things happen. An identifying number is assigned to the Number
property of an object called Err, and the program jumps to some lines of code called an error-
handling routine, which takes corrective measures based on the value of Err.Number. Some
errors and the values they generate are as follows:

S e q u e n t i a l F i l e s 221

http://www.pearsoncustom.com/link/visualbasic/errortrapping.html

Type of error Value of Err.Number

Subscript out of range 9
Division by zero 11
File not found 53
File already open 55
File already exists 58
Disk full 61
Disk not ready 71

To set up error-trapping inside a procedure, do the following:

1. Make the first line of the procedure

On Error GoTo ErrorHandler

2. Type in the lines to carry out the purpose of the procedure.

3. Make the last lines of the procedure

Exit SubErrorHandler:error-handling routineResume

The statement “On Error GoTo ErrorHandler” activates error-trapping. If an error occurs
during the execution of a line of the procedure, the program will jump to the error-handling
routine. The statement “Resume” causes the program to jump back to the line causing the
error. The statement “Exit Sub”, which causes an early exit from the procedure, prevents the
error-handling routine from being entered when no error occurs. For instance, the following
procedure has an error-handling routine that is called when a file cannot be found.

Private Sub OpenFile()
On Error GoTo ErrorHandler
Dim fileName As String

fileName = InputBox(“Enter the name of the file to be opened.”)
Open fileName For Input As #1
Exit Sub

ErrorHandler:
Select Case Err.Number

Case 53
MsgBox “File not found. Try Again.”
fileName = InputBox(“Enter the name of the file to be opened.”)

Case 71
MsgBox “The drive door might be open - please check.”

End Select
Resume

End Sub

The word “ErrorHandler”, which is called a line label, can be replaced by any word of
at most 40 letters. The line, which is placed just before the error-handling routine, must start
at the left margin and must end with a colon. If “Resume” is replaced by “Resume Next”,
then the program will jump to the line following the line causing the error.

The line label must be in the same procedure as the On Error statement. However, the
error-handling routine can call another procedure.

There are two variations of the On Error statement. The statement “On Error GoTo 0”
turns off error-trapping. The statement “On Error Resume Next” specifies that when a run-
time error occurs, execution continues with the statement following the statement where the
error occurred.

COMMENTS

1. Sequential files make efficient use of disk space and are easy to create and use.
Their disadvantages are as follows:

222 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/sequentialfile.html
http://www.pearsoncustom.com/link/visualbasic/errortrapping.html

(a) Often a large portion of the file must be read in order to find one specific
item.

(b) An individual item of the file cannot be changed or deleted easily.

Another type of file, known as a random-access file, has neither of the disad-
vantages of sequential files; however, random-access files typically use more
disk space, require greater effort to program, and are not flexible in the variety
and format of the stored data. Random-access files are discussed in Section 8.

2. Consider the sequential file shown in Figure 7-1 at the end of Example 2. This
file is said to consist of three records of two fields each. A record holds all the
data about a single individual. Each item of data is called a field. The three
records are

“Barbra”, 1942

“Ringo”, 1940

“Sylvester”, 1946

and the two fields are

name field, year of birth field

7.2 USING SEQUENTIAL FILES

In addition to being accessed for information, sequential files are regularly updated by mod-
ifying certain pieces of data, removing some records, and adding new records. These tasks
can be performed most efficiently if the files are first sorted.

■ SORTING SEQUENTIAL FILES

The records of a sequential file can be sorted on any field by first reading the data into par-
allel arrays and then sorting on a specific array.

EXAMPLE 1

The following program sorts the sequential file YOB.TXT of the previous section by year of birth.

Private Sub cmdSort_Click()
Dim numPeople As Integer
‘Sort data from YOB.TXT file by year of birth
numPeople = NumberOfRecords(“YOB.TXT”)
ReDim nom(1 To numPeople) As String
ReDim yearBorn(1 To numPeople) As Integer
Call ReadData(nom(), yearBorn(), numPeople)
Call SortData(nom(), yearBorn(), numPeople)
Call ShowData(nom(), yearBorn(), numPeople)
Call WriteData(nom(), yearBorn(), numPeople)

End Sub

Private Function NumberOfRecords(filespec As String) As Integer
Dim nom As String, yearBorn As Integer
Dim n As Integer ‘Used to count records
n = 0
Open filespec For Input As #1
Do While Not EOF(1)

Input #1, nom, yearBorn
n = n + 1

Loop
Close #1

U s i n g S e q u e n t i a l F i l e s 223

http://www.pearsoncustom.com/link/visualbasic/sequentialfile.html
http://www.pearsoncustom.com/link/visualbasic/randomaccessfile.html

NumberOfRecords = n
End Function

Private Sub ReadData(nom() As String, yearBorn() As Integer, numPeople As _
Integer)

Dim index As Integer
‘Read data from file into arrays
Open “YOB.TXT” For Input As #1

For index = 1 To numPeople Input #1, nom(index), yearBorn(index)
Next index
Close #1

End Sub

Private Sub ShowData(nom() As String, yearBorn() As Integer, numPeople As _
Integer)

Dim index As Integer
‘Display the sorted list
picShowData.Cls
For index = 1 To numPeople

picShowData.Print nom(index), yearBorn(index)
Next index

End Sub

Private Sub SortData(nom() As String, yearBorn() As Integer, numPeople As
Integer)

Dim passNum As Integer, index As Integer
‘Bubble sort arrays by year of birth
For passNum = 1 To numPeople - 1

For index = 1 To numPeople - passNum
If yearBorn(index) > yearBorn(index + 1) Then

Call SwapData(nom(), yearBorn(), index)
End If

Next index
Next passNum

End Sub

Private Sub SwapData(nom() As String, yearBorn() As Integer, index As Integer)
Dim stemp As String, ntemp As Integer
‘Swap names and years
stemp = nom(index)
nom(index) = nom(index + 1)
nom(index + 1) = stemp
ntemp = yearBorn(index)
yearBorn(index) = yearBorn(index + 1)
yearBorn(index + 1) = ntemp

End Sub

Private Sub WriteData(nom() As String, yearBorn() As Integer, numPeople As
Integer)

Dim index As Integer
‘Write data back into file
Open “YOB.TXT” For Output As #1
For index = 1 To numPeople

Write #1, nom(index), yearBorn(index)
Next index

224 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

Close #1

End Sub

[Run, and then click on the command button. The following is displayed in the picture box.]

Ringo 1940
Barbra 1942
Sylvester 1946

■ MERGING SEQUENTIAL FILES

In Section 6.2, we considered an algorithm for merging two arrays. This same algorithm can
be applied to merging two ordered files.

Suppose you have two ordered files (possibly with certain items appearing in both files),
and you want to merge them into a third ordered file (without duplications). The technique
for creating the third file is as follows.

1. Open the two ordered files For Input and open a third file For Output.

2. Try to get an item of data from each file.

3. Repeat steps (a) and (b) below until an item of data is not available in one of
the files.

(a) If one item precedes the other, write it into the third file and try to get anoth-
er item of data from its file.

(b) If the two items are identical, write one into the third file and try to get
another item of data from each of the two ordered files.

4. At this point, an item of data has most likely been retrieved from one of the files
and not yet written to the third file. In this case, write that item and all remain-
ing items in that file to the third file.

5. Close the three files.

EXAMPLE 2

The following program merges two ordered files of numbers into a third file.

Object Property Setting

frmMerge Caption Merge Two Files
lblNameFirst Caption Name of first file:
txtNameFirst Text (blank)
lblNameSecond Caption Name of second file:
txtNameSecond Text (blank)
lblNameMerged Caption Name for merged file:
txtNameMerged Text (blank)
cmdProceed Caption Proceed to Merge
picProgress

Private Sub cmdProceed_Click()

Dim file1 As String, file2 As String, file3 As String

Dim have1data As Boolean, have2data As Boolean

Dim num1 As Single, num2 As Single

Dim recCount As Integer ‘Number of records in merged file

‘Merge two ordered files

picProgress.Cls

file1 = txtNameFirst.Text

file2 = txtNameSecond.Text

file3 = txtNameMerged.Text

Open file1 For Input As #1

U s i n g S e q u e n t i a l F i l e s 225

http://www.pearsoncustom.com/link/visualbasic/algorithms.html

Open file2 For Input As #2
Open file3 For Output As #3
have1data = Get1data(num1)
have2data = Get2data(num2)
recCount = 0
Do While have1data And have2data

Select Case num1
Case Is < num2

Write #3, num1
have1data = Get1data(num1)

Case Is > num2
Write #3, num2
have2data = Get2data(num2)

Case num2
Write #3, num1
have1data = Get1data(num1)
have2data = Get2data(num2)

End Select
recCount = recCount + 1

Loop
Do While have1data

Write #3, num1
recCount = recCount + 1
have1data = Get1data(num1)

Loop
Do While have2data

Write #3, num2
recCount = recCount + 1
have2data = Get2data(num2)

Loop
Close #1, #2, #3
picProgress.Print recCount; “records written to ”; file3

End Sub

Private Function Get1data(num1 As Single) As Boolean
‘If possible, read next value from file 1
‘Return value of True when new data are read; False if data not available
If Not EOF(1) Then

Input #1, num1
Get1data = True

Else
Get1data = False

End If
End Function

Private Function Get2data(num2 As Single) As Boolean
‘If possible, read next value from file 2
‘Return value True when new data are read; False if data not available
If Not EOF(2) Then

Input #2, num2
Get2data = True

Else
Get2data = False

End If
End Function

226 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

■ CONTROL BREAK PROCESSING

Suppose a small real estate company stores its sales data for a year in a sequential file in which
each record contains four fields: month of sale, day of sale (1 through 31), address, and price.
Typical data for the sales of the first quarter of a year are shown in Figure 7-2. The records are
ordered by date of sale.

Month Day Address Price

January 9 102 Elm Street $203,000

January 20 1 Main Street $315,200

January 25 5 Maple Street $123,450

February 15 1 Center Street $100,000

February 23 2 Vista Drive $145,320

March 15 205 Rodeo Circle $389,100

FIGURE 7-2 Real Estate Sales for First Quarter of Year

Figure 7-3 shows the output of a program that displays the total sales for the quarter year,
with a subtotal for each month.

FIGURE 7-3 Output of Example 3

A program to produce the output of Figure 7-3 must calculate a subtotal at the end of
each month. The variable holding the month triggers a subtotal whenever its value changes.
Such a variable is called a control variable and each change of its value is called a break.

EXAMPLE 3

The following program produces the output of Figure 7-2. The data of Figure 7-2 are stored in the sequen-
tial file HOMESALE.TXT. The program allows for months with no sales. Because monthly subtotals will
be printed, the month-of-sale field is an appropriate control variable.

Private Sub cmdCreateReport_Click()

Dim currentMonth As String, newMonth As String

Dim dayNum As Integer, address As String

Dim price As Single, monthTotal As Single

Dim yearTotal As Single, doneFlag As Boolean

‘Display home sales by month

picReport.Cls

Open “HOMESALE.TXT” For Input As #1

currentMonth = “” ‘Name of month being subtotaled

monthTotal = 0

yearTotal = 0

doneFlag = False ‘Flag to indicate end of list

Do While Not doneFlag

U s i n g S e q u e n t i a l F i l e s 227

http://www.pearsoncustom.com/link/visualbasic/sequentialfile.html

If Not EOF(1) Then
Input #1, newMonth, dayNum, address, price

Else
doneFlag = True ‘End of list

End If
If (newMonth <> currentMonth) Or (doneFlag) Then ‘Control break processing

If currentMonth <> “” Then ‘Don’t print subtotal before 1st month
picReport.Print
picReport.Print Tab(15); “Subtotal for “; currentMonth; “:”;
picReport.Print Tab(38); FormatCurrency(monthTotal)
picReport.Print

End If
currentMonth = newMonth
monthTotal = 0

End If
If Not doneFlag Then

picReport.Print newMonth;
picReport.Print Tab(11); FormatNumber(dayNum, 0);
picReport.Print Tab(18); address;
picReport.Print Tab(38); FormatCurrency(price)
yearTotal = yearTotal + price

End If
monthTotal = monthTotal + price

Loop
Close #1
picReport.Print “Total for First Quarter: “; FormatCurrency(yearTotal)

End Sub

COMMENTS

1. In the examples of this and the previous section, the files to be processed have
been opened and closed within a single procedure. However, the solution to
some programming problems requires that a file be opened just once the instant
the program is run and stay open until the program is terminated. This is easily
accomplished by placing the Open statement in the Form_Load event procedure
and the Close and End statements in the click event procedure for a command
button labeled “Quit.”

7.3 A CASE STUDY: RECORDING CHECKS AND
DEPOSITS

The purpose of this section is to take you through the design and implementation of a quali-
ty program for personal checkbook management. Nothing in this chapter shows off the power
of Visual Basic better than the program in this section. That a user-friendly checkbook man-
agement program can be written in less than five pages of code clearly shows Visual Basic’s
ability to improve the productivity of programmers. It is easy to imagine an entire finance
program, similar to programs that have generated millions of dollars of sales, being written in
only a few weeks by using Visual Basic!

■ THE DESIGN OF THE PROGRAM

Though there are many commercial programs available for personal financial management, they
include so many bells and whistles that their original purposes—keeping track of transactions

228 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

and reporting balances—have become obscured. The program in this section was designed
specifically as a checkbook program. It keeps track of expenditures and deposits and produces
a printed report. Adding a reconciliation feature would be easy enough, although we did not
include one.

The program is supposed to be user-friendly. Therefore, it showcases many of the tech-
niques and tools available in Visual Basic.

The general design goals for the program included the abilities to

• Automatically enter the user’s name on each check and deposit slip.

• Automatically provide the next consecutive check or deposit slip number. (The
user can override this feature if necessary.)

• Automatically provide the date. (Again, this feature can be overridden.)

• For each check, record the payee, the amount, and optionally a memo.

• For each deposit slip, record the source, the amount, and optionally a memo.

• Display the current balance at all times.

• Produce a printout detailing all transactions.

■ THE USER INTERFACE

With Visual Basic we can place a replica of a check or deposit slip on the screen and let the
user supply the information as if actually filling out a check or deposit slip. Figure 7-4 shows
the form in its check mode. A picture box forms the boundary of the check. Below the picture
box are two labels for the current balance and four command buttons.

FIGURE 7-4 Template for Entering a Check

The first time the program is run, the user is asked for his or her name, the starting bal-
ance, and the numbers of the first check and deposit slip. Suppose the user’s name is David
Schneider, the first check has number 1, the starting balance is $1000, and the first deposit
slip is also number 1. Figure 7-4 shows the form after the three pieces of input. The upper
part of the form looks like a check. The check has a color of light turquoise blue (or cyan).
The Date box is automatically set to today’s date, but can be altered by the user. The user fills
in the payee, amount, and optionally a memo. When the user pushes the Record This Check
button, the information is written to a file, the balance is updated, and check number 2
appears.

To record a deposit, the user pushes the Switch to Deposits button. The form then
appears as in Figure 7-5. The form’s title bar now reads Deposit Slip, the words Pay To
changes to Source, and the color of the slip changes to yellow. Also, in the buttons at the bot-
tom of the form, the words Check and Deposit are interchanged. A deposit is recorded in
much the same way as a check. When the Print Report button is pushed, a printout similar to
the one in Figure 7-5 is printed on the printer.

A C a s e S t u d y : R e c o r d i n g C h e c k s a n d D e p o s i t s 229

FIGURE 7-5 Template for Entering a Deposit

May 5, 1999
Name: David Schneider Starting balance: $1,000.00
Date Transaction Amount Balance
Apr 21, 1999 Check #: 1 $75.95 $924.05

Paid to: Land’s End
Memo: shirts

Apr 29,1999 Check #: 2 $125.00 $799.05
Paid to: Bethesda Coop
Memo: groceries

May 5,1999 Deposit #: 1 $245.00 $1,044.05
Source: Prentice Hall
Memo: typing expenses
Ending Balance: $1,044.05

FIGURE 7-6 Sample Printout of Transactions

The common design for the check and deposit slip allows one set of controls to be used
for both items. Figure 7-7 shows the controls and their suggestive names. The caption of the
label lblToFrom will change back and forth between Pay To and Source.

FIGURE 7-7 Control Names for Checkbook Management Program.

Table 7.1 lists the objects and their initial properties. Because the program will always
begin by displaying the next check, the various captions and the BackColor property of the
picture box could have been set at design time. We chose instead to leave these assignments

230 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

to the SetupCheck Sub procedure, which is normally used to switch from deposit entry to
check entry, but also can be called by the Form_Load event procedure to prepare the initial
mode (check or deposit) for the form.

TABLE 7.1
Objects and Initial Properties for the Checkbook Management Program

Object Property Setting

frmCheckbook
picBox
lblName BackStyle 0 – Transparent
txtNum BorderStyle 0 – None
lblDate BackStyle 0 – Transparent

Caption Date
txtDate
lblToFrom BackStyle 0 – Transparent
txtToFrom
lblAmount BackStyle 0 – Transparent

Caption Amount $
txtAmount
lblMemo BackStyle 0 – Transparent

Caption Memo
txtMemo
lblCurBal Caption Current Balance
lblBalance
cmdRecord
cmdMode
cmdPrint Caption &Print Report
cmdQuit Caption &Quit

The transactions are stored in a data file named CHKBOOK.TXT. The first four entries
of the file are the name to appear on the check or deposit slip, the starting balance, the num-
ber of the first check, and the number of the first deposit slip. After that, each transaction is
recorded as a sequence of eight items—the type of transaction, the contents of txtToFrom,
the current balance, the number of the last check, the number of the last deposit slip, the
amount of money, the memo, and the date.

■ CODING THE PROGRAM

The top row of Figure 7-8 shows the different events to which the program must respond.
Table 7.2 identifies the corresponding event procedures and the general procedures they call.

FIGURE 7-8 Hierarchy Chart for Checkbook Management Program

A C a s e S t u d y : R e c o r d i n g C h e c k s a n d D e p o s i t s 231

TABLE 7.2
Tasks and Their Procedures

Task Procedure

1. Set up data file and form Form_Load
1.1 Create data file CreateDataFile
1.2 Read data file ReadDataFile
1.3 Set up check SetupCheck
1.4 Initialize text fields InitializeFields

2. Record check or deposit slip cmdRecord_Click
2.1 Verify that required data are given AllDataGiven
2.2 Initialize text fields InitializeFields

3. Toggle between check & deposit slip cmdMode_Click
3.1 Set up check SetupCheck
3.2 Set up deposit slip SetupDeposit
3.3 Initialize text fields InitializeFields

4. Print summary of transaction cmdPrint_Click
5. Quit cmdQuit_Click

Let’s examine each event procedure.

1. Form_Load first looks to see if the file CHKBOOK.TXT has been created.
The function Dir returns “CHKBOOK.TXT” if the file exists and otherwise
returns the empty string. If CHKBOOK.TXT does not exist, the routine Cre-
ateDataFile is called. CreateDataFile prompts the user for the name to appear
on the checks and deposit slips, the starting balance, and the numbers of the
first check and deposit slip, and then writes these items to the data file. If CHK-
BOOK.TXT does exist, the routine ReadDataFile is called to read through the
entire file to determine all information needed to proceed. The event procedure
calls SetupCheck to set the transaction type to Check and set the appropriate
captions and background colors for a check. The event procedure then calls Ini-
tializeFields, which initializes all the text boxes.

In the first assignment statement of the procedure, the drive is specified as the
A drive. Therefore, the data file will be written to and read from a diskette on
the A drive. Feel free to change the letter A to whatever drive you prefer. You
may even want to specify an entire path.

2. cmdRecord_Click first confirms that the required fields contain entries. This
is accomplished by calling the function AllDataGiven. If the value returned is
True, then cmdRecord_Click opens the data file for output as Append, sends
eight pieces of data to the file, and then closes the file. When AllDataGiven
returns False, the function itself pops up a message box to tell the user where
information is needed. The user must type in the information and then press the
Record button again.

3. cmdMode_Click toggles back and forth from a check to a deposit slip. It calls
SetupCheck, or its analog SetupDeposit, and then calls InitializeFields.

4. cmdPrint_Click prints out a complete history of all transactions, as shown in
Figure 7-6.

5. cmdQuit_Click ends the program.

Dim fileName As String ‘Name of data file
Dim nameOnChk As String ‘Name to appear on checks
Dim lastCkNum As Integer ‘Number of last check written
Dim lastDpNum As Integer ‘Number of last deposit slip processed
Dim curBal As Single ‘Current balance in account
Dim transType As String ‘Type of transaction, check or deposit

Private Function AllDataGiven() As Boolean

232 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/messagebox.html

Dim message As String
‘If one of the four required pieces of information
‘is missing, assign its name to message
message = “”
If txtDate.Text = “” Then

message = “Date”
txtDate.SetFocus

ElseIf txtToFrom.Text = “” Then
If transType = “Check” Then

message = “Pay To”
Else

message = “Source”
End If
txtToFrom.SetFocus

ElseIf txtAmount.Text = “” Then
message = “Amount”
txtAmount.SetFocus

ElseIf txtNum.Text = “” Then
If transType = “Check” Then

message = “Check Number”
Else

message = “Deposit Number”
End If
txtNum.SetFocus

End If
If message = “” Then

‘All required data fields have been filled; recording can proceed
AllDataGiven = True

Else
‘Advise user of required data that are missing
MsgBox “The ‘” & message & “ ‘field must be filled”, , “Error”
AllDataGiven = False

End If
End Function

Private Sub cmdMode_Click()
‘Toggle from Check to/from Deposit Slip
If transType = “Check” Then

Call SetupDeposit
Else ‘transType = “Deposit”

Call SetupCheck
End If
Call InitializeFields
txtToFrom.SetFocus

End Sub

Private Sub cmdPrint_Click()
Dim temp As String, lineNo As Integer
Dim nameOnChk As String, balance As Single, ck As Integer, dp As Integer
Dim toFrom As String, amount As String, memo As String, theDate As String
‘Print out a detailed list of all transactions.
temp = frmCheckbook.Caption ‘Save the current form caption
frmCheckbook.Caption = “Printing...” ‘Set form caption to indicate printing
lineNo = 1 ‘Line number being printed
Open fileName For Input As #1 ‘Open the file
Input #1, nameOnChk, balance, ck, dp ‘Read in the file header

A C a s e S t u d y : R e c o r d i n g C h e c k s a n d D e p o s i t s 233

‘Print the details of the individual transactions.
Do Until EOF(1)

If lineNo >= 57 Then
‘57 or more lines have been printed; start a new page
Printer.NewPage
lineNo = 1

End If
If lineNo = 1 Then

‘Print the report header
Printer.Print
Printer.Print “Name: ”; nameOnChk; Tab(65); FormatDateTime(Now,
vbLongDate)
Printer.Print
Printer.Print , “Starting balance: ”; FormatCurrency(balance)
Printer.Print
Printer.Print “Date”, “Transaction”; Tab(50); “Amount”;
Printer.Print Tab(65); “Balance”
Printer.Print “____”, “___________”; Tab(50); “______”;
Printer.Print Tab(65); “_______”
Printer.Print
Printer.Print
lineNo = 10

End If
Input #1, transType, toFrom, balance, ck, dp, amount, memo, theDate
If transType = “Check” Then

Printer.Print theDate, “Check #: ”; ck; Tab(50); amount;
Printer.Print Tab(65); FormatCurrency(balance)
Printer.Print , “Paid to: ”; toFrom

Else ‘Transaction was a deposit
Printer.Print theDate, “Deposit #: ”; dp; Tab(50); amount;
Printer.Print Tab(65); FormatCurrency(balance)
Printer.Print , “Source: ”; toFrom

End If
lineNo = lineNo + 2
‘If there was a memo, then print it.
If memo <> “” Then

Printer.Print , “Memo: ”; memo
lineNo = lineNo + 1

End If
Printer.Print
lineNo = lineNo + 1

Loop
Close #1 ‘Close the file
‘Print the ending balance
Printer.Print
Printer.Print , “Ending Balance: ”; FormatCurrency(balance)
Printer.EndDoc ‘Send the output to the Printer
frmCheckbook.Caption = temp ‘Restore the form caption
txtToFrom.SetFocus ‘Set focus for the next entry

End Sub

Private Sub cmdQuit_Click()
‘Exit the program
End

End Sub

234 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

Private Sub cmdRecord_Click()
Dim amt As String, amount As Single, itemNum As Integer
‘Check to ensure all required fields are filled
If AllDataGiven Then

amt = txtAmount.Text ‘Amount of transaction as string
amount = Val(amt) ‘Amount of transaction as number
amt = FormatCurrency(amt) itemNum = Val(txtNum.Text)
If transType = “Check” Then

curBal = curBal - amount
lastCkNum = itemNum

Else ‘transType = “Deposit”
curBal = curBal + amount
lastDpNum = itemNum

End If
lblBalance.Caption = FormatCurrency(curBal)
Open fileName For Append As #1
Write #1, transType, txtToFrom.Text, curBal, lastCkNum, lastDpNum, amt, _

txtMemo.Text, txtDate.Text
Close #1
Call InitializeFields
txtToFrom.SetFocus

End If
End Sub

Private Sub CreateDataFile()
Dim startBal As Single, ckNum As integer
‘The first time the program is run, create a data file
Open fileName For Output As #1
nameOnChk = InputBox(“Name to appear on checks:”)
startBal = Val(InputBox(“Starting balance:”))
ckNum = Val(InputBox(“Number of the first check:”))
lastCkNum = ckNum - 1 ‘Number of “last” check written
ckNum = Val(InputBox(“Number of the first deposit slip:”))
lastDpNum = ckNum - 1 ‘Number of “last” deposit slip processed
curBal = startBal ‘Set current balance
‘First record in data file records name to appear on checks
‘plus initial data for account
Write #1, nameOnChk, startBal, lastCkNum, lastDpNum
Close #1

End Sub

Private Sub Form_Load()
Dim drive As String, today As String
‘If no data file exists, create one. Otherwise, open the
‘data file and get the user’s name, last used check and
‘deposit slip numbers, and current balance.
‘In next line adjust drive as necessary drive = “A:”
‘Drive (or path) for data file
fileName = drive & “CHKBOOK.TXT” ‘Program uses one data file
If Dir(fileName) = “” Then

‘Data file does not exist, so create it and obtain initial data
Call CreateDataFile

Else
Call ReadDataFile

End If

A C a s e S t u d y : R e c o r d i n g C h e c k s a n d D e p o s i t s 235

‘Set name and balance labels
lblName.Caption = nameOnChk
lblBalance.Caption = FormatCurrency(curBal)
‘Set the date field to the current date
today = FormatDateTime(Now, vbLongDate)
txtDate.Text = Mid(today, 2 + InStr(today, “,”))
Call SetupCheck ‘Always start session with checks
Call InitializeFields

End Sub

Private Sub InitializeFields()
‘Initialize all text entry fields except date
txtToFrom.Text = “” txtAmount.Text = “”
txtMemo.Text = “”
If transType = “Check” Then

‘Make txtNum text box reflect next check number
txtNum.Text = Str(lastCkNum + 1)

Else ‘transType = “Deposit”
‘Make txtNum text box reflect next deposit slip number
txtNum.Text = Str(lastDpNum + 1)

End If
End Sub

Private Sub ReadDataFile()
Dim t As String, s As String, n As String, m As String, d As String
‘Recover name to appear on checks, current balance,
‘number of last check written, and number of last deposit slip processed
Open fileName For Input As #1
Input #1, nameOnChk, curBal, lastCkNum, lastDpNum
Do Until EOF(1)

‘Read to the end of the file to recover the current balance and the
‘last values recorded for ckNum and dpNum.
‘t, s, n, m and d are dummy variables and are not used at this point
Input #1, t, s, curBal, lastCkNum, lastDpNum, n, m, d

Loop
Close #1

End Sub

Private Sub SetupCheck()
‘Prepare form for the entry of a check
transType = “Check”
frmCheckbook.Caption = “Check”
lblToFrom.Caption = “Pay To”
cmdRecord.Caption = “&Record This Check”
cmdMode.Caption = “&Switch to Deposits”
picBox.BackColor = vbCyan ‘color of check is light turquoise blue
txtNum.BackColor = vbCyan

End Sub

Private Sub SetupDeposit()
‘Prepare form for the entry of a deposit
transType = “Deposit”
frmCheckbook.Caption = “Deposit Slip”
lblToFrom.Caption = “Source”

236 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

cmdRecord.Caption = “&Record This Deposit”

cmdMode.Caption = “&Switch to Checks”

picBox.BackColor = vbYellow ‘color of deposit slip is yellow

txtNum.BackColor = vbYellow

End Sub

SUMMARY

1. When sequential files are opened, we must specify whether they will be creat-
ed and written to, added to, or read from by use of the terms Output, Append,
or Input. The file must be closed before the operation is changed. Data are writ-
ten to the file with Write # statements and retrieved with Input # statements.
The EOF function tells if we have read to the end of the file.

2. A sequential file can be ordered by placing its data in arrays, sorting the arrays,
and then writing the ordered data into a file.

PROGRAMMING PROJECTS

1. Table 7.3 gives the leading eight soft drinks in 1997 and their percentage share
of the market. Write and execute a program to place these data into a sequen-
tial file. Then write a second program to use the file to

(a) display the eight brands and their gross sales in billions. (The entire soft
drink industry grosses about $42 billion.)

(b) calculate the total percentage market share of the leading eight soft drinks.

TABLE 7.3
Leading Soft Drinks and Percentages of 1997 Market Share

Coke Classic 20.6 Sprite 6.2
Pepsi-Cola 14.5 Dr. Pepper 5.9
Diet Coke 8.5 Diet Pepsi 5.5
Mountain Dew 6.3 7 Up 2.3

Source: Beverage Digest, 2/12/98

2. Suppose the sequential file ALE.TXT contains the information shown in Table
7.4. Write a program to use the file to produce Table 7.5 in which the baseball
teams are in descending order by the percentage of games won. Note: A batting
average can be displayed in standard form with Format-Number(ave, 3,
vbFalse).

TABLE 7.4
American League East Games Won and Lost in 1998

Team Won Lost

Baltimore 79 83
Boston 92 70
New York 114 48
Tampa Bay 63 99
Toronto 88 74

P r o g r a m m i n g P r o j e c t s 237

http://www.pearsoncustom.com/link/visualbasic/sequentialfile.html
http://www.pearsoncustom.com/link/visualbasic/errortrapping.html
http://www.pearsoncustom.com/link/visualbasic/eoffunction.html

TABLE 7.5
Final 1998 American League East Standings

American League East
W L Pct

New York 114 48 .704
Boston 92 70 .568
Toronto 88 74 .543
Baltimore 79 83 .488
Tampa Bay 63 99 .389

3. Write a rudimentary word processing program. The program should do the fol-
lowing:

(a) Use InputBox to request the name of the sequential file to hold the docu-
ment being created.

(b) Set the label for a text box to “Enter Line 1” and allow the user to enter the
first line of the document into a text box.

(c) When the Enter key is pressed or a “Record Line” command button is
clicked, determine if the line is acceptable. Blank lines are acceptable input,
but lines exceeding 60 characters in length should not be accepted. Advise
the user of the problem with a message box, and then set the focus back to
the text box so that the user can edit the line to an acceptable length.

(d) When an acceptable line is entered, write this line to the file and display it
in a picture box.

(e) Change the prompt to “Enter Line 2”, clear the text box, allow the user to
enter the second line of the document into the text box, and carry out (c) for
this line using the same picture box. (Determine in advance how many lines
the picture box can display and only clear the picture box when the lines
already displayed do not leave room for a new line.)

(f) Continue as in (d) with appropriate labels for subsequent lines until the user
clicks on a “Finished” command button.

(g) Clear the picture box and display the number of lines written and the name
of the data file created.

4. Write a program that counts the number of times a word occurs in the sequen-
tial file created in Programming Project 3. The file name and word should be
read from text boxes. The search should not be sensitive to the case of the let-
ters. For instance, opening a file that contained the first three sentences of the
directions to this problem and searching for “the” would produce the output:
“the” occurs six times.

5. Create and Maintain Telephone Directories. Write a program to create and
maintain telephone directories. Each directory will be a separate sequential file.
The following command buttons should be available:

(a) Select a directory to access. A list of directories that have been created
should be stored in a separate sequential file. When a request is made to
open a directory, the list of available directories should be displayed as part
of an InputBox prompt requesting the name of the directory to be accessed.
If the user responds with a directory name not listed, the desire to create a
new directory should be confirmed, and then the new directory created and
added to the list of existing directories.

(b) Add name and phone number (as given in the text boxes) to the end of the
current directory.

(c) Delete name (as given in the text box) from the current directory.

(d) Sort the current directory into name order.

238 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/sequentialfile.html
http://www.pearsoncustom.com/link/visualbasic/messagebox.html

(e) Print out the names and phone numbers contained in the current directory.

(f) Terminate the program.

6. Table 7.6 contains the statistics for a stock portfolio. (The current prices are
given for October 1, 1998.)

TABLE 7.6
Stock Portfolio

Number Date Purchase Current
Stock of Shares Purchased Price/Share Price/Share

Amgen 200 8/19/97 50.750 75.625
Delta Airlines 100 12/3/97 111.750 97.250
Novell 500 8/27/97 10.375 12.250
PPG 100 12/18/97 56.750 54.500
Timken 300 3/13/98 34.625 15.125

(a) Compose a program to create the sequential file STOCKS.TXT containing
the information in Table 7.6.

(b) Compose a program to perform the following tasks. A possible form design
is shown in Figure 7-9.

(1) Display the information in the file STOCKS.TXT as in Table 7.6 when
the user clicks on a “Display Stocks” command button.

(2) Add an additional stock onto the end of the file STOCKS.TXT when the
user clicks on an “Add Stock” command button. The data for the new
stock should be read from appropriately labeled text boxes.

(3) Update the Current Price/Share of a stock in the file STOCKS.TXT
when the user clicks on an “Update Price” command button. The name
of the stock to be updated and the new price should be read from the
appropriate text boxes. The file STOCKS.TXT should then be copied to
a temp file until the specified stock is found. The update record for this
stock should then be written to the temp file, followed by all remaining
records in STOCKS.TXT. Finally, the original STOCKS.TXT file
should be erased and the temp file renamed to STOCKS.TXT.

(4) Process the data in the file STOCKS.TXT and produce the display
shown in Figure 7-10 when a “Show Profit/Loss” command button is
clicked.

(5) Quit.

FIGURE 7-9 Possible Form Design for Programming Project 6

P r o g r a m m i n g P r o j e c t s 239

http://www.pearsoncustom.com/link/visualbasic/sequentialfile.html

FIGURE 7-10 Output of Project 6

7. A department store has a file containing all sales transacted for a year. Each
record contains a customer’s name, zip code, and amount of the sale. The file is
ordered first by zip code and then by name. Write a program to display the total
sales for each customer, the total sales for each zip code, and the total sales for
the store. For instance, if the first six records of the file are

“Adams, John”, 10023, 34.50
“Adams, John”, 10023, 60.00
“Jones, Bob”, 10023, 62.45
“Green, Mary”, 12345, 54.00
“Howard, Sue”, 12345, 79.25
“Smith, George”, 20001, 25.10

then the output in the picture box will begin as shown in Figure 7-11.

FIGURE 7-11 Sample Output for Programming Project 7

8. Savings Account. NAMES.TXT is a sequential file containing the name,
account number, and beginning-of-month balance for each depositor.
TRANS.TXT is a sequential file containing all the transactions (deposits and
withdrawals) for the month. Use TRANS.TXT to upgrade NAMES.TXT. For
each customer, print a statement similar to the one received from banks that
shows all transactions and the end-of-month balance. Also, record all over-
drawn accounts in a file. (As an optional embellishment, deduct a penalty if the
balance fell below a certain level any time during the month. The penalty could
include a fixed fee of $10 plus a charge of $1 for each check and deposit.) Hint:
Assume no more than 500 transactions have occurred.

9. A fuel economy study was carried out for five models of cars. Each car was dri-
ven for 100 miles of city driving, and then the model of the car and the number
of gallons used were placed in the sequential file MILEAGE.TXT with the
statement

Write #1, modelName, gallons

Table 7.7 shows the first entries of the file. Write a program to display the mod-
els and their average miles per gallon in decreasing order with respect to
mileage. The program should utilize three parallel arrays of range 1 to 5. The
first array should record the name of each model of car. This array is initially
empty; each car model name is added when first encountered in reading the
file. The second array should record the number of test vehicles for each model.
The third array should record the total number of gallons used by that model.

240 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/sequentialfile.html

Note: The first array must be searched each time a record is read to determine
the appropriate index to use with the other two arrays.

TABLE 7.7
Gallons of Gasoline Used in 100 Miles of City Driving

Model Gal Model Gal Model Gal

LeBaron 4.9 Cutlass 4.5 Cutlass 4.6
Escort 4.1 Escort 3.8 LeBaron 5.1
Beretta 4.3 Escort 3.9 Escort 3.8
Skylark 4.5 Skylark 4.6 Cutlass 4.4

P r o g r a m m i n g P r o j e c t s 241

S E C T I O N

RANDOM-ACCESS FILES

88

245

8.1 USER-DEFINED DATA TYPES

Records provide a convenient way of packaging as a single unit several related variables of dif-
ferent types. Before we can explore this powerful variable type, we must first explore a new
category of variable, the fixed-length string.

■ FIXED-LENGTH STRINGS

Fixed-length string variables are named following the same rules as other variable types.
They are declared by statements of the form

Dim var As String * n

where n is a positive integer. After such a declaration, the value of var will always be a string
of length n. Suppose info is an ordinary string and a statement of the form

var = info

is executed. If info has more than n characters, then only the first n characters will be assigned
to var. If info has less than n characters, then spaces will be added to the end of the string to
guarantee that var has length n.

EXAMPLE 1

The following program uses fixed-length strings. In the output, San Francisco is truncated to a string of
length 9 and Detroit is padded on the right with two blank spaces.

Private Sub cmdGo_Click()
Dim city As String * 9
‘Illustrate fixed-length strings
picOutput.Cls
picOutput.Print “123456789”
city = ”San Francisco”
picOutput.Print city
city = “Detroit”
picOutput.Print city; “MI”
picOutput.Print Len(city)

End Sub

[Set picOutput’s Font property to Courier. Run, and click the command button.]

http://www.pearsoncustom.com/link/visualbasic/strings.html

Care must be taken when comparing an ordinary (variable-length) string with a fixed-
length string or comparing two fixed-length strings of different lengths.

EXAMPLE 2

In the following program, the strings assigned to the variables town, city, and municipality have lengths
7, 9, and 12, respectively, and therefore are all different.

Private Sub cmdGo_Click()
Dim town As String * 7
Dim city As String * 9
Dim municipality As String * 12
‘Illustrate fixed-length strings
town = “Chicago”
city = “Chicago”
municipality = “Chicago”
picOutput.Cls
If (city = town) Or (city = municipality) Then

picOutput.Print “same”
Else

picOutput.Print “different”
End If
picOutput.Print “123456789012345”
picOutput.Print city & ”***”
picOutput.Print town & “***”
picOutput.Print municipality & “***”

End Sub

[Set picOutput’s Font property to Courier. Run, and click the command button.]

There are times when we want to consider the values assigned to variables of different
types as being the same, such as city and town in Example 2. In this situation, the function
RTrim comes to the rescue. If info is an ordinary string or a fixed-length string, then the
value of

RTrim(info)
is the (variable-length) string consisting of info with all right-hand spaces removed. For

instance, the value of RTrim(“hello”) is the string “hello”. In Example 2, if the If block is
changed to

If (RTrim(city) = town) And (RTrim(city) = RTrim(municipality)) Then
picOutput.Print “same”

Else
picOutput.Print “different”

End If

then the first line of the output will be “same”.

246 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html

■ RECORDS

In this text, we have worked with numbers, strings, arrays, and now fixed-length strings. Strings
and numbers are built-in data types that can be used without being declared, although we have
always elected to declare numeric and string variables using Dim statements. On the other
hand, arrays and fixed-length strings are user-defined data types that must be declared with a
Dim statement before being used. A record is a user-defined data type that groups related vari-
ables of different types.

Figure 8-1 shows an index card that can be used to hold data about colleges. The three
pieces of data—name, state, and year founded—are called fields. Each field functions like a
variable in which information can be stored and retrieved. The length of a field is the num-
ber of spaces allocated to it. In the case of the index card, we see that there are three fields
having lengths 30, 2, and 4, respectively. The layout of the index card can be identified by a
name, such as collegeData, called a record type.

Name: State: Year Founded:

FIGURE 8-1 An Index Card Having Three Fields

For programming purposes, the layout of the record is declared by a block of statements sim-
ilar to

Type collegeData
nom As String * 30
state As String * 2
yearFounded As Integer

End Type

Each character of a string is stored in a piece of memory known as a byte. Therefore, a
field of type String * n requires n bytes of memory. However, numbers (that is, the integer
or single-precision numbers we use in this text) are stored in a different manner than strings.
Integer numbers always use two bytes of memory, whereas single-precision numbers always
use four bytes of memory.

Visual Basic requires that Type declarations, such as the preceding record structure col-
legeData, be placed in either (General) or in a special file, referred to as a BAS Module.
When placed in the (General) portion of a form, the word “Type” must be preceded by “Pri-
vate” and the record type is only valid for that form. When placed in a BAS module, the word
“Type” may be preceded by either “Private” (valid for the current BAS module) or “Public”
(valid throughout the entire program). In this text, we will primarily place our declarations
inside BAS Modules and make them Public.

To create a BAS Module for the program currently being designed, press Alt/P/M and
double-click on Module. A window like the one in Figure 8-2 will appear. This window is
where our Type declarations will be entered. To switch between this BAS Module window
and the form(s), press Ctrl+R to activate the Project Explorer and double-click on a form or

U s e r - D e f i n e d D a t a T y p e s 247

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/stringvariable.html
http://www.pearsoncustom.com/link/visualbasic/byte.html

module. (When the program is saved, the information in the BAS Module will be saved in a
separate file with the extension bas.) You can also switch between the BAS Module and form
windows by clicking on any portion of the desired window that is sticking out from behind
the currently active window.

FIGURE 8-2 BAS Module Window for Type Declarations

A record variable capable of holding the data for a specific college is declared in the form code
by a statement such as

Dim college As collegeData

Each field is accessed by giving the name of the record variable and the field, separated by a
period. For instance, the three fields of the record variable college are accessed as college.nom,
college.state, and college.yearFounded. Figure 8-3 shows a representation of the way the record
variable is organized.

FIGURE 8-3 Record Variable with Values Assigned to the Fields

In general, a record type is created in a BAS Module by a Type block of the form

Public Type recordType
fieldName1 As fieldType1
fieldname2 As fieldType2
.
.
.

End Type

where recordType is the name of the user-defined data type; fieldName1, fieldName2, . . . are
the names of the fields of the record variable; and fieldType1, fieldType2, . . . are the corre-
sponding field types, either String * n, (for some n), Integer, Single, or Boolean in this text.
In the form code, a record variable recordVar is declared to be of the user-defined type by a
statement of the form

Dim recordVar As recordType

248 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

EXAMPLE 3

The following program processes records.

‘In BAS Module
Public Type collegeData

nom As String * 30
state As String * 2
yearFounded As Integer

End Type

’In Form code
Private Sub cmdProcess_Click()

Dim century As Integer, when As String
‘Demonstrate use of records
picResult.Cls
Dim college As collegeData
college.nom = txtCollege.Text
college.state = txtState.Text
college.yearFounded = Val(txtYear.Text)
century = 1 + Int(college.yearFounded / 100)
picResult.Print RTrim(college.nom); “ was founded in the” & Str(century);
picResult.Print “th century in ”; college.state
Dim university As collegeData
university.nom = “M.I.T.”
university.state = “MA”
university.yearFounded = 1878
If college.yearFounded < university.yearFounded Then

when = “before ”
Else
when = “after ”

End If
picResult.Print RTrim(college.nom); “ was founded ”;
picResult.Print when; RTrim(university.nom)

End Sub

[Run, type the following data into text boxes, and press the command button.]

Dim statements can be used in procedures to declare a local record variable. When
records are passed to and from procedures, the parameter in the Private Sub or Function
statement must have the form

parameter As recordType

U s e r - D e f i n e d D a t a T y p e s 249

http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html

EXAMPLE 4

The following program uses Sub procedures to perform the same tasks as the program in Example 3.

‘In BAS Module
Public Type collegeData

nom As String * 30
state As String * 2
yearFounded As Integer

End Type

‘In Form code
Private Sub cmdProcess_Click()

‘Demonstrate use of records
picBox.Cls
Dim college As collegeData
Call GetDat(college)
Call DisplayStatement(college)

End Sub

Private Sub DisplayStatement(school As collegeData)
Dim century As Integer, when As String
century = 1 + Int(school.yearFounded / 100)
picBox.Print RTrim(school.nom); “ was founded in the” & Str(century);
picBox.Print “th century in ”; school.state
Dim university As collegeData
university.nom = “M.I.T.”
university.state = “MA”
university.yearFounded = 1878
If school.yearFounded < university.yearFounded Then

when = “before ”
Else
when = “after ”

End If
picBox.Print RTrim(school.nom); “ was founded ”;
picBox.Print when; RTrim(university.nom)

End Sub

Private Sub GetDat(school As collegeData)
school.nom = txtCollege.Text
school.state = txtState.Text
school.yearFounded = Val(txtYear.Text)

End Sub

COMMENTS

1. Record variables are similar to arrays in that they both store and access data items
using a common name. However, the elements in an array must be of the same
data type, whereas the fields in a record variable can be a mixture of different data
types. Also, the different elements of an array are identified by their indices,
whereas the fields of a record are identified by a name following a period.

2. If the record variables recVar1 and recVar2 have the same type, then all the field
values of recVar2 can be assigned simultaneously to recVar1 by the statement

recVar1 = recVar2

250 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

3. Statements of the form

picBox.Print recVar

are invalid, where recVar is a record variable. Each field of a record must appear
separately in a picBox.Print statement. Also, comparisons involving records
using the relational operators <, >, =, <>, < =, and > = are valid only with the
record fields, and not with the records themselves.

4. In addition to being declared as numeric, Boolean, or fixed-length string data
types, the elements of a user-defined variable type can also be declared as other
types of records. However, we do not use such structures in this text.

5. An array of fixed-length strings is declared by a statement of the form

Dim arrayName (a To b) As String * n

6. An array of records would be declared with a statement such as

Dim colleges(1 to 8) As collegeData

and information would be accessed with statements such as

picBox.Print colleges(1).nom

7. When fixed-length strings are passed to and from procedures, the correspond-
ing parameter in the Sub or Function statement must be an ordinary (variable-
length) string.

8. Most data types can be used as field types appearing in a Type block, including
(variable-length) strings. However, the String data type is not allowed in Type
blocks that will be used with random-access files.

8.2 RANDOM-ACCESS FILES

A random-access file is like an array of records stored on a disk. The records are numbered
1, 2, 3, and so on, and can be referred to by their numbers. Therefore, a random-access file re-
sembles a box of index cards, each having a numbered tab. Any card can be selected from the
box without first reading every index card preceding it; similarly, any record of a random-ac-
cess file can be read without having to read every record preceding it.

One statement suffices to open a random-access file for all purposes: creating, append-
ing, writing, and reading. Suppose a record type has been defined with a Type block and a
record variable, called recVar, has been declared with a Dim statement. Then after the state-
ment

Open “filespec” For Random As #n Len = Len(recVar)

is executed, records may be written, read, added, and changed. The file is referred to by
the number n. Each record will have as many characters as allotted to each value of recVar.

Suppose appropriate Type, Dim, and Open statements have been executed. The two-step
procedure for entering a record into the file is as follows.

1. Assign a value to each field of a record variable.

2. Place the data into record r of file #n with the statement

Put #n, r, recVar

where recVar is the record variable from Step 1.

R a n d o m - A c c e s s F i l e s 251

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/relationaloperator.html
http://www.pearsoncustom.com/link/visualbasic/randomaccessfile.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html

EXAMPLE 1

The following program creates and writes records to the random-access file COLLEGES.TXT.

`In BAS Module
Public Type collegeData

nom As String * 30 ‘Name of college
state As String * 2 ‘State where college is located
yrFounded As Integer ‘Year college was founded

End Type

’In Form code
Dim recordNum As Integer

Private Sub cmdAddCollege_Click()
‘Write a record into the file COLLEGES.TXT
Dim college As collegeData
college.nom = txtCollege.Text
college.state = txtState.Text
college.yrFounded = Val(txtYear.Text)
recordNum = recordNum + 1
Put #1, recordNum, college
txtCollege.Text = “”
txtState.Text = “”
txtYear.Text = “”
txtCollege.SetFocus

End Sub

Private Sub cmdDone_Click()
Close #1
End

End Sub

Private Sub Form_Load()
‘Create COLLEGES.TXT

Dim college As collegeData
Open “COLLEGES.TXT” For Random As #1 Len = Len(college)
recordNum = 0

End Sub

[Run, and type into the text boxes the data shown in the following first window. Click the “Add College
to File” command button. Record number 1 is added to COLLEGES.TXT and the text boxes are cleared.
Proceed to record the data shown for the other two colleges and then click the “Done” command button.]

252 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

The two-step procedure for reading data from a record is as follows:

1. Execute the statement

Get #n, r, recVar

to assign record r of file #n to the record variable recVar.

2. Use the field variables of the record variable to either display values with
picBox.Print or to transfer values to other variables with assignment statements.

EXAMPLE 2

The following program displays the entire contents of the random-access file COLLEGES.TXT.

‘In BAS Module
Public Type collegeData

nom As String * 30 ‘Name of college
state As String * 2 ‘State where college is located
yrFounded As Integer ‘Year college was founded

End Type

‘In Form code
Private Sub cmdDisplay_Click()

Call DisplayFile
End Sub

Private Sub DisplayFile()
Dim recordNum As Integer
‘Access the random-access file COLLEGES.TXT
Dim college As collegeData
Open “COLLEGES.TXT” For Random As #1 Len = Len(college)
picOutput.Cls
picOutput.Print “College”; Tab(30); “State”, Tab(45); “Year founded”
For recordNum = 1 To 3
Get #1, recordNum, college
picOutput.Print college.nom; Tab(30); college.state; _

Tab(45); college.yrFounded
Next recordNum
Close #1

End Sub

[Run, and click the command button.]

The total number of characters in the file with reference number n is given by the value
of the function

LOF(n)

The number of the last record in the file can be calculated by dividing this value by the record
length. The LOF function, rather than the EOF function, should be used to determine when the
end of the file has been reached. For instance, in Example 2, the For statement in the Sub pro-
cedure DisplayFile can be written as

R a n d o m - A c c e s s F i l e s 253

http://www.pearsoncustom.com/link/visualbasic/errortrapping.html
http://www.pearsoncustom.com/link/visualbasic/eoffunction.html

For recordNum = 1 To LOF(1) / Len(college)

Also, the pair of statements

lastRecord = LOF(1) / Len(college)
Put #1, lastRecord + 1, college

can be used to add a record to the end of the file.

COMMENTS

1. Random-access files are also known as direct-access or relative files. Because
each record has the same number of characters, the computer can calculate
where to find a specified record and, therefore, does not have to search for it
sequentially.

2. Unlike sequential files, random-access files needn’t be closed between placing
information into them and reading from them.

3. Random-access files do not have to be filled in order. For instance, a file can
be opened and the first Put statement can be Put #n, 9, recVar. In this case,
space is allocated for the preceding eight records.

4. If the record number r is omitted from a Put or Get statement, then the record
number used will be the one following the number most recently used in a Put
or Get statement. For instance, if the line

Put #1, , college

is added to the program in Example 1 after the existing Put statement, then the
information on Virginia Tech will occupy records 3 and 4 of the file COL-
LEGES.TXT.

5. Users often enter records into a random-access file without keeping track of the
record numbers. If file #n is open, then the value of the function

Loc(n)

is the number of the record most recently written to or read from file n with a
Put or Get statement.

6. Each record in a random-access file has the same length. This length can be any
number from 1 to 32767.

7. When the statement Open “COLLEGES.TXT” For Random As #1 Len =
Len(college) is typed, the words “For Random” can be omitted. The smart edi-
tor will insert them automatically.

8. The decision of whether to store data in a sequential file or in a random-access
file depends on how the data are to be processed. If processing requires a pass
through all the data in the file, then sequential files are probably desirable. If
processing involves seeking out one item of data, however, random-access files
are the better choice.

254 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/sequentialfile.html
http://www.pearsoncustom.com/link/visualbasic/randomaccessfile.html

SUMMARY

1. A fixed-length string is a variable declared with a statement of the form Dim
var As String * n. The value of var is always a string of n characters.

2. A record is a composite user-defined data type with a fixed number of fields
each of which can be of most data types. Type statements [in this text appear-
ing in the (Declarations) section of a BAS Module] define record types and
Dim statements are used to declare a variable to be of that type.

3. After a record type has been specified, the associated random-access file is an
ordered collection of record values numbered 1, 2, 3, and so on. Record values
are placed into the file with Put statements and read from the file with Get
statements. At any time, the value of LOF(n) / Len(recordVar) is the number of
the highest record value in the file and the value of Loc is the number of the
record value most recently accessed by a Put or Get statement.

PROGRAMMING PROJECTS

1. Balance a Checkbook. Write an interactive program to request information
(payee, check number, amount, and whether or not the check has cleared) for
each check written during a month and store this information in a random file.
The program should then request the balance at the beginning of the month and
display the current balance and the payee and amount for every check still out-
standing.

2. A teacher maintains a random-access file containing the following information
for each student: name, social security number, grades on each of two hourly
exams, and the final exam grade. Assume the random-access file
GRADES.TXT has been created with string fields of lengths 25 and 11 and
three numeric fields, and all the names and social security numbers have been
entered. The numeric fields have been initialized with zeros. Write a program
with the five command buttons “Display First Student,” “Record Grade(s) &
Display Next Student,” “Locate Student,” “Print Grade List,” and “Done” to
allow the teacher to do the following.

(a) Enter all the grades for a specific exam.

(b) Locate and display the record for a specific student so that one or more
grades may be changed.

(c) Print a list of final grades that can be posted. The list should show the last
four digits of the social security number, the grade on the final exam, and
the semester average of each student. The semester average is determined
by the formula (exam1 + exam2 + 2 * finalExam) / 4.

S u m m a r y 255

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/randomaccessfile.html

S E C T I O N

THE GRAPHICAL
DISPLAY OF DATA

99

259

9.1 INTRODUCTION TO GRAPHICS

Visual Basic has impressive graphics capabilities. Figure 9-1 shows four types of charts that
can be displayed in a picture box and printed by the printer.

FIGURE 9-1 Four Types of Charts

The construction of each of these charts involves three basic steps: (1) define a coordi-
nate system; (2) use graphics methods to draw the appropriate lines, rectangles, and circles;

and (3) place text at appropriate points on the chart. The basic tools for accomplishing each
of these steps follow.

■ SPECIFYING A COORDINATE SYSTEM

Suppose we have a piece of paper, a pencil, and a ruler and we want to graph a line extending
from (2, 40) to (5, 60). We would most likely use the following three-step procedure:

1. Use the ruler to draw an x axis and a y axis.
Focus on the first quadrant because both
points are in that quadrant.

2. Select scales for the two axes. For instance,
we might decide that the numbers on the x axis
range from –1 to 6 and that the numbers on the
y axis range from –10 to 80.

3. Plot the two points and use the ruler to draw
the straight-line segment joining them.

EXAMPLE 1

(a) Draw a coordinate system with the numbers on the x axis ranging from –2 to 10, and the num-
bers on the y axis ranging from –3 to 18.

(b) Draw the straight line from (1, 15) to (8, 6).

(c) Draw the straight line from (–2, 0) to (10, 0).

SOLUTION:

(a) (b)

260 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

(c) The point (–2, 0) is the left-hand end point of the x axis
and the point (10, 0) is the right-hand end point; there-
fore, the line joining them is just the portion of the x axis
we have already drawn.

We draw these graphs on the screen with the same three steps we use with paper, pencil,
and ruler. The only difference is that we first do Step 2 and then Steps 1 and 3. The Visual
Basic method Scale is used to specify the range of values for the axes and the method Line
serves as the ruler.

The statement

picBox.Scale (a, d)-(b, c)

specifies that numbers on the x axis range from a to b and that numbers on the y axis range
from c to d. See Figure 9-2. The ordered pair (a, d) gives the coordinates of the top left cor-
ner of the picture box, and the ordered pair (b, c) gives the coordinates of the bottom right cor-
ner of the picture box.

FIGURE 9-2 Result of Scale Method FIGURE 9-3 Result of the Line Method

■ GRAPHICS METHODS FOR DRAWING LINES, POINTS, AND CIRCLES

After an appropriate coordinate system has been specified by a picBox.Scale statement, graph-
ics can be drawn in the picture box using the Line and Circle methods. The statement

picBox.Line (x1, y1)-(x2, y2)

draws the line segment from the point with coordinates (x1, y1) to the point with coordinates
(x2, y2) in the picture box (see Figure 9-3). In particular, the statement picBox.Line (a, 0)–(b,
0) draws the x axis and the statement picBox. Line (0, c)–(0, d) draws the y axis.

The following event procedure produces the graph of Example 1, part (b):

Private Sub cmdDraw_Click()

picOutput.Cls picOutput.Scale (-2, 18)-(10, -3) ‘Specify coordinate system

picOutput.Line (-2, 0)-(10, 0) ‘Draw x-axis

picOutput.Line (0, -3)-(0, 18) ‘Draw y-axis

picOutput.Line (1, 15)-(8, 6) ‘Draw the straight line

End Sub

I n t r o d u c t i o n t o G r a p h i c s 261

EXAMPLE 2

Consider Figure 9.4.

(a) Give the statement that specifies the range for the numbers on the axes.

(b) Give the statements that will draw the axes.

(c) Give the statement that will draw the line.

FIGURE 9-4 Graph for Example 2

SOLUTION:

(a) picOutput.Scale (-1, 120)-(5, -10)

(b) x axis: picOutput.Line (-1, 0)-(5, 0)

y axis: picOutput.Line (0, -10)-(0, 120)

(c) picOutput.Line (1, 100)-(4, 50)

There are two other graphics methods that are just as useful as the Line method. The
statement

picOutput.PSet (x, y)

plots the point with coordinates (x, y). The statement

picOutput.Circle (x, y), r

draws the circle with center (x, y) and radius r.

EXAMPLE 3

Write an event procedure to plot the point (7, 6) in a picture box and draw a circle of radius 3 about the
point.

SOLUTION:
The rightmost point to be drawn will have x coordinate 10; therefore the numbers on the x axis must range
beyond 10. In the following event procedure, we allow the numbers to range from –2 to 12. See
Figure 9-5.

Private Sub cmdDraw_Click()
‘Draw circle with center (7, 6) and radius 3
picOutput.Cls ‘Clear picture box

262 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

picOutput.Scale (-2, 12)-(12, -2) ‘Specify coordinate system
picOutput.Line (-2, 0)-(12, 0) ‘Draw x-axis
picOutput.Line (0, -2)-(0, 12) ‘Draw y-axis
picOutput.PSet (7, 6) ‘Draw center of circle
picOutput.Circle (7, 6), 3 ‘Draw the circle

End Sub

[Run, and then click the command button. The contents of the picture box is shown in
Figure 9-5.]

FIGURE 9-5 Graph for Example 3

The numbers appearing in the Scale, Line, PSet, and Circle methods can be replaced by
variables or expressions. The following example demonstrates this feature.

EXAMPLE 4

Write an event procedure to draw a graph of the square root function.

SOLUTION:
We will graph the function for values of x from 0 to 100. See Figure 9.6.

Private Sub cmdDraw_Click()
Dim x As Single
‘Graph the Square Root Function
picOutput.Cls
picOutput.Scale (-20, 12)-(120, -2) ‘Specify coordinate system
picOutput.Line (-5, 0)-(100, 0) ‘Draw x-axis
picOutput.Line (0, -1)-(0, 10) ‘Draw y-axis
For x = 0 To 100 Step 0.2 ‘Plot about 500 points

picOutput.PSet (x, Sqr(x)) ‘Plot point on graph
Next x

End Sub

[Run, and then click the command button. The resulting picture box is shown in Figure 9-6.]

FIGURE 9-6 Graph of the Square Root Function

■ POSITIONING TEXT

There are times when text is placed on the screen in conjunction with graphics. This would be
the case if a graph were to be titled or a tick mark needed a label. The ability to position such

I n t r o d u c t i o n t o G r a p h i c s 263

text appropriately in the picture box is essential to good-looking graphs. A picture box has
two properties, CurrentX and CurrentY, and two methods, TextHeight and TextWidth, that
allow us to precisely position text alongside graphics.

The properties CurrentX and CurrentY record the precise horizontal and vertical loca-
tion at which the next character of text will be printed. By assigning appropriate values to
these properties before executing a Print method, text can be positioned very precisely in the
picture box. In the following event procedure, the coordinates of the right end of the tick
mark are (x, y) = (.3, 3). As a first attempt at labeling a tick mark on the y axis, the CurrentX
and CurrentY properties are set to these coordinates. The results are shown in Figure 9-7(a).

Private Sub cmdDraw_Click()
picOutput.Cls picOutput.Scale (-4, 4)-(4, -4)
picOutput.Line (-4, 0)-(4, 0) ‘Draw x-axis
picOutput.Line (0, -4)-(0, 4) ‘Draw y-axis
picOutput.Line (-.3, 3)-(.3, 3) ‘Draw tick mark
picOutput.CurrentX = .3 ‘Right end of tick mark
picOutput.CurrentY = 3 ‘Same vertical position as tick mark
picOutput.Print “y=3” ‘Label for tick mark

End Sub

FIGURE 9-7 Placing Labels: (a) First Attempt and (b) Second Attempt

Note that the top of the text is even with the tick mark. This reflects the fact that the
value of the CurrentY property used by Visual Basic is the location for the top of the char-
acter cursor. Ideally, the text should be moved up so that the tick mark aligns with the mid-
dle of the text. To do this, the value of the CurrentY property needs to be increased by
one-half the height of the text. The following statement assigns a corrected value to the Cur-
rentY property by using the TextHeight method to obtain the height of the text being used as
the tick mark label. (Since c < d in the scale method, TextHeight returns (–1) � [height of
text].)

picOutput.CurrentY = 3 - picOutput.TextHeight(“y=3”) / 2

The result of using this corrected value for CurrentY is shown in Figure 9-7(b).
When the TextHeight method is used, all characters have the same height. Thus the

height of a string can be obtained by asking for the height of any single character. The fol-
lowing procedure uses the TextHeight method with a space character to center the text cur-
sor at the requested graphic point.

Private Sub PositionText(x As Single, y As Single)
‘Center text cursor at the point (x, y)
picOutput.CurrentX = x
picOutput.CurrentY = y – picOutput.TextHeight(“ ”) / 2

End Sub

Another useful picture box method is TextWidth. Whereas the Len function returns the
number of characters in a string, the TextWidth method considers the varying widths of char-
acters and returns the physical width of the entire string in the units of the current scale for

264 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html

the picture box. The TextWidth method is essential when centering text, as illustrated in the
following example.

EXAMPLE 5

Write an event procedure to display the phrase “Th-that’s all Folks!” centered and double underlined in a
picture box with x values ranging from 0 to 6 and y values ranging from 0 to 4.

SOLUTION:
Centering text requires knowing the coordinates of the center of the picture box, which for the given
ranges will be the point (3, 2). Next, we need the width and height of the text being centered. These val-
ues are available using the TextWidth and TextHeight methods. The text cursor needs to start with a Cur-
rentX that is half the text’s width to the left of center and a CurrentY that is half the text’s height above
center. The first underline can be placed at half the text’s height below center. The additional distance
down to the second underline should be in proportion to the height of the text. We decided after some
experimenting to use a proportion of 1/6th.

Private Sub cmdDraw_Click()
‘Center and double underline a phrase
Dim xCenter As Single, yCenter As Single, phrase as String
Dim w As Single, h As Single, leftEdge As Single, rightEdge As Single
Dim ul1Pos As Single, ul2Pos As Single
picOutput.Scale (0, 4)-(6, 0)
picOutput.Cls
xCenter = 3
yCenter = 2
phrase = “Th-that’s all Folks!”
w = picOutput.TextWidth(phrase)
h = picOutput.TextHeight(“ ”)
picOutput.CurrentX = xCenter - w / 2
picOutput.CurrentY = yCenter - h / 2
picOutput.Print phrase
leftEdge = xCenter - w / 2
rightEdge = xCenter + w / 2
ul1Pos = yCenter + h / 2
ul2Pos = ul1Pos + h / 6
picOutput.Line (leftEdge, ul1Pos)-(rightEdge, ul1Pos)
picOutput.Line (leftEdge, ul2Pos)-(rightEdge, ul2Pos)

End Sub

[Run, and then click the command button. The resulting picture box follows.]

COMMENTS

1. In Examples 1 through 4, examples that produce graphs, the range of numbers
on the axes extended from a negative number to a positive number. Actually,
any value of a, b, c, and d can be used in a Scale method. In certain cases, how-
ever, you will not be able to display one or both of the axes on the screen. (For
instance, after picOutput.Scale (1, 10)–(10, –1) has been executed, the y axis
cannot be displayed.)

I n t r o d u c t i o n t o G r a p h i c s 265

2. The following technique can be used to determine a good range of values for a
Scale method when graphs with only positive values are to be drawn.

(a) Let r be the x coordinate of the rightmost point that will be drawn by any
Line, PSet, or Circle method.

(b) Let h be the y coordinate of the highest point that will be drawn by any Line,
PSet, or Circle method.

(c) Let the numbers on the x axis range from about –[20% of r] to about r +
[20% of r]. Let the numbers on the y axis range from about –[20% of h] to
about h + [20% of h]. That is, use

picOutput.Scale (-.2 * r, 1.2 * h)-(1.2 * r, -.2 * h)

3. Usually one unit on the x axis is a different length than one unit on the y axis.
The statement picBox.Circle (x, y), r draws a circle whose radius is r
x-axis units.

4. If one or both of the points used in the Line method fall outside the picture box,
the computer only draws the portion of the line that lies in the picture box. This
behavior is referred to as line clipping and is used for the Circle method also.

5. A program can execute a picOutput.Scale statement more than once. Executing
a new picOutput.Scale statement has no effect on the text and graphics already
drawn; however, future graphics statements will use the new coordinate system.
This technique can be used to produce the same graphics figure in different
sizes and/or locations within the picture box. The output from the following
event procedure is shown in Figure 9-8.

Private Sub cmdDraw_Click()
Dim i As Integer
picOutput.Cls
For i = 0 To 3

picOutput.Scale (0, 2 ^ i)-(2 ^ i, 0)
picOutput.Line (0, 0)-(.5, 1)
picOutput.Line (.5, 1)-(.8, 0)
picOutput.Line (.8, 0)-(0, .8)
picOutput.Line (0, .8)-(1, .5)
picOutput.Line (1, .5)-(0, 0)

Next i
End Sub

FIGURE 9-8 Output from Comment 5

6. The programs in this section can be modified to produce colorful displays.

Lines, points, and circles can be drawn in color through use of the vbColor con-
stants. To use color, place “, vbColor” at the end of the corresponding graphics
statement. For instance, the statement

picBox.Line (x1, y1)-(x2, y2), vbRed

draws a red line.

266 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

9.2 LINE CHARTS

A line chart displays the change in a certain quantity in relation to another quantity (often
time). The following steps produce a line chart.

1. Look over the data to be displayed. A typical line chart displays between 3 and
20 items of data corresponding to evenly spaced units of time: years, months,
or days. The positions on the x axis will contain labels such as “Jan Feb Mar
Apr . . .” or “1996 1997 1998 1999 . . .”. These labels can be placed at the
locations 1, 2, 3, . . . on the x axis.

2. Choose a coordinate system based on the number of data items and the size of
the quantities. A convenient scale for the x axis is from –1 to one more than the
number of data items. The scale for the y axis is determined by the largest quan-
tity to be displayed.

3. Draw the line segments. It is a good idea to draw a small circle around the end
points of the line segments.

4. Draw and label tick marks on the coordinate axes. The x axis should have a tick
mark for each time period. The y axis should have at least one tick mark to indi-
cate the magnitude of the quantities displayed.

5. Title the chart, and give the source of the data.

EXAMPLE 1

Table 9.1 gives enrollment data for 2-year colleges taken from the Statistical Abstract of the United States
(the data for 2000 is a projection). Write a program to display the total enrollments for the given years in
a line chart.

TABLE 9.1
Two-Year College Enrollments (in Thousands)

Year 1960 1970 1980 1990 2000

Male 283 1375 2047 2233 2398
Female 170 945 2479 3007 3358
Total 453 2320 4526 5240 5756

SOLUTION:
Figure 9-9 shows the graph that results from executing the following program. The data in ENROLL.TXT
are taken from the first and fourth lines of Table 9.1. For example, the first line in the file is “1960”, 453.
(Explanatory remarks follow the program.)

‘In (Declarations) section of (General)
Dim numYears As Integer, maxEnroll As Single

Private Sub cmdDraw_Click()
‘Line Chart of Total Two-Year College Enrollments
numYears = 5
ReDim label(1 To numYears) As String
ReDim total(1 To numYears) As Single
Call ReadData(label(), total())
Call DrawAxes
Call DrawData(total())
Call ShowTitle
Call ShowLabels(label())

End Sub

Private Sub DrawAxes()
‘Draw axes

L i n e C h a r t s 267

picEnroll.Scale (-1, 1.2 * maxEnroll) - (numYears + 1, -.2 * maxEnroll)
picEnroll.Line (-1, 0)-(numYears + 1, 0)
picEnroll.Line (0, -.1 * maxEnroll)-(0, 1.1 * maxEnroll)

End Sub

Private Sub DrawData(total() As Single)
i As Integer
‘Draw lines connecting data and circle data points
For i = 1 To numYears

If i < numYears Then
picEnroll.Line (i, total(i))-(i + 1, total(i + 1))

End If
picEnroll.Circle (i, total(i)), .01 * numYears

Next i
End Sub

Private Sub Locate(x As Single, y As Single)
picEnroll.CurrentX = x
picEnroll.CurrentY = y

End Sub

Private Sub ReadData(label() As String, total() As Single)
Dim i As Integer
‘Assume the data have been placed in the file “ENROLL.TXT”
‘(First line of the file is “1960”,453)
‘Read data into arrays, find highest enrollment
maxEnroll = 0
Open ”ENROLL.TXT” For Input As #1
For i = 1 To numYears

Input #1, label(i), total(i)
If total(i) > maxEnroll Then

maxEnroll = total(i)
End If
Next i
Close #1

End Sub

Private Sub ShowLabels(label() As String)
Dim i As Integer, lbl As String, lblWid As Single
Dim lblHght As Single, tickFactor As Single
‘Draw tick marks and label them
For i = 1 To numYears

lbl = Right(label(i), 2)
lblWid = picEnroll.TextWidth(lbl)
tickFactor = .02 * maxEnroll
picEnroll.Line (i, -tickFactor)-(i, tickFactor)
Call Locate(i - lblWid / 2, -tickFactor)
picEnroll.Print lbl

Next i
lbl = Str(maxEnroll)
lblWid = picEnroll.TextWidth(lbl)
lblHght = picEnroll.TextHeight(lbl)
tickFactor = .02 * numYears
picEnroll.Line (-tickFactor, maxEnroll)-(tickFactor, maxEnroll)
Call Locate(-tickFactor - lblWid, maxEnroll - lblHght / 2)
picEnroll.Print lbl

End Sub

268 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

Private Sub ShowTitle()

‘Display source and title

Call Locate(-.5, -.1 * maxEnroll)

picEnroll.Print “Source: Statistical Abstract of the United States”

Call Locate(.5, 1.2 * maxEnroll)

picEnroll.Print “Two-Year College Enrollments (in thousands)”

End Sub

FIGURE 9-9 Chart for Example 1

Remarks on the program in Example 1

1. The value of tickFactor in the Sub procedure ShowLabels was set to 2 percent
of the scale determiners (numYears and maxEnroll) for the x and y axes. This
percentage is appropriate for picture boxes that occupy 1/4th to 1/3rd of the
screen. Smaller picture boxes might require a factor of 3 percent or 4 percent
for good-looking tick marks. Picture boxes that almost fill the screen might
have good results with a factor as small as 1 percent.

2. In the Sub procedure ShowLabels, the TextWidth and TextHeight methods were
used to obtain the width and height of each label. These values were used
together with the coordinates of the appropriate end of the tick mark to assign
values to CurrentX and CurrentY for proper placement of the label relative to
the graphics.

3. In the event procedure cmdDraw_Click, the number of data points (5) was
assigned to the variable numYears, and then numYears was used as a parameter
to all other Sub procedures. This feature makes it easy to add additional data to
the line chart. For instance, if we decide to include the data for one additional
year, we will only have to change the value of numYears and add one more line
to the data file.

■ LINE STYLING

Patterned, or “styled,” lines can be drawn between two points. Some available line styles are
shown in Figure 9-10. Each line has an associated number identifying its style. If s is one of
the numbers in the figure, then the statements

picBox.DrawStyle = s

picBox.Line (a, b)-(c, d)

draw the line from (a, b) to (c, d) in the style corresponding to the number s.

L i n e C h a r t s 269

http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html

FIGURE 9-10 Line Patterns

Styling is useful when displaying several line charts on the same coordinate system.

EXAMPLE 2

Alter the program in Example 1 so that it will draw line charts displaying the male, female, and total
enrollments of 2-year colleges.

SOLUTION:
The data file must be changed to contain the enrollment figures for males and females, and arrays must
be created to hold this information. The totals can be computed from the other numbers. The styled lines
for male and female enrollments must be drawn. Finally, legends must be given to identify the different
line charts. Figure 9-11 shows the picture box that results from the modified program.

‘In (Declarations) section of (General)
Dim numYears As Integer, maxEnroll As Single

Private Sub cmdDraw_Click()
‘Line Charts of Two-Year College Enrollments
numYears = 5
ReDim label(1 To numYears) As String
ReDim male(1 To numYears) As Single
ReDim female(1 To numYears) As Single
ReDim total(1 To numYears) As Single
Call ReadData(label(),male(),female(),total())
Call DrawAxes
Call DrawData(male(), female(), total())
Call ShowTitle
Call ShowLabels(label())
Call ShowLegend

End Sub

Private Sub DrawAxes()
‘Draw axes
picEnroll.Scale (-1, 1.2 * maxEnroll) - (numYears + 1, -.2 * maxEnroll)
picEnroll.Line (-1, 0)-(numYears + 1, 0)
picEnroll.Line (0, -.1 * maxEnroll)-(0, 1.1 * maxEnroll)

End Sub

Private Sub DrawData(male() As Single, female() As Single, total() As Single)
Dim i As Integer
For i = 1 To numYears

If i < numYears Then
‘Draw lines connecting data points
picEnroll.DrawStyle = 2
picEnroll.Line (i, male(i))-(i + 1, male(i + 1))
picEnroll.DrawStyle = 1

270 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

picEnroll.Line (i, female(i))-(i + 1, female(i + 1))
picEnroll.DrawStyle = 0
picEnroll.Line (i, total(i))-(i + 1, total(i + 1))

End If
‘Draw small circles around data points
picEnroll.Circle (i, male(i)), .01 * numYears
picEnroll.Circle (i, female(i)), .01 * numYears
picEnroll.Circle (i, total(i)), .01 * numYears Next i

End Sub

Private Sub Locate(x As Single, y As Single)
picEnroll.CurrentX = x
picEnroll.CurrentY = y

End Sub

Private Sub ReadData(label() As String, male() As Single, _ female()
As Single, total() As Single)

‘The two lines above should be enter as one line
Dim i As Integer
‘Assume the data has been placed in the file “ENROLLMF.TXT”
‘as Year, male, female
‘(First line of file is “1960”,283,170)
‘Read data into arrays, find highest enrollment Open ”ENROLLMF.TXT”
For Input As #1
maxEnroll = 0
For i = 1 To numYears

Input #1, label(i), male(i), female(i)
total(i) = male(i) + female(i)
If maxEnroll < total(i) Then

maxEnroll = total(i)
End If

Next i
Close #1

End Sub

Private Sub ShowLabels(label() As String)
Dim i As Integer, lbl As String, lblWid As Single
Dim lblHght As Single, tickFactor As Single
‘Draw tick marks and label them
For i = 1 To numYears

lbl = Right(label(i), 2)
lblWid = picEnroll.TextWidth(lbl)
tickFactor = .02 * maxEnroll
picEnroll.Line (i, -tickFactor)-(i, tickFactor)
Call Locate(i - lblWid / 2, -tickFactor)
picEnroll.Print lbl

Next i
lbl = Str(maxEnroll)
lblWid = picEnroll.TextWidth(lbl)
lblHght = picEnroll.TextHeight(lbl)
tickFactor = .02 * numYears
picEnroll.Line (-tickFactor, maxEnroll)-(tickFactor, maxEnroll)
Call Locate(-tickFactor - lblWid, maxEnroll - lblHght / 2)
picEnroll.Print lbl

End Sub

L i n e C h a r t s 271

Private Sub ShowLegend()
‘Show legend
picEnroll.DrawStyle = 2
picEnroll.Line (.1, 1.05 * maxEnroll)-(.9, 1.05 * maxEnroll)
Call Locate(1, 1.1 * maxEnroll)
picEnroll.Print “Male”
picEnroll.DrawStyle = 1
picEnroll.Line (.1, .95 * maxEnroll)-(.9, .95 * maxEnroll)
Call Locate(1, maxEnroll)
picEnroll.Print “Female”
picEnroll.DrawStyle = 0
picEnroll.Line (.1, .85 * maxEnroll)-(.9, .85 * maxEnroll)
Call Locate(1, .9 * maxEnroll)
picEnroll.Print “Total”

End Sub

Private Sub ShowTitle()
‘Display source and title
Call Locate(-.5, -.1 * maxEnroll)
picEnroll.Print “Source: Statistical Abstract of the United States”
Call Locate(.5, 1.2 * maxEnroll)
picEnroll.Print “Two-Year College Enrollments (in thousands)”

End Sub

FIGURE 9-11 Chart for Example 2

COMMENT

1. The line charts drawn in Examples 1 and 2 can be printed on the printer instead
of displayed in a picture box. Just replace each occurrence of picOutput with
Printer, and add

Printer.EndDoc

as the last statement of the cmdDraw_Click event procedure. Also, the charts
will look best in landscape orientation which is invoked with the statement

Printer.Orientation = 2

272 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

placed before the Scale method is executed.

9.3 BAR CHARTS

Drawing bar charts requires a variation of the line statement. If (x1, y1) and (x2, y2) are two
points on the screen, then the statement

picBox.Line (x1, y1) - (x2, y2), , B

draws a rectangle with the two points as opposite corners. If B is replaced by BF, a solid rec-
tangle will be drawn (see Figure 9-12).

FIGURE 9-12 Line Method with B and BF Options

EXAMPLE 1

The 1998 populations of California and New York are 32 and 18 million, respectively. Draw a bar chart
to compare the populations.

SOLUTION:
The following program produces the chart shown in Figure 9-13. The first five lines are the same as those
of a line chart with two pieces of data. The base of the rectangle for California is centered above the point
(1, 0) on the x axis and extends .3 unit to the left and right. (The number .3 was chosen arbitrarily; it had
to be less than .5 so that the rectangles would not touch.) Therefore, the upper-left corner of the rectangle
has coordinates (.7, 32) and the lower-right corner has coordinates (1.3, 0). Figure 9-14 shows the coor-
dinates of the principal points of the rectangles.

FIGURE 9-13 Bar Chart for Example 1

Private Sub cmdDisplayPop_Click()
‘Populations of California and New York
picPop.Scale (-1, 40)-(3, -5) ‘Specify coordinates
picPop.Line (-1, 0)-(3, 0) ‘ Draw x-axis
picPop.Line (0, -5)-(0, 40) ‘ Draw y-axis
picPop.Line (.7, 32)-(1.3, 0),,BF ‘Draw solid rectangle for CA
picPop.Line (1.7, 18)-(2.3, 0),,BF ‘Draw solid rectangle for NY
picPop.CurrentY = -1 ‘Vertical position of labels

B a r C h a r t s 273

picPop.CurrentX = .7 ‘Beginning horizontal position of

label for CA

picPop.Print “California”; ‘Beginning horizontal position of

label for NY

picPop.CurrentX = 1.7 picPop.Print “New York”;

End Sub

FIGURE 9-14 Coordinates of Principal Points of Example 1

Any program that draws a line chart can be easily modified to produce a bar chart. Mul-
tiple line charts are converted into so-called clustered bar charts.

EXAMPLE 2

Display the 2-year college enrollments for males and females in a clustered bar chart. Use the data in
Table 9.2 of Section 9.4.

SOLUTION:
The output of the following program appears in Figure 9-15. This program is very similar to the program
that produced Figure 9-11 of Section 9.4.

Private Sub cmdDraw_Click()

Dim numYears As Integer, maxEnroll As Single

‘Bar Chart of Total Two-Year College Enrollments

numYears = 5

ReDim label(1 To numYears) As String

ReDim male(1 To numYears) As Single

ReDim female(1 To numYears) As Single

Call ReadData(label(), male(), female(), numYears, maxEnroll)

Call DrawAxes(numYears, maxEnroll)

Call DrawData(male(), female(), numYears)

Call ShowTitle(maxEnroll)

Call ShowLabels(label(), numYears, maxEnroll)

Call ShowLegend(maxEnroll)

End Sub

Private Sub

DrawAxes(numYears As Integer, maxEnroll As Single)

‘Draw axes

picEnroll.Scale (-1, 1.2 * maxEnroll)-(numYears + 1, -.2 * maxEnroll)

picEnroll.Line (-1, 0)-(numYears + 1, 0)

picEnroll.Line (0, -.1 * maxEnroll)-(0, 1.1 * maxEnroll)

End Sub

274 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

Private Sub DrawData(male() As Single, female() As Single, _ numYears As

Integer)

Dim i As Integer

‘Draw rectangles

For i = 1 To numYears

picEnroll.Line (i - .3, male(i))-(i, 0), , BF

picEnroll.Line (i, female(i))-(i + .3, 0), , B

Next i

End Sub

Private Sub Locate(x As Single, y As Single)

picEnroll.CurrentX = x

picEnroll.CurrentY = y

End Sub

Private Sub ReadData(label() As String, male() As Single, _ female() As

Single, numYears As Integer, maxEnroll As Single)

Dim i As Integer

‘Assume the data have been placed in the file ENROLLMF.TXT

‘(First line is file is “1960”,283,170)

‘Read data into arrays, find highest enrollment

Open ”ENROLLMF.TXT” For Input As #1

maxEnroll = 0

For i = 1 To numYears

Input #1, label(i), male(i), female(i)

If male(i) > maxEnroll Then

maxEnroll = male(i)

End If

If female(i) > maxEnroll Then

maxEnroll = female(i)

End If

Next i

Close #1

End Sub

Private Sub ShowLabels(|label() As String, numYears As Integer, _ maxEnroll As

Single) Dim i As Integer, lbl As String, lblWid As

Single

Dim lblHght As Single, tickFactor As Single

‘Draw tick marks and label them

For i = 1 To numYears

lbl = label(i)

lblWid = picEnroll.TextWidth(lbl)

tickFactor = .02 * maxEnroll

picEnroll.Line (i, -tickFactor)-(i, tickFactor)

Call Locate(i - lblWid / 2, -tickFactor)

picEnroll.Print lbl

Next i

lbl = Str(maxEnroll)

lblWid = picEnroll.TextWidth(lbl)

lblHght = picEnroll.TextHeight(lbl)

tickFactor = .01 * numYears

picEnroll.Line (-tickFactor, maxEnroll)-(tickFactor, maxEnroll)

Call Locate(-tickFactor - lblWid, maxEnroll - lblHght / 2)

picEnroll.Print lbl

End Sub

B a r C h a r t s 275

Private Sub ShowLegend(maxEnroll As Single) ‘Show legend
picEnroll.Line (.1, 1.05 * maxEnroll)-(.9, .95 * maxEnroll), , BF
Call Locate(1, 1.05 * maxEnroll)
picEnroll.Print “Male”
picEnroll.Line (.1, .9 * maxEnroll)-(.9, .8 * maxEnroll), , B
Call Locate(1, .9 * maxEnroll)
picEnroll.Print “Female”

End Sub

Private Sub ShowTitle(maxEnroll As Single)
‘Display source and title Call Locate(-.5, -.1 * maxEnroll)
picEnroll.Print “Source: Statistical Abstract of the United States”
Call Locate(.5, 1.2 * maxEnroll)
picEnroll.Print “Two-Year College Enrollments (in thousands)”

End Sub

FIGURE 9-15 Chart for Example 2

COMMENTS

1. Any line chart can be converted to a bar chart and vice versa. Line charts are
best suited for displaying quantities that vary with time. The slopes of the indi-
vidual line segments clearly portray the rates at which the quantity is changing.
Bar charts excel in contrasting the magnitudes of different entities.

2. The Line method can produce colored rectangles. If vbColor is one of the 8
color constants, then the statement picBox.Line (x1, y1)–(x2, y2), vbColor, B
draws a rectangle in color. A colored solid rectangle will be produced if B is
replaced by BF. The use of color permits clustered bar charts with three bars per
cluster.

3. In Section 9.4, we discuss a method to fill in rectangles using various patterns,
such as horizontal lines and crosshatches. Using this technique, we can create
black-and-white clustered bar charts having three or more bars per cluster.

276 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

9.4 PIE CHARTS

Drawing pie charts requires the Circle method and the FillStyle property. The Circle method
draws not only circles, but also sectors (formed by an arc and two radius lines). The FillStyle
property determines what pattern, if any, is used to fill a sector. The FillColor property can be
used, if desired, to lend color to the fill patterns.

Figure 9-16 shows a circle with several radius lines drawn. The radius line extending to
the right from the center of the circle is called the horizontal radius line. Every other radius
line is assigned a number between 0 and 1 according to the percentage of the circle that must
be swept out in the counterclockwise direction in order to reach that radius line. For instance,
beginning at the horizontal radius line and rotating 1/4 of the way around the circle counter-
clockwise, we reach the radius line labeled .25.

FIGURE 9-16 Numbers Assigned to Radius Lines

EXAMPLE 1

In Figure 9-17, what percentage of the area of the circle lies in the shaded sector?

FIGURE 9-17 Circle for Example 1

SOLUTION:
The percentage of the circle contained between the radius lines labeled .15 and .35 is 35% – 15%, or 20%.

The statement

picBox.Circle (x, y), r

draws the circle with center (x, y) and radius r. More precisely, the length of the horizontal ra-
dius line will be r units in the scale for the x axis determined by the picBox.Scale statement.
If 0 < a < b < 1 and c is the circumference of the unit circle (2*π), then the statement

picBox.Circle (x, y), r, , a * c, b * c

draws an arc from the end of radius line a to the end of radius line b. See Figure 9-18(a). The
statement

picBox.Circle (x, y), r, , -a * c, -b * c

draws the sector corresponding to that arc. See Figure 9-18(b).

P i e C h a r t s 277

FIGURE 9-18 (a) Arc of a Circle and (b) Sector of a Circle

A special case occurs when a is 0. The expression –a * c will be zero rather than a neg-
ative number. As a result, Visual Basic does not draw the horizontal radius line associated
with a = 0. In order to create a sector that has the horizontal radius line as one of its edges,
use a small number such as .0000001 for a.

EXAMPLE 2

Write a program to draw a sector whose sides are a horizontal radius line and the radius line that is 40
percent of the way around the circle.

SOLUTION:
The following program draws the sector with its center at the center of the picture box. The radius was
arbitrarily chosen to be 2 and the picOutput.Scale statement was chosen so that the circle would be fair-
ly large. The output displayed in the picture box is shown in Figure 9-19.

Private Sub cmdDraw_Click()
Dim c As Single
picOutput.Cls
picOutput.Scale (-3, 3)-(3, -3) ‘Specify coordinate system
c = 2 * 3.14159
a = .0000001
b = .4
‘Draw sector with radius lines corresponding to 0 and .4
picOutput.Circle (0, 0), 2, , -a * c, -b * c

End Sub

FIGURE 9-19 Display from Example 2

A sector can be “painted” using any of the patterns shown in Figure 9-20. Which pattern
is used to fill a sector is determined by the value of the FillStyle property. The default value
of this property is 1 for transparent. Thus, by default, the interior of a sector is not painted.

FIGURE 9-20 Fill Patterns

278 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

EXAMPLE 3

Write a program to draw the sector consisting of the bottom half of a circle and fill it with vertical lines.

SOLUTION:
Vertical lines correspond to a FillStyle of 3. See Figure 9-21 for the output of the following program.

Private Sub cmdDraw_Click()
Dim c As Single
‘Draw bottom half of circle filled with vertical lines
c = 2 * 3.14159
picSector.Cls
picSector.Scale (-3, 3)-(3, -3) ‘Specify coordinate system
picSector.FillStyle = 3 ‘Vertical lines
picSector.Circle (0, 0), 2, , -.5 * c, -1 * c

End Sub

FIGURE 9-21 Display from Example 3

The color used to fill the interior of a sector is determined by the value of the FillColor
property. If the FillStyle of a picture box is any value except 1, then the statement

picBox.FillColor = vbColor

where vbColor is a color constant, will cause new circles and sectors drawn in the picture box
to be filled with a colored pattern.

EXAMPLE 4

Write a program to subdivide a circle into four quadrants and fill in the second quadrant, that is, the quad-
rant extending from radius line .25 to radius line .5, with magenta crosshatched lines.

SOLUTION:
Crosshatched lines correspond to a FillStyle of 6. See Figure 9-22 for the output of the following pro-
gram.

Private Sub cmdDraw_Click()
Dim c As Single
‘Draw quarters of circle and paint upper-left quadrant
c = 2 * 3.14159
picBox.Cls picBox.Scale (-3, 3)-(3, -3) ‘Specify coordinate system
picBox.Circle (0, 0), 2, , -.0000001 * c, -.25 * c
picBox.FillStyle = 6 ‘Crosshatched
picBox.FillColor = vbMagenta
picBox.Circle (0, 0), 2, , -.25 * c, -.5 * c
picBox.FillStyle = 1 ‘Transparent
picBox.Circle (0, 0), 2, , -.5 * c, -.75 * c
picBox.Circle (0, 0), 2, , -.75 * c, -1 * c

End Sub

FIGURE 9-22 Display from Example 4

P i e C h a r t s 279

The FillStyle and FillColor properties can be used when creating rectangles. The state-
ments

picBox.FillStyle = s=
picBox.Fill Color = vbColor
pic Box.Line (x1, y1) - (x2, y2), , 8

draw a rectangle filled with the pattern specified by s in the color specified by vbColor. This
capability is often used when creating the legend to accompany a graph.

The procedure for drawing a pie chart is as follows:

1. Read the categories and the quantities into arrays, such as category() and
quantity().

2. Determine the radius lines. The number associated with the ith radius line is
cumPercent(i). This number is a total of quantity(i) and the preceding
percentages.

3. Draw and fill each sector with a pattern. The first sector extends from the hor-
izontal radius line to radius line 1, the second sector from radius line 1 to radius
line 2, and so on.

4. Draw rectangular legends to associate each sector with its category.

EXAMPLE 5

Table 9.2 gives the market share of Internet browsers for July 1998. Construct a pie chart that displays the
market share.

TABLE 9.2
Browser Market Share, July 1998

Percent of Total Market

Internet Explorer 44
Netscape Navigator 42
Other 14

SOLUTION:
Figure 9-23 shows the output displayed by the following program.

Private Sub cmdDraw_Click()
Dim numItems As Integer, radius As Single
‘Draw pie chart of Browser Market Share
numItems = 3
ReDim category(1 To numItems) As String
ReDim quantity(1 To numItems) As Single
Call ReadData(category(), quantity(), numItems)
Call DrawData(quantity(), numItems, radius)
Call ShowLegend(category(), numItems, radius)
Call ShowTitle(radius)

End Sub

Private Sub DrawData(quantity() As Single, numItems As Integer, _ radius As
Single)

Dim circumf As Single, leftEdge As Single, rightEdge As Single
Dim topEdge As Single, bottomEdge As Single, i As Integer
Dim startAngle As Single, stopAngle As Single
‘Draw and fill each sector of pie chart
‘All scaling and text positioning done as a percentage of radius radius = 1
‘actual value used is not important
‘Make picture 4 radii wide to provide plenty of space for
‘circle and legends. Place origin 1.25 radii from left edge;

280 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

‘space of 1.75 radii will remain on right for legends.

leftEdge = -1.25 * radius

rightEdge = 2.75 * radius

‘Force vertical scale to match horizontal scale; ‘center origin vertically

topEdge = 2 * radius * (picShare.Height / picShare.Width)

bottomEdge = -topEdge

picShare.Cls

picShare.Scale (leftEdge, topEdge)-(rightEdge, bottomEdge)

circumf = 2 * 3.14159

ReDim cumPercent(0 To numItems) As Single

cumPercent(0) = .0000001 ‘a value of “zero” that can be made negative

For i = 1

To numItems cumPercent(i) = cumPercent(i - 1) + quantity(i)

startAngle = cumPercent(i - 1) * circumf

stopAngle = cumPercent(i) * circumf

picShare.FillStyle = (8 - i) ‘use fill patterns 7, 6, and 5

picShare.Circle (0, 0), radius, , -startAngle, -stopAngle

Next i

End Sub

Private Sub Locate (x As Single, y As Single)

picShare.CurrentX = x

picShare.CurrentY = y

End Sub

Private Sub ReadData(category() As String, quantity() As Single, _ numItems As

Integer)

Dim i As Integer ‘Load categories and percentages of market share

‘Assume the data have been placed in the file BROWSERS.TXT

‘(First line in file is “Internet Explorer”, .44)

Open “BROWSERS.TXT” For Input As #1

For i = 1 To numItems

Input #1, category(i), quantity(i)

Next i

Close #1

End Sub

Private Sub ShowLegend(category() As String, numItems As Integer, _ radius As

Single)

Dim lblHght As Single, legendSize As Single

Dim i As Integer, vertPos As Single

‘Place legend centered to right of pie chart

‘Make separation between items equal to one line of text

‘“Text lines” needed for legends is thus (2*numItems-1)

lblHght = picShare.TextHeight(“ ”)

legendSize = lblHght * (2 * numItems - 1)

For i = 1 To numItems

picShare.FillStyle = (8 - i)

vertPos = (legendSize / 2) - (3 - i) * (2 * lblHght)

picShare.Line (1.1 * radius, vertPos)-(1.4 * radius, _ vertPos +

lblHght), ,B

Call Locate(1.5 * radius, vertPos)

picShare.Print category(i)

Next i

End Sub

P i e C h a r t s 281

Private Sub ShowTitle(radius As Single)
Dim lbl As String, lblWid As Single
‘Display title right below circle
lbl = “Browser Market Share, July 1998”
lblWid = picShare.TextWidth(lbl)
Call Locate(-lblWid / 2, -(radius + .05))
picShare.Print lbl

End Sub

FIGURE 9-23 Display from Example 5

SUMMARY

1. Data can be vividly displayed in line, bar, clustered bar, and pie charts.

2. The programmer can select his or her own coordinate system with the Scale
method.

3. The Line method draws lines, rectangles, and solid rectangles. Styled lines can
be drawn by assigning appropriate values to the DrawStyle property.

4. The Circle method is used to draw circles, radius lines, and sectors. Each radius
line is specified by a number between 0 and 1. The number 2 * π(or 6.283185)
is used by the Circle method when drawing radii and sectors.

5. The PSet method turns on a single point and is useful in graphing functions.

6. The FillStyle property allows circles, sectors, and rectangles to be filled with
one of eight patterns, and the FillColor property allows them to appear in
assorted colors.

PROGRAMMING PROJECTS

1. Look in magazines and newspapers for four sets of data, one suited to each type
of chart discussed in this chapter. Write programs to display the data in chart
form.

282 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

2. Figure 9-24 is called a horizontal bar chart. Write a program to produce this

chart.

FIGURE 9-24 Horizontal Bar Chart

3. Figure 9-25 is called a segmented bar chart. Write a program to construct this chart.

FIGURE 9-25 Segmented Bar Chart

4. Figure 9-26 is called a range chart. Using the data in Table 9.3, write a program

to produce this chart.

FIGURE 9-26 Range Chart

P r o g r a m m i n g P r o j e c t s 283

TABLE 9.3
Range of Normal Monthly Rainfall for Selected Cities (in Inches)

Lowest NMR Highest NMR

Mobile 2.6 7.7
Portland .5 6.4
Phoenix .1 1.0
Washington 2.6 4.4
Juneau 2.9 7.7
New York 3.1 4.2

284 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

S E C T I O N

ADDITIONAL CONTROLS
AND OBJECTS

1010

287

10.1 LIST BOXES AND COMBO BOXES

The dialog box in Figure 10-1 contains two list boxes, one text box, and two combo boxes. The
Folders list box displays a list of folders (also known as directories). You click on a folder to high-
light it and double-click on a folder to open it. A combo box combines the features of a text box and
a list box. With the two combo boxes (known as dropdown combo boxes), only the text box part is
showing. The associated list drops down when you click on the arrow to the right of the text box part.

FIGURE 10-1 Open Project Dialog Box

THE LIST BOX CONTROL

The fifth row of the standard toolbox (in most editions of Visual Basic) contains the combo box icon
on the left and the list box icon on the right. The list boxes discussed in this text will display a sin-
gle column of strings, referred to as items. The items to appear initially can either be specified at
design time with the List property or set with code in a procedure. Then code is used to access, add,
or delete items from the list. We will first carry out all tasks with code and then show how the ini-
tial items can be specified at design time. The standard prefix for the name of a list box is lst.

The Sorted property is perhaps the most interesting list box property. When it is set to
True, the items will automatically be displayed in alphabetical (that is, ANSI) order. The
default value of the Sorted property is False.

If str is a string, then the statement

lstBox.AddItem str

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/listbox.html
http://www.pearsoncustom.com/link/visualbasic/combobox.html

adds str to the list. The item is added at the proper sorted position if the Sorted property is True,
and otherwise is added to the end of the list. At any time, the value of

lstBox.ListCount

is the number of items in the list box.
Each item in lstBox is identified by an index number ranging from 0 through

lstBox.ListCount – 1. The value of

lstBox.NewIndex

is the index number of the item most recently added to lstBox by the AddItem method. During
run time you can highlight an item from a list by clicking on it with the mouse or by moving
to it with the up- and down-arrow keys when the list box has the focus. (The second method
triggers the Click event each time an arrow key causes the highlight to move.) The value of

lstBox.ListIndex

is the index number of the item currently highlighted in lstBox. (If no item is highlighted, the
value of ListIndex is –1.)

The string array lstBox.List() holds the list of items stored in the list box. In particular,
the value of

lstBox.List(n)

is the item of lstBox having index n. For instance, the statement picBox.Print lstBox.List(0)
displays the first item of the list box lstBox. The value of

lstBox.List(lstBox.ListIndex)

is the item (string) currently highlighted in lstBox. Alternatively, the value of

lstBox.Text

is also the currently highlighted item. Unlike the Text property of a text box, you may not as-
sign a value to lstBox.Text.

The statement

lstBox.RemoveItem n

deletes the item of index n from lstBox, the statement

lstBox.RemoveItem lstBox.ListIndex

deletes the item currently highlighted in lstBox, and the statement

lstBox.Clear

deletes every item of lstBox.

EXAMPLE 1

An oxymoron is a pairing of contradictory or incongruous words. The following program displays a sort-
ed list of oxymorons. When you click an item (or highlight it with the up- and down-arrow keys), it is dis-
played in a picture box. A command button allows you to add an additional item with an Input box. You
can delete an item by double-clicking on it with the mouse. (Note: When you double-click the mouse,
two events are processed—the Click event and the DblClick event.) After running the program, click on
different items, add an item or two (such as “same difference” or “liquid gas”), and delete an item.

Object Property Setting

frmOxyMor Caption OXYMORONS
lstOxys Sorted True
cmdAdd Caption Add an Item
lblDelete Caption [To delete an item,

double-click on it.]
picSelected

288 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/listbox.html

Private Sub cmdAdd_Click()

Dim item As String

item = InputBox(“Item to Add:”)

lstOxys.AddItem item

End Sub

Private Sub Form_Load()

lstOxys.AddItem “jumbo shrimp”

lstOxys.AddItem “definite maybe”

lstOxys.AddItem “old news”

lstOxys.AddItem “good grief”

End Sub

Private Sub lstOxys_Click()

picSelected.Cls

picSelected.Print “The selected item is”

picSelected.Print Chr(34) & lstOxys.Text & Chr(34) & “.”

End Sub

Private Sub lstOxys_DblClick()

lstOxys.RemoveItem lstOxys.ListIndex

End Sub

[Run, and then click on the second item of the list box.]

The following steps show how to fill a list box at design time. (This method is used in
Example 3.)

1. Select the List property of the list box.

2. Click on the down arrow of the Settings box. (A small box will be displayed.)

3. Type in the first item and press Ctrl+Enter. (The cursor will move to the next
line.)

4. Repeat Step 3 for each of the other items.

5. When you are finished entering items, press the Enter key.

When the Sorted property of a list box is True, the index associated with an item will
change when a “lesser” item is added to or removed from the list. In many applications it is
important to have a fixed number associated with each item in a list box. Visual Basic makes
this possible using the ItemData property. The statement

lstBox.ItemData(n) = m

associates the number m with the item of index n, and the statement

lstBox.ItemData(lstBox.NewIndex) = m

associates the number m with the item most recently added to the list box. Thus, lstBox can
be thought of as consisting of two arrays, lstBox.List() and lstBox.ItemData(). The contents
of lstBox.List() are displayed in the list box, allowing the user to make a selection while the

L i s t B o x e s a n d C o m b o B o x e s 289

http://www.pearsoncustom.com/link/visualbasic/listbox.html

hidden contents of lstBox.ItemData() can be used by the programmer to index records. As il-
lustrated in Example 2, they can also be used to set up parallel arrays that hold other data as-
sociated with each item displayed in the list box.

EXAMPLE 2

The following program uses NewIndex and ItemData to provide data about inventions. When an item is
highlighted, its ItemData value is used to locate the appropriate entries in the inventor() and date() arrays.
Assume the file INVENTOR.TXT contains the following three lines:

“Ball-point pen”, “Lazlo and George Biro”, 1938
“Frozen food”, “Robert Birdseye”, 1929
“Bifocal lenses”, “Ben Franklin”, 1784

Object Property Setting

frmInvent Caption Inventions
lstInvents Sorted True
lblInventor Caption Inventor
lblWho Caption (none)
lblYear Caption Year
lblWhen Caption (none)

‘In the (Declarations) section of (General)
Dim inventor(0 To 10) As String

Dim yr(0 To 10) As Integer

Private Sub Form_Load()
Dim what As String, who As String, when As Integer, index As Integer
Open “INVENTOR.TXT” For Input As #1
index = 0
Do While (index [[UBound(inventor)) And (Not EOF(1))

Input #1, what, who, when
index = index + 1
lstInvents.AddItem what
lstInvents.ItemData(lstInvents.NewIndex) = index
inventor(index) = who
yr(index) = when

Loop
Close #1

End Sub

Private Sub lstInvents_Click()
lblWho.Caption = inventor(lstInvents.ItemData(lstInvents.ListIndex))
lblWhen.Caption = Str(yr(lstInvents.ItemData(lstInvents.ListIndex)))

End Sub

[Run, and then highlight the second entry in the list.]

THE COMBO BOX CONTROL

A combo box is best thought of as a text box with a help list attached. With an ordinary text
box, the user must type information into the box. With a combo box, the user has the option of

290 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/listbox.html
http://www.pearsoncustom.com/link/visualbasic/combobox.html

either typing in information or just selecting the appropriate piece of information from a list. The
two most useful types of combo box are denoted as style 0 (Dropdown) and style 1 (Simple)
combo boxes. See Figure 10-2. The standard prefix for the name of a combo box is cbo.

Style 0–Dropdown combo box Style 1–Simple combo box

FIGURE 10-2 Styles of Combo Boxes

With a Simple combo box, the list is always visible. With a Dropdown combo box, the
list drops down when the user clicks on the arrow, and then disappears after a selection is
made. In either case, when an item from the list is highlighted, the item automatically appears
in the text box at the top and its value is assigned to the Text property of the combo box.

Combo boxes have essentially the same properties, events, and methods as list boxes. In
particular, all the statements discussed before for list boxes also hold for combo boxes. The
Style property of a combo box must be specified at design time.

EXAMPLE 3

The following program uses a simple combo box to obtain a person’s title for the first line of the address
of a letter. (Note: At design time, first set the combo box’s Style property to 1, and then lengthen the
height of the combo box.)

Object Property Setting

frmTitle Caption Letter Address
lblTitle Caption Title
cboTitle List Mr.

Ms.
Dr.
The Honorable
Her Excellency

Style 1 – Simple
Combo

Text (blank)
lblName Caption Name
txtName Text (blank)
cmdDisplay Caption Display Full Name
txtDisplay Text (blank)

Private Sub cmdDisplay_Click()

txtDisplay.Text = cboTitle.Text & “ ” & txtName.Text

End Sub

[Run, select an item from the combo box, type a name into the Name text box, and click the command
button.]

L i s t B o x e s a n d C o m b o B o x e s 291

http://www.pearsoncustom.com/link/visualbasic/listbox.html
http://www.pearsoncustom.com/link/visualbasic/combobox.html

The same program with a style 0 combo box produces the output shown.

DRIVE, DIRECTORY, AND FILE LIST BOX CONTROLS

Boxes similar to those inside the Open Project dialog box of Figure 10-1 are available to any
Visual Basic program via icons from the Toolbox. Visual Basic does much of the work of pro-
viding the appropriate lists for the three boxes. Windows determines the contents of the drive
box. The programmer determines the contents of directory list boxes and file list boxes with
Path properties.

Most of the properties, methods, and events of list boxes are also valid for the three file-
related list boxes. For instance, in the file list box File1, File1.ListCount is the number of
files and File1.List(n) is the name of the nth file, where counting begins with 0. The select-
ed items for the three controls are identified by the Drive, Path, and FileName properties,
respectively. For instance, in the drive list box Drive1, the selected drive is given by the string
Drive1.Drive.

Suppose a form contains a drive list box named Drive1, a directory list box named Dir1,
and a file list box named File1. (These names are the default names supplied by Visual
Basic.) When the user selects a new drive from the Drive1 list box, the directories in Dir1
should reflect this change. The proper event procedure to effect the change is

Private Sub Drive1_Change()
Dir1.Path = Drive1.Drive

End Sub

This event is triggered by clicking on the drive name or using the arrow keys to highlight the
drive name and then pressing Enter. When the user selects a new directory in Dir1, the files
in File1 can be changed with the event procedure

Private Sub Dir1_Change()
File1.Path = Dir1.Path

End Sub

This event procedure is triggered by double-clicking on a directory name. If the preceding
two event procedures are in place, a change of the drive will trigger a change of the directo-
ry, which in turn will trigger a change in the list of files. The standard prefixes for the names
of the drive, directory, and file list box controls are drv, dir, and fil, respectively.

EXAMPLE 4

The following program can be used to display the full name of any file on any drive.

Object Property Setting

frmFiles Caption Select a File
drvList
dirList
filList
cmdDisplay Caption Display Complete Name of File
picFileSpec

292 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html

Private Sub cmdDisplay_Click()

picFileSpec.Cls

picFileSpec.Print dirList.Path;

If Right(dirList.Path, 1) <> “\” Then

picFileSpec.Print “\”;

End If

picFileSpec.Print filList.FileName

End Sub

Private Sub dirList_Change()

filList.Path = dirList.Path

End Sub

Private Sub drvList_Change()

dirList.Path = drvList.Drive

End Sub

[Run, select a drive, double-click on a directory, select a file, and then click the command button.]

COMMENTS

1. If a list or combo box is too short to display all the items that have been added

to it, Visual Basic automatically places a vertical scroll bar on the right side of

the list box. The user can then scroll to see the remaining items of the list.

2. When the Style property of a combo box is set to 2, the combo box becomes a

dropdown list box. The Drive list box is an example of a dropdown list box.

3. Dropdown combo boxes (Style 0) are used in Windows applications as a text

box with a “history list” (list of past entries) from which you can either type a

new entry or select an old entry.

4. The standard Windows convention for opening a file is to double-click on a

name in a file list box. The program must contain code for a DblClick event

procedure to carry out this task.

5. File list boxes can be made to display selective lists based on wildcard charac-

ters by setting the Pattern property. For instance, setting File1.Pattern equal to

“*.TXT” dictates that only files with the extension TXT will be displayed.

L i s t B o x e s a n d C o m b o B o x e s 293

http://www.pearsoncustom.com/link/visualbasic/scrollbar.html
http://www.pearsoncustom.com/link/visualbasic/listbox.html
http://www.pearsoncustom.com/link/visualbasic/combobox.html

10.2 NINE ELEMENTARY CONTROLS

In this section, we discuss the nine controls indicated on the Toolbox in Figure 10-3.

FIGURE 10-3 Nine Elementary Controls.

THE FRAME CONTROL

Frames are passive objects used to group related sets of controls for visual effect. You rarely
write event procedures for frames. The preceding frame has a group of three text boxes attached
to it. When you drag the frame, the attached controls follow as a unit. If you hide the frame,
the attached controls will be hidden as well.

A control must be attached to a frame in a special way. You cannot just double-click to cre-
ate the control and then drag it into a frame. To attach a control to a frame, first create the frame.
Next, single-click on the control icon to activate it, then move the mouse pointer inside the
frame to the point where you want to place the upper-left corner of the control. Finally, drag
the mouse to the right and down, and then release the mouse button when you are satisfied with
the size of the control. This is referred to as the single-click-draw technique.

A group of controls also can be attached to a picture box. The advantages of using
frames are that they have a title sunk into their borders that can be set with the Caption prop-
erty and that they cannot receive the focus. As shown later in this section, the frame control
is particularly important when working with groups of option button controls. The standard
prefix for the name of a frame is fra.

THE CHECK BOX CONTROL

A check box, which consists of a small square and a caption, presents the user with a yes/no
choice. The form in Example 1 uses four check box controls. The Value property of a check
box is 0 when the square is empty and is 1 when the square is checked. At run time, the user

294 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/checkbox.html

clicks on the square to toggle between the unchecked and checked states. So doing also trig-
gers the Click event.

EXAMPLE 1

The following program allows an employee to compute the monthly cost of various benefit packages.

Object Property Setting

frmBenefits Caption Benefits Menu
chkDrugs Caption Prescription Drug Plan
($12.51)
Value 0 – Unchecked
chkDental Caption Dental Plan ($9.68)
Value 0 – Unchecked
chkVision Caption Vision Plan ($1.50)
Value 0 – Unchecked
chkMedical Caption Medical Plan ($25.25)
Value 0 – Unchecked
lblTotal Caption Total monthly payment:
lblAmount Caption $0.00

Private Sub chkDrugs_Click()
Call Tally

End Sub

Private Sub chkDental_Click()
Call Tally

End Sub

Private Sub chkVision_Click()
Call Tally

End Sub

Private Sub chkMedical_Click()
Call Tally

End Sub

Private Sub Tally()
Dim sum As Single
If chkDrugs.Value = 1 Then

sum = sum + 12.51 End If
If chkDental.Value = 1 Then

sum = sum + 9.68
End If
If chkVision.Value = 1 Then

sum = sum + 1.5
End If
If chkMedical.Value = 1 Then

sum = sum + 25.25
End If
lblAmount.Caption = FormatCurrency(sum)

End Sub

[Run and then click on the desired options.]

N i n e E l e m e n t a r y C o n t r o l s 295

When a check box has the focus, the spacebar can be used to check (or uncheck) the box
and invoke the Click event. In addition, the state of a check box can be toggled from the key-
board without first setting the focus to the check box if you create an access key for the check
box by including an ampersand in the Caption property. (Access keys appear underlined at
run time.) For instance, if the Caption property for the Dental Plan in Example 1 is set as
“&Dental Plan”, then the user can check (or uncheck) the box by pressing Alt+D.

Notice that the program code for the solution to Example 1 involved four identical click
event procedures. This is a good indication that a control array of check boxes will simplify
the program, as shown in Example 2.

EXAMPLE 2

The following program reworks Example 1 using a control array of check boxes, with an access key for
each check box. The program has been made more general and easy to update by placing the name and
cost of each benefit plan in the data file BENEFITS.TXT. Each line of the file consists of the name of the
plan followed by the cost of the plan, as illustrated by the first line of the file:

“&Prescription Drug Plan”, 12.51

Object Property Setting

frmBenefits Caption Benefits Menu
chkPlan() Index 0 through 3
lblTotal Caption Total monthly payment:
lblAmount Caption $0.00

Dim price(0 To 3) As Single ‘In (Declarations) section of (General)
Dim sum As Single

Private Sub Form_Load()
Dim i As Integer, plan As String, cost As Single
Open “BENEFITS.TXT” For Input As #1
For i = 0 To 3

Input #1, plan, cost
price(i) = cost
chkPlan(i).Caption = plan & “ (” & FormatCurrency(cost) & “)”

Next i
Close 1
sum = 0

End Sub

Private Sub chkPlan_Click(Index As Integer)
If chkPlan(Index).Value = 1 Then

sum = sum + price(Index)
Else

sum = sum - price(Index)
End If
lblAmount.Caption = FormatCurrency(sum)

End Sub

The Value property of a check box also can be set to “2-Grayed”. When a grayed square
is clicked, it becomes unchecked. When clicked again, it becomes checked.

THE OPTION BUTTON CONTROL

Option buttons are used to give the user a single choice from several options. Normally, a
group of several option buttons is attached to a frame or picture box with the single-click-
draw technique. Each button consists of a small circle accompanied by text that is set with the
Caption property. When a circle or its accompanying text is clicked, a solid dot appears in the

296 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/controlarray.html
http://www.pearsoncustom.com/link/visualbasic/checkbox.html

circle and the button is said to be “on.” At most one option button in a group can be on at the
same time. Therefore, if one button is on and another button in the group is clicked, the first
button will turn off. By convention, the names of option buttons have the prefix opt.

The Value property of an option button tells if the button is on or off. The property

optButton.Value

is True when optButton is on and False when optButton is off. The statement

optButton.Value = True

turns on optButton and turns off all other buttons in its group. The statement

optButton.Value = False

turns off optButton and has no effect on the other buttons in its group.
The Click event for an option button is triggered only when an off button is turned on.

It is not triggered when an on button is clicked.

EXAMPLE 3

The following program tells you if an option button is on.

Object Property Setting

frmOptions Caption Option Buttons
fraOptions Caption Options
optOpt1
optOpt2
cmdStatus Caption Determine Status
picStatus

Private Sub cmdStatus_Click()
picStatus.Cls
If optOpt1.Value Then

picStatus.Print “Option1 is on.”
ElseIf optOpt2.Value Then

picStatus.Print “Option2 is on.”
End If

End Sub

Private Sub Form_Load()
optOpt1.Value = False ‘Turn off optOpt1
optOpt2.Value = False ‘Turn off optOpt2

End Sub

[Run, click on one of the option buttons, and then click the command button.]

The text alongside an option button is specified with the Caption property. As with a
command button and a check box, an ampersand can be used to create an access key for an
option button.

N i n e E l e m e n t a r y C o n t r o l s 297

http://www.pearsoncustom.com/link/visualbasic/checkbox.html

EXAMPLE 4

The following program allows the user to select the text size in a text box. The three option buttons have
been attached to the frame with the single-click-draw technique.

Object Property Setting

frmSize Caption Change Size
fraFontSize Caption Font Size
opt12pt Caption &12
opt18pt Caption 1&8
opt24pt Caption &24
txtInfo Text Hello

Private Sub opt12pt_Click()

txtInfo.Font.Size = 12

End Sub

Private Sub opt18pt_Click()

txtInfo.Font.Size = 18

End Sub

Private Sub opt24pt_Click()

txtInfo.Font.Size = 24

End Sub

[Run, and click on the last option button (or press Alt+2).]

A single form can have several groups of option buttons. However, each group must be
attached to its own frame or picture box, or to the form itself.

THE HORIZONTAL AND VERTICAL SCROLL BAR CONTROLS

Figure 10-4 shows the two types of scroll bars. When the user clicks on one of the arrow but-
tons, the thumb moves a small amount toward that arrow. When the user clicks between the
thumb and one of the arrow buttons, the thumb moves a large amount toward that arrow. The
user can also move the thumb by dragging it. The main properties of a scroll bar control are
Min, Max, Value, SmallChange, and LargeChange, which are set to integers. At any time,
hsbBar.Value is a number between hsbBar.Min and hsbBar.Max determined by the position of
the thumb. If the thumb is halfway between the two arrows, then hsbBar.Value is a number
halfway between hsbBar.Min and hsbBar.Max. If the thumb is near the left arrow button, then
hsbBar.Value is an appropriately proportioned value near hsbBar.Min. When an arrow button
is clicked, hsbBar.Value changes by hsbBar.SmallChange and the thumb moves accordingly.
When the bar between the thumb and one of the arrows is clicked, hsbBar.Value changes by
hsbBar.LargeChange and the thumb moves accordingly. When the thumb is dragged,

298 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/scrollbar.html

hsbBar.Value changes accordingly. The default values of Min, Max, SmallChange, and
LargeChange are 0, 32767, 1, and 1, respectively. However, these values are usually reset at
design time. Note: The setting for the Min property can be a number greater than the setting
for the Max property. The Min property determines the values for the left and top arrows. The
Max property determines the values for the right and bottom arrows.

FIGURE 10-4 Horizontal and Vertical Scroll Bars

The Change event is triggered whenever an arrow or bar is clicked, or after the thumb
has been dragged. The Scroll event is triggered whenever the thumb is being dragged.

EXAMPLE 5

The following program uses scroll bars to move a smiling face around the form. The face is a large
Wingdings character J inside a label. The values lblFace.Left and lblFace.Top are the distances in twips
of the label from the left side and top of the form. (When printing, 1440 twips equal one inch; on the
screen, 1440 twips are more or less an inch.)

Object Property Setting

frmFace Caption Smiling Face
hsbXPos Min 0

Max 3000
SmallChange 100
LargeChange 500
Value 0

vsbYPos Min 500
Max 3000
SmallChange 100
LargeChange 500
Value 500

lblFace Caption J
Font Wingdings
Font Size 24
Left 0
Top 500

Private Sub hsbXPos_Change()
lblFace.Left = hsbXPos.Value

End Sub

Private Sub vsbYPos_Change()
lblFace.Top = vsbYPos.Value

End Sub

N i n e E l e m e n t a r y C o n t r o l s 299

[Run and move the thumbs on the scroll bars.]

In Example 5, when you drag the thumb, the face does not move until the dragging is
completed. This can be corrected by adding the following two event procedures.

Private Sub hsbXPos_Scroll() lblFace.Left = hsbXPos.ValueEnd SubPrivate Sub vsbY-
Pos_Scroll() lblFace.Top = vsbYPos.ValueEnd Sub

THE TIMER CONTROL

The timer control, which is invisible during run time, triggers an event after a specified amount
of time. The length of time, measured in milliseconds, is set with the Interval property to be
any number from 0 to 65,535 (about 1 minute and 5 seconds). The event triggered each time
Timer1.Interval milliseconds elapses is called Timer1_Timer(). In order to begin timing, a timer
must first be turned on by setting its Enabled property to True. A timer is turned off either by
setting its Enabled property to False or by setting its Interval property to 0. The standard pre-
fix for the name of a timer control is tmr.

EXAMPLE 6

The following program creates a stopwatch that updates the time every tenth of a second.

Object Property Setting

frmWatch Caption Stopwatch
cmdStart Caption Start
lblSeconds Caption Seconds
lblTime Caption (blank)
cmdStop Caption Stop
tmrWatch Interval 100

Enabled False

Private Sub cmdStart_Click()
lblTime.Caption = “ 0” ‘Reset watch
tmrWatch.Enabled = True

End Sub

Private Sub cmdStop_Click()
tmrWatch.Enabled = False

End Sub

Private Sub tmrWatch_Timer()
lblTime.Caption = Str(Val(lblTime.Caption) + .1)

End Sub

[Run, click on the Start button, wait 10.8 seconds, and click on the Stop button.]

300 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

THE SHAPE CONTROL

The shape control assumes one of six possible predefined shapes depending on the value of
its Shape property. Figure 10-5 shows the six shapes and the values of their corresponding
Shape properties. Shapes are usually placed on a form at design time for decoration or to high-
light certain parts of the form. By convention, names of shape controls have the prefix shp.

FIGURE 10-5 The Six Possible Shapes for a Shape Control

The most useful properties of shapes are BackStyle (transparent vs. opaque; see
Figure 10-6), BorderWidth (thickness of border), BorderStyle (solid, dashed, dotted, etc.),
BackColor (background color), FillStyle (fill-in pattern: horizontal lines, upward diagonal
lines, etc., as in Figure 9.20), FillColor (color used by FillStyle), and Visible.

FIGURE 10-6 Effect of the Value of the BackStyle Property

Figure 10-7 shows several effects that can be achieved with shapes. In the first effect, a
command button is set off by placing it on top of a rounded rectangle shape whose BackStyle
is opaque, BackColor is blue, FillStyle is downward diagonal, and FillColor is yellow. In the
second effect, the TRFFC20.ICO icon (displayed in an appropriately sized, borderless picture
box) is “framed” by placing it on top of an oval shape whose BackStyle is opaque and Back-
Color is the same as the background color of the icon. In the last effect, two command but-
tons are tied together by surrounding them with a circle shape whose FillStyle is transparent,
BorderWidth is 8, and BorderColor is green, and by placing behind the command buttons an
oval shape whose FillStyle is transparent, BorderWidth is 3, and BorderColor is blue.

N i n e E l e m e n t a r y C o n t r o l s 301

FIGURE 10-7 Several Effects Achieved with Shape Controls

THE LINE CONTROL

The Line control, which produces lines of various thickness, styles, and colors, is primarily used
to enhance the visual appearance of forms. The most useful properties of lines are BorderColor
(color of the line), BorderWidth (thickness of the line), BorderStyle (solid, dashed, dotted,
etc.), and Visible. Figure 10-8 shows several effects that can be achieved with lines. By con-
vention, names of line controls have the prefix lin.

FIGURE 10-8 Several Effects Achieved with Line Controls

THE IMAGE CONTROL

The image control is designed to hold pictures stored in graphics files such as .BMP files cre-
ated with Windows’ Paint, .ICO files of icons that come with Visual Basic, or .GIF and JPEG
images used on the World Wide Web. Pictures are placed in image controls with the Picture
property. If you double-click on the Picture property during design time, a file-selection dia-
log box appears and assists you in selecting an appropriate file. However, prior to setting the
Picture property, you should set the Stretch property. If the Stretch property is set to False (the
default value), the image control will be resized to fit the picture. If the Stretch property is set
to True, the picture will be resized to fit the image control. Therefore, with Stretch property
True, pictures can be reduced (by placing them into a small image control) or enlarged (by plac-
ing them into an image control bigger than the picture). Figure 10-9 shows a picture created
with Paint and reduced to several different sizes. By convention, names of image controls have
the prefix img.

A picture can be assigned to an image control at run time. However, a statement such as

imgBox.Picture = “filespec”

will not do the job. Instead, we must use the LoadPicture function in a statement such as

imgBox.Picture = LoadPicture(“filespec”)

Image controls enhance the visual appeal of programs. Also, because image controls respond
to the Click event and can receive the focus, they can serve as pictorial command buttons.

302 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

FIGURE 10-9 A Picture Created with Paint and Reduced Several Times

COMMENTS

1. When placing Line and Shape controls on a form, greater precision can be
achieved by first turning off the “Align Controls to Grid” option in the Gener-
al tab of the Options submenu of the Tools menu.

2. Although frames cannot receive the focus, they can have an access key that
sends the focus to the first control inside the frame that can receive the focus.

3. You can paste a picture into an image control by copying it from your paint pro-
gram and pressing Crl+V with the image control selected.

10.3 FIVE ADDITIONAL OBJECTS

In this section we discuss three controls and two objects that are not controls. The three con-
trols are the Microsoft FlexGrid control (a custom control), the menu control (not accessed
through the toolbox), and the common dialog box control (a custom control). The two objects
are the clipboard and the form. The discussion of the form deals with the use of multiple
forms.

THE MICROSOFT FLEXGRID CONTROL

The FlexGrid control does not initially appear in your Toolbox. To add the control, click on
Components in the Project menu, click the Controls tab, and click on the check box to the left
of “Microsoft FlexGrid Control 6.0.” Then press the OK button. By convention, names of
Microsoft FlexGrids have the prefix msg.

A grid is a rectangular array used to display tables or to create spreadsheet-like applica-
tions. The grid in Figure 10-10 has 6 rows and 7 columns. The number of rows and columns
can be specified at design time with the Rows and Cols properties or at run time with state-
ments such as msgFlex.Rows = 6 and msgFlex.Cols = 7. Rows and columns are numbered
beginning with 0. For instance, the rows in Figure 10-10 are numbered (from top to bottom)
as 0, 1, 2, 3, 4, and 5.

F i v e A d d i t i o n a l O b j e c t s 303

http://www.pearsoncustom.com/link/visualbasic/flexgridcontrol.html
http://www.pearsoncustom.com/link/visualbasic/clipboard.html
http://www.pearsoncustom.com/link/visualbasic/checkbox.html

FIGURE 10-10 A Simple FlexGrid Control

The width, measured in twips (there are about 1440 twips to an inch), of each column
can be specified only at run time with the ColWidth property. A typical statement is
msgFlex.ColWidth(3) = 1200, which sets the width of column 3 to 1200 twips. (The default
column width is 555 twips.) Similarly, the RowHeight property specifies the height of each
row. The width and height of the entire grid can be specified at design time by dragging the
mouse or by setting the Width and Height properties.

The grayed row and column in Figure 10-10 are referred to as fixed. Fixed rows and
columns must be at the top and left sides of the grid. The number of fixed rows and columns
is specified by the FixedRows and FixedCols properties. The grid in Figure 10-10 has the
default settings FixedRows = 1 and FixedCols = 1.

If the width of the grid is too small to show all the columns, a horizontal scroll bar will
automatically appear across the bottom of the grid. Then, during run time, the nonfixed
columns can be scrolled to reveal the hidden columns. Similarly, a vertical scroll bar appears
when the height of the grid is too small to show all the rows. Scroll bars can be suppressed
by setting the ScrollBars property of the grid to 0 – flexScrollBarNone. (The default value
of the ScrollBars property is 3 – flexScrollBarBoth.)

The individual small rectangles are called cells. Each cell is identified by its row and
column numbers. At any time, one cell is singled out as the current cell. Initially, the cell in
row 1, column 1 is the current cell. The pair of statements msgFlex.Row = m, msgFlex.Col
= n set the current cell to the cell in the mth row and nth column. When the user clicks on a
nonfixed cell, it becomes the current cell. The cell’s border becomes dotted, its row number
is assigned to the Row property, and its column number is assigned to the Col property. (In
Figure 10-10 the cell in row 2, column 4 is the current cell.) The horizontal and vertical lines
forming the cells can be turned off by setting the GridLines property to 0 – flexGridNone.

Unfortunately, you can’t just place text into a cell by clicking on the cell and typing, as
you would with a text box. The statement msgFlex.Text = str places the value of str into the
current cell and the statement str = msgFlex.Text reads the contents of the current cell. The
text inside all the nonfixed cells of column n can be displayed left-aligned, right-aligned, or
centered with a statement of the form msgFlex.ColAlignment(n) = r, where r is 1 for left-
alignment, 7 for right-alignment, and 4 for centered. The fixed cells of column n can be jus-
tified with a statement of the form msgFlex.FixedAlignment(n) = r.

EXAMPLE 1

The following program uses a grid to display an improved version of the table of student expenses from
Example 5 of Section 2.5. The five expense categories and numeric data for the table are stored in the
sequential file STCOSTS.TXT. Each record of the file consists of a string followed by four numbers.

Object Property Setting

frmCosts Caption Average Expenses of Commuter Students (1995–96)
msgCosts BorderStyle 0 – flexBorderNone
Cols 5
FixedCols 0
FixedRows 0
Font Courier New
GridLines 0 – flexGridNone

304 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/scrollbar.html

Rows 9
ScrollBars 0 – flexScrollBarNone

Private Sub Form_Load()
Dim rowNum As Integer, colNum As Integer
Dim strData As String, numData As Single
‘Column headings msgCosts.Row = 0
msgCosts.Col = 1
msgCosts.Text = “Pb 2-yr”
msgCosts.Col = 2
msgCosts.Text = “Pr 2-yr”
msgCosts.Col = 3
msgCosts.Text = “Pb 4-yr”
msgCosts.Col = 4
msgCosts.Text = “Pr 4-yr”
‘Read data from data file and obtain column totals
Dim total(1 To 4) As Single
Open “STCOSTS.TXT”
For Input As #1 For rowNum = 2 To 6 ‘row 0 holds headings, row 1 is blank

For colNum = 0 To 4
msgCosts.Row = rowNum
msgCosts.Col = colNum
If colNum = 0 Then

Input #1, strData
msgCosts.Text = strData

Else
Input #1, numData
msgCosts.Text = FormatCurrency(numData, 0)
total(colNum) = total(colNum) + numData

End If
Next colNum

Next rowNum
‘Display totals
msgCosts.Row = 8
msgCosts.Col = 0
msgCosts.Text = “Total”
For colNum = 1 To 4

msgCosts.Col = colNum
msgCosts.Row = 7
msgCosts.Text = “—————”
msgCosts.Row = 8
msgCosts.Text = FormatCurrency(total(colNum), 0)

Next colNum
‘Set column widths to accommodate data; right-justify dollar amounts

msgCosts.ColWidth(0) = 2000 ‘Space for category names
msgCosts.ColAlignment(0) = 1 ‘Left alignment

For colNum = 1 To 4
msgCosts.ColWidth(colNum) = 1200 ‘Space for dollar amounts
msgCosts.ColAlignment(colNum) = 7 ‘Right alignment
Next colNum
‘Set overall grid size to minimum needed for the data
msgCosts.Width = 2000 + 4 * 1200
msgCosts.Height = 9 * msgCosts.RowHeight(0)

End Sub

[Run]

F i v e A d d i t i o n a l O b j e c t s 305

EXAMPLE 2

The following program creates a simplified spreadsheet. The user places a number into the active cell by
typing the number into an input box. The program keeps a running total of the sum of the numbers.

Object Property Setting

frmSprdSht Caption Spreadsheet
lblAdjust Caption Adjust
cmdRows Caption Rows
cmdCols Caption Columns
cmdQuit Caption Quit
lblMsg Caption Click on a cell to

change its value
msgSprdSht ScrollBars 0 – flexScrollBarNone

FixedRows 0
FixedCols 0
Font Courier New

‘In (Declarations) section of (General)
Dim numRows As Integer ‘number of rows
Dim numCols As Integer ‘number of columns

Private Sub cmdRows_Click()
Dim temp As String
‘Adjust the number of rows in the spreadsheet
temp = InputBox(“Enter new number of rows (4-24):”)
If (Val(temp) >= 4) And (Val(temp) < Then

numRows = Val(temp)
Call SetUpGrid
Call ShowValues
Call ShowTotals

End If
End Sub

Private Sub cmdCols_Click()
Dim temp As String
‘Adjust number of columns in the spreadsheet
temp = InputBox(“Enter new number of columns (2-7):”)
If (Val(temp) >= 2) And (Val(temp) <= 7) Then

numCols = Val(temp)
Call SetUpGrid
Call ShowValues
Call ShowTotals

End If
End Sub

306 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

Private Sub cmdQuit_Click()

End

End Sub

Private Sub Form_Load()

‘Set default number of rows and columns

numRows = 8 ‘row 0 is for headings, last 2 rows are for totals

numCols = 2 ‘column 0 is for category names

Call SetUpGrid

Call ShowValues

Call ShowTotals

End Sub

Private Sub msgSprdSht_Click()

Dim temp As String, message As String

’Obtain new value for cell if it is not in the “total” row

If messageSprdSht.Row < numRows - 2 Then

message = “Enter new value for the row ”

message = message & Str(msgSprdSht.Row + 1) & “ column ”

message = message & Str(msgSprdSht.Col + 1) & “ cell:”

temp = InputBox(message,,msgSprdSht.Text) ‘Propose old value as default

If msgSprdSht.Col = 0 Then

msgSprdSht.Text = temp

ElseIf msgSprdsht.Row = 0 Then

msgSprdSht.Text = temp

Else

msgSprdsht.Text = FormatNumber(Val(temp)vbFalse)

Call ShowTotals

End If

End If

End Sub

Private Sub SetUpGrid()

Dim colNum As Integer

‘Set up grid msgSprdSht.Col = 0

msgSprdSht.Row = msgSprdSht.Rows - 1

msgSprdSht.Text = “” ‘erase “Total” in case increasing rows

msgSprdSht.Rows = numRows

msgSprdSht.Cols = numCols

‘Set column widths; right-justify columns with numeric data

msgSprdSht.ColWidth(0) = 2000 ‘space for category names

msgSprdSht.ColAlignment(0) = 1 ‘show data left-justified

For colNum = 1 To numCols - 1

msgSprdSht.ColWidth(colNum) = 1200 ‘space for dollar amounts

msgSprdSht.ColAlignment(colNum) = 7 ‘show data right-justified

Next colNum ‘Set overall grid size to minimum needed for the data

msgSprdSht.Width = 2000 + (numCols - 1) * 1200 + 15 * (numCols + 1) + 8

msgSprdSht.Height = numRows*msgSprdSht.RowHeight(0)+15*(numRows + 1)+8

‘Adjust form to accommodate grid and other controls

frmSprdSht.Width = msgSprdSht.Left + msgSprdSht.Width + 200

frmSprdSht.Height = msgSprdSht.Top + msgSprdSht.Height + 500

frmSprdSht.Top = 0 frmSprdSht.Left = 0

End Sub

F i v e A d d i t i o n a l O b j e c t s 307

Private Sub ShowTotals()
Dim colNum As Integer, rowNum As Integer, total As Single
‘Compute and display total of each numeric column
msgSprdSht.Row = numRows - 1
msgSprdSht.Col = 0
msgSprdSht.Text = “Total”
For colNum = 1 To numCols - 1

total = 0
For rowNum = 1 To numRows - 3

msgSprdSht.Row = rowNum
msgSprdSht.Col = colNum
total = total + Val(msgSprdSht.Text)

Next rowNum
msgSprdSht.Row = numRows - 2
msgSprdSht.Text = “————————”
msgSprdSht.Row = numRows - 1
msgSprdSht.Text = FormatCurrency(total)

Next colNum
End Sub

Private Sub ShowValues()
Dim rowNum As Integer, colNum As Integer
‘Refresh values displayed in cells
For rowNum = 1 To numRows - 1

For colNum = 1 To numCols - 1
msgSprdSht.Row = rowNum
msgSprdSht.Col = colNum
msgSprdSht.Text = FormatNumber(Val(msgSprdSht.Text)vbFalse)

Next colNum
Next rowNum

End Sub

[A possible run of the program is shown.]

So far we have used the Text property of grids to place strings into cells. Grids also have
a Picture property. A picture (such as a .BMP file created with Paint or an .ICO file from
Visual Basic’s icon directory) is placed into the current cell with a statement of the form

Set msgFlex.CellPicture = LoadPicture(“filespec”)

If both text and a picture are assigned to a cell, then the picture appears in the upper left por-
tion of the cell, and the text appears to the right of the picture.

■ THE MENU CONTROL

Visual Basic forms can have menu bars similar to those in most Windows applications.
Figure 10-11 shows a typical menu, with the submenu for the Font menu item dropped down.

308 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html

Here, the menu bar contains two menu items (Font and Size), referred to as top-level menu
items. When the Font menu item is clicked, a dropdown list of two second-level menu items
(Courier and TimesRm) appears. Although not visible here, the dropdown list under Size con-
tains the two second-level menu items “12” and “24”. Each menu item is treated as a distinct
control that responds to only one event—the click event. The click event is triggered not only
by the click of the mouse button, but also for top-level items by pressing Alt+accessKey and
for second-level items by just pressing the access key. The click event for the Courier menu
item in Figure 10-11 can be activated directly by pressing the shortcut key F1.

FIGURE 10-11 A Simple Menu

Menus are created with the Menu Editor window available from the Tools menu on the
Visual Basic main menu bar. Figure 10-12 shows the Menu Design window used to create
the menu in Figure 10-11. Each menu item has a Caption property (what the user sees) and
a Name property (used to refer to the item in the code.) For instance, the last menu item in
Figure 10-12 has Caption property “24” and Name property “mnu24”. The following steps
are used to create the Font-Size menu:

FIGURE 10-12 The Menu Editor Window Used to Create the Menu in Figure 10-11

1. Type &Font into the Caption box and type mnuFont into the Name box.

2. Click on the Next button.

3. Click on the Right Arrow button. (This creates the ellipses and indents the next
menu item, which will be a second-level item.)

4. Type &Courier into the Caption box and type mnuCourier into the Name box.

5. Click on the arrow to the right of the Shortcut box and select F1 from the drop-
down list.

6. Click on the Next button.

7. Type &TimesRm into the Caption box and type mnuTimesRm into the Name
box.

8. Click on the Next button:

F i v e A d d i t i o n a l O b j e c t s 309

9. Click on the Left Arrow button. (This causes the next item to appear flush left
to indicate that it is a top-level menu item.)

10. Type &Size into the Caption box and type mnuSize into the Name box.

11. Click on the Next button and then click on the Right Arrow button.

12. Type 12 into the Caption box and type mnu12 into the Name box.

13. Click on the Next button.

14. Type 24 into the Caption box and type mnu24 into the Name box. Your Menu
Editor window should now appear as in Figure 10-12.

15. Click the OK button to close the Menu Editor window.

Three of the check boxes on the Menu Editor window are especially useful. When the
Checked box is checked, a checkmark appears in front of the menu item. This checkmark can
be altered in code with statements such as mnuItem.Checked = False and mnuItem.Checked
= True. When the Enable box is unchecked, the menu item appears gray and does not respond
to the click event. The enabled state can be altered in code with statements such as mnu-
Item.Enabled = False and mnuItem.Enabled = True. When the Visible property is unchecked,
the menu item is invisible.

EXAMPLE 3

The following program creates the application in Figure 10-11, in which the menu is used to alter the
appearance of the contents of a text box. The form has caption “Alter Font & Size” and the properties of
the menu items are as created before.

Private Sub mnu12_Click()
txtInfo.Font.Size = 12

End Sub

Private Sub mnu24_Click()
txtInfo.Font.Size = 24

End Sub

Private Sub mnuCourier_Click()
txtInfo.Font.Name = “Courier”

End Sub

Private Sub mnuTimesRm_Click()
txtInfo.Font.Name = “Times New Roman”

End Sub

■ THE CLIPBOARD OBJECT

The clipboard object is used to copy or move text from one location to another. It is maintained
by Windows and therefore even can be used to transfer information from one Windows ap-
plication to another. It is actually a portion of memory that holds text and has no properties
or events.

If str is a string, then the statement

Clipboard.SetText str

replaces any text currently in the clipboard with str. The statement

str = Clipboard.GetText()

assigns the text in the clipboard to the string variable str.
The statement

310 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/stringvariable.html
http://www.pearsoncustom.com/link/visualbasic/clipboard.html
http://www.pearsoncustom.com/link/visualbasic/checkbox.html

Clipboard.Clear

deletes the contents of the clipboard.
A portion of the text in a text box or combo box can be selected by dragging the mouse

across it or by moving the cursor across it while holding down the Shift key. After you select
text, you can place it into the clipboard by pressing Ctrl+C. Also, if the cursor is in a text box
and you press Ctrl+V, the contents of the clipboard will be inserted at the cursor position.
These tasks also can be carried out in code. The SelText property of a text box holds the
selected string from the text box and a statement such as

Clipboard.SetText txtBox.SelText

copies this selected string into the clipboard. The statement

txtBox.SelText = Clipboard.GetText()

replaces the selected portion of txtBox with the contents of the clipboard. If nothing has been
selected, the statement inserts the contents of the clipboard into txtBox at the cursor position.
The clipboard can actually hold any type of data, including graphics. Any time you use the Copy
menu item, you are putting information into the clipboard. The Paste menu item sends that data
to your program.

■ MULTIPLE FORMS

A Visual Basic program can contain more than one form. Additional forms are created from
the Project menu with Add Form (Alt/P/F/Enter). The name of each form appears in the Project
Explorer window, and any form can be made the active form by double-clicking on its name
in the Project Explorer window. (Hint: After creating a new form, move it down slightly so that
you can see at least the title bars of the other forms. Then you can activate any form by just
clicking on its title bar.) The second form has default name Form2, the third form has default
name Form3, and so on. Forms are hidden or activated with statements such as

Form1.Hide

or

Form2.Show

When a program is run, the first form created is the only one visible. After that, the Hide and
Show methods can be used to determine what forms appear.

Often, additional forms, such as message and dialog boxes, are displayed to present a
special message or request specific information. When a message or dialog box appears, the
user cannot shift the focus to another form without first hiding the message or dialog box by
clicking an OK or Cancel command button. If a form is displayed with a statement of the
type

formName.Show 1 or formName.Show vbModal

then the form will exhibit this same behavior. The user will not be allowed to shift the focus
back to the calling form until formName is hidden. Such a form is said to be modal. It is cus-
tomary to set the BorderStyle property of modal forms to “3-Fixed Dialog”.

Each form has its own controls and code. However, code from one form can refer to a
control in another form. If so, the control must be prefixed with the name of the other form,
followed by a period. For instance, the statement

Form2.txtBox.Text = “Hello”

in Form1 causes text to be displayed in a text box on Form2. (Note: Two forms can have a text
box named txtBox. Code using the name txtBox refers to the text box in its own form unless
prefixed with the name of another form.)

F i v e A d d i t i o n a l O b j e c t s 311

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/combobox.html
http://www.pearsoncustom.com/link/visualbasic/clipboard.html

EXAMPLE 4

The following program uses a second form as a dialog box to total the different sources of income. Ini-
tially, only frmIncome is visible. The user types in his or her name and then either can type in the income
or click on the command button for assistance in totaling the different sources of income. Clicking on the
command button from frmIncome causes frmSources to appear and be active. The user fills in the three
text boxes and then clicks on the command button to have the amounts totaled and displayed in the income
text box of the first form.

Object Property Setting

frmIncome Caption Income
lblName Caption Name
txtName Text (blank)
lblTotal Caption Total Income
txtTotal Text (blank)
cmdShowTot Caption Determine Total Income

Object Property Setting

frmSources Caption Sources of Income
BorderStyle 3 – Fixed Dialog

lblWages Caption Wages
txtWages Text (blank)
lblInterest Caption Interest Income
txtInterest Text (blank)
lblDividend Caption Dividend Income
txtDividend Text (blank)
cmdCompute Caption Compute Total Income

Private Sub cmdShowTot_Click()
frmSources.Show vbModal

End Sub

Private Sub cmdCompute_Click()
Dim sum As Single
sum = Val(txtWages.Text) + Val(txtInterest.Text) + Val(txtDividend.Text)
frmIncome.txtTotal.Text = FormatCurrency(Str(sum))
frmSources.Hide

End Sub

[Run, enter name, click the command button, and fill in the sources of income.]

All variables declared and general procedures created in the (General) object of a form
are local to that form; that is, they are not available to any other form. Such variables and
procedures are said to be of form level. However, you can declare global variables and pro-

312 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

cedures that are available to all forms. To do so, select Add Module from the Project menu
and then double-click on the Module icon. A code window will appear with Module1 in the
title bar. Procedures created in this window with the Public keyword will be available to all
forms. To declare a variable that is available to all forms, declare it in the Module1 window,
but use the word Public instead of Dim. For instance, if the statement

Public person As String

appears in the Module1 code window, the variable person can be accessed anywhere in the pro-
gram.

The contents of this code window are said to form a (Standard) code module. Project
Explorer shows the names of all forms and code modules and gives you access to the code
from any form or module. When a code module is selected, you can save it by choosing Save
Module As from the File menu. You add an existing code module to a program by choosing
Add File from the Project menu.

■ THE COMMON DIALOG CONTROL

The common dialog control does not initially appear in your Toolbox. To add the control, se-
lect Components from the Project menu, click the Controls tab, and click on the check box to
the left of “Microsoft Common Dialog Control 6.0.” Then press the OK button. By conven-
tion, names of common dialog boxes have the prefix dlg.

The common dialog control can produce each of the useful dialog boxes in Figures 10.13
through 10.17, thereby saving the programmer the trouble of designing custom dialog boxes
for these purposes. The common dialog control has no events, only methods and properties.
Actually, like the Timer control, the common dialog box control is invisible. However, when
you execute a statement of the form

CommonDialog1.Show_________

where the blank line is filled with Open, Save, Color, Font, or Printer, the specified dialog
box is produced. Table 10.1 gives the purposes of the various dialog boxes.

TABLE 10.1
The Different Types of Dialog Boxes

Type of Dialog box Purpose of Dialog Box

Open Determine what file to open
Save As Determine where and with what name to save a file
Color Select any available color
Font Select a font for the screen or printer
Print Help control the printer

FIGURE 10-13 An Open Common Dialog Box

F i v e A d d i t i o n a l O b j e c t s 313

http://www.pearsoncustom.com/link/visualbasic/checkbox.html

FIGURE 10-14 A Save As Common Dialog Box

FIGURE 10-15 A Color Common Dialog Box

FIGURE 10-16 A Font Common Dialog Box

FIGURE 10-17 A Print Common Dialog Box

314 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

The Flags property influences certain features of the dialog box and should be set prior
to setting the Show method. A complete discussion of the Flags property would be too great
a digression. For our purposes, we will be well served by always setting the Flags property
to 3 with the statement

dlgBox.Flags = 3

After selections are made from a common dialog box and the OK button is clicked, the val-
ues of the selections are stored in properties such as FileName, Color, FontName, FontItalic,
FontSize and Copies. For instance, the following event procedure specifies the font for the
contents of a text box.

Private Sub cmdButton_Click()
dlgFont.Flags = 3
dlgFont.ShowFont ‘invoke Font common dialog box
‘Select Font, Font style, and Size and then click on OK
txtBox.Font.Name = dlgFont.FontName
txtBox.Font.Bold = dlgFont.FontBold
txtBox.Font.Italic = dlgFont.FontItalic
txtBox.Font.Size = dlgFont.FontSize

End Sub

Table 10.2 gives the principal properties whose setting are garnered from the common
dialog boxes.

TABLE 10.2
Principal Properties of the Common Dialog Boxes

Type of Common
Dialog Box Principal Properties

Open FileName
Save As FileName
Color Color
Font FontName, FontSize, FontBold, FontItalic
Print Copies, FromPage, ToPage

With Open and Save As common dialog boxes, a property is needed to specify what
types of files should be displayed. A statement of the form

dlgFile.Filter = “dscrpt1|filter1|dscrpt2|filter2|dscrpt3|filter3“

provides verbal descriptions for the Type box and strings using wildcard characters (filters) to
identify the files. A specific statement might be

dlgFile.Filter = “Text Files|*.TXT|FRM Files|*.FRM|All Files|*.*”

After the filter property is set, the FilterIndex property can be used to set the default filter. For
instance, if the preceding statement is followed with

dlgFile.FilterIndex = 1

the default will be the first pair of filter items. That is, when the dialog box pops up, the Files
of type box will display Text Files, and the large box will show only files with the extension
TXT.

COMMENT

1. In the Properties window of a FlexGrid control, one setting of the GridLines
property is “0 – flexGridNone.” In code, this setting can be invoked with either

F i v e A d d i t i o n a l O b j e c t s 315

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/flexgridcontrol.html

msgFlex.GridLines = 0

or

msgFlex.GridLines = flexGridNone

SUMMARY

1. List boxes provide easy access to lists of strings. The lists can be automatically
sorted (Sorted property = True), altered (AddItem, RemoveItem, and Clear
methods), the currently highlighted item identified (Text property), and the num-
ber of items determined (ListCount property). The array List() holds the items
stored in the list. Each item is identified by an index number (0, 1, 2, . . .). The
most recently inserted item can be determined with the NewIndex property. The
ItemData property associates a number with each item of text.

2. Combo boxes are enhanced text boxes. They not only allow the user to enter
information by typing it into a text box (read with the Text property), but allow
the user to select the information from a list of items.

3. Drive, directory, and file list boxes are specialized list boxes managed largely
by Windows. The selected items are identified by the Drive, Path, and FileName
properties, respectively. A directory list box always displays the subdirectories
of the directory identified by its Path property, and a files list box displays the
files in the directory identified by its Path property.

4. Selections are made with check boxes (allow several) and option buttons (allow
at most one). The state of the control (checked vs. unchecked or on vs. off) is
stored in the Value property. Clicking on a check box toggles its state. Clicking
on an option button gives it the on state and turns off the other option buttons
in its group.

5. Frames are used to group controls, especially option buttons, as a unit.

6. Horizontal and vertical scroll bars permit the user to select from among a range
of numbers by clicking or dragging with the mouse. The range is specified by
the Min and Max properties, and new settings trigger the Click and Change
events.

7. The timer control triggers an event after a specified amount of time.

8. The shape and line controls enhance the visual look of a form with rectangles,
ovals, circles, and lines of different size, thickness, and color.

9. The image control, which displays pictures or icons, can either expand to
accommodate the size of the drawing or have the drawing alter its size to fit the
image control.

10. A Microsoft FlexGrid control is a rectangular array of cells, each identified by
a row and column number. The numbers of rows and columns are specified by
the Rows and Cols properties. If the size of the grid is larger than provided by
the control, scroll bars can be used to look at different parts of the grid. The
FixedRows and FixedCols properties fix a certain number of the top rows and
leftmost columns so that they will not scroll. The Row and Col properties are
used to designate one cell as current. The Text property is used to read or place
text into the current cell.

11. Menus, similar to the menus of Visual Basic itself, can be created with the
Menu Design window.

12. The clipboard is filled with the SetText method or by pressing Ctrl+C, and is
copied with the GetText function or with Ctrl+V.

316 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/scrollbar.html
http://www.pearsoncustom.com/link/visualbasic/listbox.html
http://www.pearsoncustom.com/link/visualbasic/flexgridcontrol.html
http://www.pearsoncustom.com/link/visualbasic/combobox.html
http://www.pearsoncustom.com/link/visualbasic/clipboard.html
http://www.pearsoncustom.com/link/visualbasic/checkbox.html

13. Additional forms serve as new windows or dialog boxes. They are revealed with
the Show method and concealed with the Hide method.

14. Common dialog boxes provide a standard way of specifying files, colors, and
fonts, and of communicating with the printer.

PROGRAMMING PROJECTS

1. Membership List. Write a menu-driven program to manage a membership list.
(See the following Membership List form.) Assume that the names and phone
numbers of all members are stored in the sequential file MEMBERS.TXT. The
names should be read into the list box when the form is loaded and the phone
numbers should be read into an array. When a name is highlighted, both the
name and phone number of the person should appear in the text boxes at the
bottom of the screen. To delete a person, highlight his or her name and click on
the Delete menu item. To change either the phone number or the spelling of the
person’s name, make the corrections in the text boxes and click on the menu
item Modify. To add a new member, type his or her name and phone number
into the text boxes and click on the menu item Add. When Exit is clicked, the
new membership list should be written to a file and the program should
terminate.

2. Grade Book. Write a comprehensive program that a professor could use to
record student grades for several classes and save the records in sequential files.
(See the preceding Class Grades form.) Each class has three hourly exams and
a final exam. The file for a single class should consist of the number of students
in the class, call it n, and a record of five fields (name, grade1, grade2, grade3,
final) for each student, with the records ordered alphabetically by the student’s
name. (A typical name might appear as “Doe, John”.) Initially, the four grade
fields should contain zeros. The program should contain a top-level menu item,
File, with second-level subitems for Open, Save, Add Student, Remove Student.
When a file is opened (via a file list directory or common dialog box), the data
for the students should be loaded into a grid of n + 1 rows and 7 columns. (The
last two columns should remain blank.) The professor should be able to enter
(or alter) exam data by clicking on the cell and responding to an input box.
When a student is added, the grid should be enlarged by one row and the stu-
dent inserted in proper alphabetical position. When a student is deleted, the grid
should be reduced by one row. When the Calculate Semester Grades button is
clicked, the last two columns should be filled in by the program. (Assume that
the final exam counts as two hour exams.) If a grade is changed after the last

P r o g r a m m i n g P r o j e c t s 317

http://www.pearsoncustom.com/link/visualbasic/sequentialfile.html
http://www.pearsoncustom.com/link/visualbasic/listbox.html
http://www.pearsoncustom.com/link/visualbasic/inputbox.html

two columns have been filled in, the corresponding average and grade should
be recomputed.

3. Tic-Tac-Toe. Write a program that “officiates” a game of tic-tac-toe. That is, the
program should allow two players to alternate entering X’s and O’s into a tic-
tac-toe board until either someone wins or a draw is reached. If one of the play-
ers wins, the program should announce the winner immediately; in case of a
draw, the program should display “Cat’s game”. The players should enter their
plays by clicking on the desired cell in the tic-tac-toe grid, and the program
should check that each play is valid. Optional Enhancement: Allow the play-
ers to enter a number n. The program should officiate a best-of-n tournament,
keeping track of the number of games won by each player until one of them
wins more than half of the games. Ignore draws.

4. Hangman. Write a program to play Hangman. (See the following Hangman
form.) A list of 20 words should be placed in a sequential file and one selected
at random with Rnd. The program should do the following:

(a) Draw a gallows on the screen with three line controls.

(b) Create a grid having 1 row and 26 columns, and fill the grid with the 26 let-
ters of the alphabet.

(c) Create a second grid of one row and the number of columns equal to the
length of the word selected.

(d) Each time the user clicks on one of the letters of the alphabet, that letter
should be removed. If the letter is in the selected word, its location(s) should
be revealed in the second grid. If the letter is not in the word, another piece
of the man should be drawn with a shape control.

5. Inventory Control. Write an inventory program for a book store and save the infor-
mation in a sequential file. Each record should consist of five fields—title, author,
category, wholesale price, and number in stock. (The two categories are fiction and
nonfiction.) At any time, the program should display the titles of the books in stock
in a list box, for which the user should have the option of displaying either all titles
or just those in one of the two categories. When a book is selected from the list, its
title, author, category, wholesale price, and number in stock should be displayed in a
picture box. The user should be able to add a new book, delete a book, or change the
inventory level of a book in stock. At any time, the user should be able to calculate
the total value of all books, or the total value of the books in either category.

318 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/sequentialfile.html
http://www.pearsoncustom.com/link/visualbasic/listbox.html

6. Voting Machine. The members of the local Gilligan’s Island fan club bring a com-
puter to their annual meeting to use in the election of a new president. Write a
program to handle the election. The program should add each candidate to a list
box as he or she is nominated. After the nomination process is complete, club
members should be able to approach the computer one at a time and double-click
on the candidate of their choice. When a “Tally Votes” command button is
clicked, a second list box, showing the number of votes received by each candi-
date, should appear alongside the first list box. Also, the name(s) of the candi-
date(s) with the highest number of votes should be displayed in a picture box.

7. Airplane Seating Chart. An airplane has 30 rows (numbered 1 through 30), with
6 seats (labeled A, B, C, D, E, and F) in each row. Write a program to display a
7-by-31 grid with a cell for each seat. As each passenger selects a seat and a
meal (regular, low-calorie, or vegetarian), the ticket agent clicks on the cell cor-
responding to the seat. A dialog box requests the type of meal and then one of
the letters R, L, or V is placed in the cell clicked. At any time, the agent can
request the number of seats filled, the number of window seats vacant, and the
numbers of each type of meal ordered.

P r o g r a m m i n g P r o j e c t s 319

S E C T I O N

DATABASE MANAGEMENT

1111

323

11.1 AN INTRODUCTION TO DATABASES

The management of databases is the number one use of computers today. Airlines use databases
to handle nearly 1.5 billion passenger reservations per year. The 6500 hospitals in the United
States use databases to document the care of over 30 million patients per year. Banks in the
United States use databases to monitor the use of 350 million credit cards. Although databas-
es vary considerably in size and complexity, most of them adhere to the fundamental princi-
ples of design discussed in this chapter. That is, they are composed of a collection of interrelated
tables.

A table is a rectangular array of data. Table 11.1 provides information about large cities.
Each column of the table, called a field, contains the same type of information. (The third
column gives the 1995 population in millions and the fourth column gives the projected 2015
population in millions.) The names of the fields are city, country, pop1995, and pop2015.
Each row, called a record, contains the same type of information as every other row. Also,
the pieces of information in each row are related; they all apply to a specific city. Table 11.2,
Countries, has three fields and nine records.

TABLE 11.1
Cities

city country pop1995 pop2015

Beijing China 12.4 19.4
Bombay India 15.1 27.4
Calcutta India 11.7 17.6
Los Angeles USA 12.4 14.3
Mexico City Mexico 15.6 18.8
New York USA 16.3 17.6
Sao Paulo Brazil 16.4 20.8
Shanghai China 15.1 23.4
Tianjin China 10.7 17.0
Tokyo Japan 26.8 28.7

http://www.pearsoncustom.com/link/visualbasic/database.html

TABLE 11.2
Countries

Country pop1995 currency

Brazil 155.8 real
China 1185.2 yuan
India 846.3 rupee
Indonesia 195.3 rupiah
Japan 125.0 yen
Mexico 85.6 peso
Nigeria 95.4 naira
Russia 148.2 ruble
USA 263.4 dollar

Source: An Urbanized World—Global Report on Human Settlements 1996, a report presented at Habi-
tat II, a UN conference on the world’s cities held in Istanbul in June 1996.

A database (or relational database) is a collection of one or more (usually related)
tables that has been created with database management software. The best known dedicat-
ed database management products are Access, Btrieve, dBase, FoxPro, and Paradox. Every
version of Visual Basic 6.0 can manage, revise, and analyze a database that has been creat-
ed with one of these products. Section 11.3 shows how to create a database with Visual Data
Manager, a miniversion of Access that is supplied with Visual Basic. Section 11.3 also gives
a code template for creating a database programmatically.

The databases used in this chapter can be found in the collection of files accompanying
this text. The database files have the extension .MDB. For instance, the file MEGAC-
TY1.MDB is a database file containing the two tables presented on the preceding page.
(Note: MDB files should be copied from the CD onto a hard drive and accessed from the
hard drive.)

THE DATA CONTROL

Visual Basic communicates with databases through the data control. Data controls can read,
modify, delete, and add records to databases. The following walkthrough uses a data control
to connect Visual Basic to the database MEGACTY1.MDB.

■ A DATA CONTROL WALKTHROUGH

1. Press Alt/File/New Project and double-click on Standard EXE.

2. Double-click on the data control icon. Set its Name property to datCities and its
Caption property to Cities.

3. Stretch it horizontally to see the caption Cities.

4. Select the DatabaseName property and set it to the filespec for the file
MEGACTY1.MDB.

An Open File dialog box will help you locate the file.

5. Select the RecordSource property and click on the down-arrow button at the
right of the Settings window.

The names of the two tables in the database, Cities and Countries, are displayed.

6. Select Cities.

7. Place a text box, txtCity, on the form.

Text boxes are said to be data-aware because they can be bound to a data con-
trol and access its data.

8. In the Properties window, select the DataSource property of txtCity.

324 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/visualdatamanager.html
http://www.pearsoncustom.com/link/visualbasic/relationaldatabases.html
http://www.pearsoncustom.com/link/visualbasic/database.html
http://www.pearsoncustom.com/link/visualbasic/visualdatamanager.html

9. Click on the down arrow to the right of the Settings box and select datCities.

10. Select the DataField property and click on the down arrow at the right of the
Settings box.

You will see the names of the different fields in the table.

11. Select the field city.

The text box now is said to be bound to the data control. It can now display data
from the city field of the Cities table.

12. Place another text box, txtPop1995, on the form.

13. Select txtPop1995’s DataSource property.

14. Click on the down arrow to the right of the Settings box and select datCities.

15. Select the DataField property, click on the down arrow at the right of the Set-
tings box, and select pop1995.

16. Run the program.

The form will appear as in Figure 11-1. The arrows on the data control, called
navigation arrows, look and act like VCR buttons. The arrows have been iden-
tified by the tasks they perform.

17. Click on the various navigation arrows on the data control to see the different
cities and their populations in the Cities table displayed in the text boxes.

18. Change the name of a city or change its population and then move to another
record.

If you look back through the records, you will see that the data have been per-
manently changed.

FIGURE 11-1 A Data Control with Two Text Boxes Bound to It

■ USING CODE WITH A DATA CONTROL

Only one record can be accessed at a time; this record is called the current record. In this walk-
through, the text boxes bound to the data control showed the contents of the city and pop1995
fields of the current record. The user clicked on the navigation arrows of the data control to
select a new current record.

Code can be used to designate another record as the current record. The methods
MoveNext, MovePrevious, MoveLast, and MoveFirst select a new current record as suggest-
ed by their names. For instance, the statement

Data1.Recordset.MoveLast

specifies the last record of the table to be the current record. (The word Recordset is inserted
in most data-control statements that manipulate records for reasons that needn’t concern us
now.)

The entry of the field fieldName of the current record is

Data1.Recordset.Fields(“fieldName”).Value

For instance, with the status as in Figure 11-1, the statement

strVar = datCities.Recordset.Fields(“city”).Value

A n I n t r o d u c t i o n t o D a t a b a s e s 325

assigns “Beijing” to the variable strVar and the statements

datCities.Recordset.Edit
datCities.Recordset.Fields(“city”).Value = “Peking”
datCities.Recordset.Update

change the city field of the current record to “Peking”. (The first statement makes a copy of
the current record for editing. The second statement alters the copy, and the third statement
sends the new copy of the record to the database.)

The number of previously accessed records in the table is given by the RecordCount
property. The EOF (End Of File) and BOF (Beginning Of File) run-time properties indicate
whether the end or beginning of the file has been reached. For instance, the following two
sets of statements each place the cities into a list box.

datCities.Recordset.MoveLast ‘Needed to set value of RecordCount
datCities.Recordset.MoveFirst
For i = 1 to datCities.Recordset.RecordCount

lstBox.AddItem datCities.Recordset.Fields(“city”).Value
datCities.Recordset.MoveNext

Next i

datCities.Recordset.MoveFirst

Do
While Not datCities.Recordset.EOF

lstBox.AddItem datCities.Recordset.Fields(“city”).Value
datCities.Recordset.MoveNext

Loop

The current record can be marked for removal with the statement

Data1.Recordset.Delete

The record will be removed when a data control navigation arrow is clicked or a Move
method is executed. A new record can be added to the end of the table with the statement

Data1.Recordset.AddNew

followed by

Data1.Recordset.Fields(“fieldName”).Value = entryForField

statements for each field and a

Data1.Recordset.Update

statement. Alternately, the AddNew method can be followed by the user typing the informa-
tion into text boxes bound to the data control and then moving to another record. (Note: When
you add a record and then click on the MovePrevious arrow, you will not see the next-to-last
record, but rather will see the record preceding the record that was current when AddNew was
executed.)

■ THE VALIDATION EVENT

Visual Basic has a device called validation that lets you restrict the values a user can enter into
a table. For instance, if the Cities table is only to contain cities with a population of more than
1 million, you can use validation to prevent any record with a number less than 1 in the pop1995
field from being entered. Validation also allows you to catch (and prevent) errors that might
cause a program to crash.

Data controls have an event procedure called Validate that is activated whenever the cur-
rent record is about to be changed. For instance, it is called when a navigation arrow is

326 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/listbox.html
http://www.pearsoncustom.com/link/visualbasic/database.html

clicked or a Move, Update, Delete, or AddNew method is executed. The general form of the
Validate event procedure is

Private Sub Data1_Validate(Action As Integer, Save As Integer)
statement(s)

End Sub

The value of Action identifies the specific operation that triggered the event and the value of
Save specifies whether data bound to the control has changed. You can change the value of the
Action argument to perform a different action. Some values of the Action argument are shown
in Table 11.3.

TABLE 11.3
Some Values of the Action Argument

Value Description

1 MoveFirst method
2 MovePrevious method
3 MoveNext method
4 MoveLast method
5 AddNew method
6 Update operation (not UpdateRecord)
7 Delete method

10 Close method

If you assign 0 to the Action argument, the operation will be canceled when the Validate
event procedure is exited.

The value of Save is –1 (True) if the data in any control attached to the data control have
changed and is 0 (False) otherwise. If you set the value of Save to 0 in the Validate event pro-
cedure, any changes will not be saved.

Consider the form created in the walkthrough. Suppose the contents of txtPop1995, the
1995 population text box, is changed to .8 and then a navigator arrow is clicked in an attempt
to move to another record. The following code prevents the move.

Private Sub datCities_Validate(Action As Integer, Save As Integer)
Dim strMsg As String
If val(txtPop1995) < 1 then

strMsg = “We only allow cities having a population ” & _ “at least one
million.”

MsgBox strMsg“City too small!”
Action = 0

End If
End Sub

If the statement

Action = 0

is changed to

Save = 0

the move will take place, but the previous record will retain its original values. That is, the num-
ber .8 will not appear in the table.

EXAMPLE 1

The following program is a general database manager for the Cities table in the MEGACTY1.MDB data-
base. It allows the user to edit the Cities table as needed and to locate information based on the city name.
(In the Validate event procedure, the inner If block keeps the message box from appearing when the first
or last record is deleted.)

A n I n t r o d u c t i o n t o D a t a b a s e s 327

http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html

Object Property Setting

frmDBMan Caption Database
Management

cmdAdd Caption Add
cmdDelete Caption Delete
cmdSearch Caption Search
cmdQuit Caption Quit
datCities Caption Large World

Cities
Database MEGACTY1.MDB
Name
Record Cities
Source

lblCity Caption City:
txtCity Text (blank)

Data datCities
Source
DataField City

lblCountry Caption Country:
txtCountry Text (blank)

Data datCities
Source
DataField Country

lblPop1995 Caption 1995 Population:
txtPop1995 Text (blank)

Data datCities
Source
DataField pop1995

lblPop2015 Caption 2015 Population:
txtPop2015 Text (blank)

Data datCities
Source
DataField pop2015

Private Sub cmdAdd_Click()
‘Add a new record
datCities.Recordset.AddNew
‘Data must be entered and a new record moved to

End Sub

Private Sub cmdDelete_Click ()
‘Delete the currently displayed record
datCities.Recordset.Delete
‘Move so that user sees deleted record disappear
datCities.Recordset.MoveNext
If datCities.Recordset.EOF Then

datCities.Recordset.MovePrevious
End If

End Sub

Private Sub cmdSearch_Click()
Dim strSearchFor As String, foundFlag As Boolean
‘Search for the city specified by the user
strSearchFor = UCase(InputBox(“Name of city to find:”))
If Len(strSearchFor) > 0 Then

datCities.Recordset.MoveFirst
foundFlag = False

328 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

Do While (Not foundFlag) And (Not datCities.Recordset.EOF)
If UCase(datCities.Recordset.Fields(“City”).Value) = strSearchFor Then

foundFlag = True
Else

datCities.Recordset.MoveNext
End If

Loop
If Not foundFlag Then

MsgBox “Unable to locate requested city.”“Not Found”
datCities.Recordset.MoveLast ‘move so that EOF is no longer true

End If
Else

MsgBox “Must enter a city.”, ,“”
End If

End Sub

Private Sub cmdQuit_Click ()
End

End Sub

Private Sub datCities_Validate(Action As Integer, Save As Integer)
‘Prevent a user from adding a city of population under 1 million
Dim strMsg As String
If Val(txtPop1995) < 1 Then

If (Not datCities.Recordset.EOF) And (Not datCities.Recordset.BOF) Then
strMsg = “We only allow cities having a population of ” & _

“at least one million.”
MsgBox strMsg“City too small!”
Action = 0

End If
End If

End Sub

[Run, click the Search button, and enter New York.]

COMMENTS

1. App.Path cannot be used when you set the DatabaseName property of a data
control in the Properties window at design time. However, App.Path can be used
in the Form_Load event procedure. For instance, if you add the lines

Private Sub Form_Load()
datCities.DatabaseName = App.Path & “\MEGACTY1.MDB”

End Sub

A n I n t r o d u c t i o n t o D a t a b a s e s 329

to Example 1, the program will find the database when it is located in the same
folder as the program. The assignment made in the Form_Load event procedure
will override any setting made in the Properties window. (The setting in the
Properties window even can be left blank.) The programs for Section 11 on the
CD accompanying this textbook contain the above Form_Load event procedure.

2. You will most likely alter the file MEGACTY1.MDB while experimenting with
the data control or running the program in Example 1. You can always obtain a
fresh copy of MEGACTY1.MDB by recopying it from the CD.

3. You can prevent the user from altering the data in a table by setting the Read-
Only property of its data control to True.

4. The following controls can be bound to a data control: text box, check box,
image, label, picture box, list box, combo box, data bound list box, data bound
combo box, and FlexGrid.

5. A form can contain more than one data control.

6. Some entries in a table can be empty. For instance, in the Cities table, if the
2015 projected value is not known for a particular city, it can be omitted.

7. Do not use a method such as Move, Delete, or AddNew inside the Validate event
procedure. Otherwise, an infinite loop will occur.

8. Field names can be up to 64 characters in length and can consist of letters, num-
bers, and spaces. If spaces are used in a name, then the name must be enclosed
in brackets when used in Visual Basic.

9. Both tables in the database MEGACTY1.MDB have fields called country. If
there is ever any question about which is being referred to, we can distinguish
them by using the two (full) names Cities.country and Countries. country.

10. In the MEGACTY1.MDB database, the values in the field city are all of data
type String and the values in the field pop1995 are all of data type Single. We
say that field city has type String (also known as Text) and the field pop1995
has type Single. Two other common data types are Date/Time and Boolean (also
known as Yes/No).

11. When a field is first created, a type must be specified. When that type is String
(or Text), a maximum length must also be specified. In the MEGACTY1.MDB
database, the fields city and country have maximum length 20 and the field cur-
rency has maximum length 10.

12. The database MEGACTY1.MDB was created with Visual Data Manager, which
has the same format as Access. When the database to be used has been created
with other software, such as FoxPro 3.0 or dBase 5.0, then the walkthrough
requires an additional step. Namely, between Steps 3 and 4, the Connect prop-
erty of the data control has to be set to the name of the software product. (This
step was not necessary in our case because Access is the default software.)
Note: Access database file names end with .MDB, which is an abbreviation for
Microsoft Data Base. Btrieve, FoxPro, dBase, and Paradox database file names
end with .DAT, .DBF, .DBF, and .DB, respectively.

11.2 RELATIONAL DATABASES AND SQL

■ PRIMARY AND FOREIGN KEYS

A well-designed table should have a field (or set of fields) that can be used to uniquely iden-
tify each record. Such a field (or set of fields) is called a primary key. For instance, in the
Countries table of Section 11.1, the country field is a primary key. In the Cities table, because
we are only considering very large cities (of over 1 million population), the city field is a pri-

330 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/visualdatamanager.html
http://www.pearsoncustom.com/link/visualbasic/listbox.html
http://www.pearsoncustom.com/link/visualbasic/database.html
http://www.pearsoncustom.com/link/visualbasic/combobox.html
http://www.pearsoncustom.com/link/visualbasic/checkbox.html

mary key. Databases of student enrollments in a college usually use a field of social security
numbers as the primary key. Names would not be a good choice because there could easily be
two students having the same name.

When a database is created, a field can be specified as a primary key. If so, Visual Basic
will insist that every record have an entry in the primary key field and that the same entry
does not appear in two different records. If the user tries to enter a record with no data in the
primary key, the error message “Index or primary key can’t contain a null record.” will be
generated. If the user tries to enter a record with the same primary key data as another record,
the error message “Duplicate value in index, primary key, or relationship. Changes were
unsuccessful.” will be displayed.

When a database contains two or more tables, the tables are usually related. For instance,
the two tables Cities and Countries are related by their country field. Let’s refer to these two
fields as Cities.country and Countries.country. Notice that every entry in Cities.country appears
uniquely in Countries.country and Countries.country is a primary key. We say that Cities.coun-
try is a foreign key of Countries.country. Foreign keys can be specified when a table is first cre-
ated. If so, Visual Basic will insist on the Rule of Referential Integrity, namely, that each
value in the foreign key must also appear in the primary key of the other table.

The CD accompanying this book contains a database named MEGACTY2.MDB. It has
the same information as MEGACTY1.MDB except that Cities.city and Countries.country
have been specified as primary keys for their respective tables, and Cities.country has been
specified as a foreign key of Countries.country. If the user tries to add a city to the Cities
table whose country does not appear in the Countries table, then the error message “Can’t
add or change record. Referential integrity rules require a related record in table ‘Coun-
tries’.” will be displayed. The message will also be generated if the user tries to delete a coun-
try from the Countries.country field that appears in the Cities.country field. Due to the
interdependence of the two tables in MEGACTY2.MDB, this database is called a relational
database.

A foreign key allows Visual Basic to link (or join) together two tables from a relational
database in a meaningful way. For instance, when the two tables Cities and Countries from
MEGACTY2.MDB are joined based on the foreign key Cities.country, the result is Table 11.4.
The record for each city is expanded to show its country’s population and its currency. This
joined table is very handy if, say, we wanted to click on navigation arrows and display a city’s
name and currency. We only have to create the original two tables; Visual Basic creates the
joined table as needed. The request for a joined table is made in a language called SQL.

Table 11.4
A Join of Two Tables

Cities. Cities. Countries. Country.
city country pop1995 pop2015 country pop1995 currency

Tokyo Japan 26.8 28.7 Japan 125.0 yen
Sao Paulo Brazil 16.4 20.8 Brazil 155.8 real
New York USA 16.3 17.6 USA 263.4 dollar
Mexico City Mexico 15.6 18.8 Mexico 85.6 peso
Bombay India 15.1 27.4 India 846.3 rupee
Shanghai China 15.1 23.4 China 1185.2 yuan
Los Angeles USA 12.4 14.3 USA 263.4 dollar
Beijing China 12.4 19.4 China 1185.2 yuan
Calcutta India 11.7 17.6 India 846.3 rupee
Tianjin China 10.7 17.0 China 1185.2 yuan

■ SQL

Structured Query Language (SQL) was developed in the early 1970s at IBM for use with
relational databases. The language was standardized in 1986 by ANSI (American National

R e l a t i o n a l D a t a b a s e s a n d S Q L 331

http://www.pearsoncustom.com/link/visualbasic/sql.html
http://www.pearsoncustom.com/link/visualbasic/sql.html
http://www.pearsoncustom.com/link/visualbasic/relationaldatabases.html
http://www.pearsoncustom.com/link/visualbasic/foreignkey.html
http://www.pearsoncustom.com/link/visualbasic/database.html
http://www.pearsoncustom.com/link/visualbasic/relationaldatabases.html

Standards Institute). Visual Basic uses a version of SQL that is compliant with ANSI-89 SQL.
There are some minor variations that are of no concern in this book.

SQL is a very powerful language. One use of SQL is to request specialized information
from an existing database and/or to have the information presented in a specified order.

■ FOUR SQL REQUESTS

We will focus on four basic types of requests that can be made with SQL.

Request I: Show the records of a table in a specified order.
Some examples of orders with MEGACTY2.MDB are

(a) Alphabetical order based on the name of the city.

(b) Alphabetical order based on the name of the country, and within each country
group, the name of the city.

(c) In descending order based on the projected 2015 population.

Request II: Show just the records that meet certain criteria.
Some examples of criteria with MEGACTY2.MDB are

(a) Cities that are in China.

(b) Cities whose 2015 population is projected to be at least 20 million.

(c) Cities whose name begins with the letter S.

Request III: Join the tables together, connected by a foreign key, and present the records as
in Requests I and II.

Some examples with MEGACTY2.MDB are

(a) Show the cities in descending order of the populations of their countries.

(b) Show the cities whose currency has “u” as its second letter.

Request IV: Make available just some of the fields of either the basic tables or the joined
table. (For now, this type of request just conserves space and effort by Visual Basic. However,
it will be very useful in Section 11.3 when used with a FlexGrid control.)

Some examples with MEGACTY2.MDB are

(a) Make available just the city and country fields of the table Cities.

(b) Make available just the city and currency fields of the joined table.

Normally, we set the RecordSource property of a data control to an entire table. Also, the
records of the table are normally presented in the order they are physically stored in the table.
We make the requests discussed above by specifying the RecordSource property as one of
the following kinds of settings.

Request I: SELECT * FROM Table1 ORDER BY field1 ASC
or SELECT * FROM Table1 ORDER BY field1 DESC

Request II: SELECT * FROM Table1 WHERE criteria

Request III: SELECT * FROM Table1 INNER JOIN Table2 ON foreign field =
primary field WHERE criteria

Request IV: SELECT field1, field2, . . . fieldN FROM Table1 WHERE
criteria

The words ASC and DESC specify ASCending and DESCending orders, respectively. A
criteria clause is a string containing a condition of the type used with If blocks. In addition
to the standard operators <, >, and =, criteria strings frequently contain the operator Like.
Essentially, Like uses the wildcard characters ? and * to compare a string to a pattern. A

332 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/sql.html
http://www.pearsoncustom.com/link/visualbasic/ifblocks.html
http://www.pearsoncustom.com/link/visualbasic/foreignkey.html
http://www.pearsoncustom.com/link/visualbasic/flexgridcontrol.html
http://www.pearsoncustom.com/link/visualbasic/database.html

question mark stands for a single character in the same position as the question mark. For
instance, the pattern “B?d” is matched by “Bid”, “Bud”, and “Bad”. An asterisk stands for
any number of characters in the same position as the asterisk. For instance, the pattern “C*r”
is matched by “Computer”, “Chair”, and “Car”. See Comments 3 through 5 for further infor-
mation about Like.

In the sentence

SELECT fields FROM clause

fields is either * (to indicate all fields) or a sequence of the fields to be available (separated
by commas), and clause is either a single table or a join of two tables. A join of two tables is
indicated by a clause of the form

table1 INNER JOIN table2 ON foreign key of table1=primary key of table2

Appending

WHERE criteria

to the end of the sentence restricts the records to those satisfying criteria. Appending

ORDER BY field(s) ASC (or DESC)

presents the records ordered by the specified field or fields.
In general, the SQL statements we consider will look like

SELECT www FROM xxx WHERE yyy ORDER BY zzz

where SELECT www FROM xxx is always present and accompanied by one or both of WHERE
yyy and ORDER BY zzz. In addition, the xxx portion might contain an INNER JOIN phrase.

The settings for the examples mentioned earlier are as follows:
I (a) Show the records from Cities in alphabetical order based on the name of the city.

SELECT * FROM Cities ORDER BY city ASC

I (b) Show the records from Cities in alphabetical order based first on the name of the
country and,, within each country group,, the name of the city.

SELECT * FROM Cities ORDER BY country,, city ASC

I (c) Show the records from Cities in descending order based on the projected 2015
population.

SELECT * FROM Cities ORDER BY pop2015 DESC

II (a) Show the records for the Cities in China.

SELECT * FROM Cities WHERE country = ‘China’

II (b) Show the records from Cities whose 2015 population is projected to be at least 20
million.

SELECT * FROM Cities WHERE pop2015 >= 20

II (c) Show the records from Cities whose name begins with the letter S.

SELECT * FROM Cities WHERE city Like ‘S*’

III (a) Show the records from the joined table in descending order of the populations of
their countries.

SELECT * FROM Cities INNER JOIN Countries ON Cities.country =

Countries.country ORDER BY Countries.pop1995 DESC

R e l a t i o n a l D a t a b a s e s a n d S Q L 333

http://www.pearsoncustom.com/link/visualbasic/sql.html

III (b) Show the records from the joined table whose currency has “u” as its second letter.

SELECT * FROM Cities INNER JOIN Countries ON Cities.country =

Countries.country WHERE currency Like ‘?u*’

IV (a) Make available just the city and country fields of the table Cities.

SELECT city, country FROM Cities

IV (b) Make available just the city and currency fields of the joined table.

SELECT city,, currency FROM Cities INNER JOIN Countries ON Cities.coun-

try = Countries.country

Note: In several of the statements, the single quote, rather than the normal double quote was
used to surround strings. This is standard practice with SQL statements.

We can think of an SQL statement as creating in essence a new “virtual” table from
existing tables. For instance, we might regard the statement

SELECT city, pop2015 FROM Cities WHERE pop2015 >= 20

as creating the “virtual” table

city pop2015

Tokyo 28.7
Sao Paulo 20.8
Bombay 27.4
Shanghai 23.4

This table is a subtable of the original table Cities, that is, it consists of what is left after cer-
tain columns and rows are deleted.

As another example, the statement

SELECT Cities.city, Cities.Country, Country.currency FROM Cities INNER JOIN

Countries ON Cities.country = Countries.country WHERE Countries.country>’K’

creates in essence the “virtual” table

Cities.city Cities.country currency

New York USA dollar
Mexico City Mexico peso
Los Angeles USA dollar

which is a subtable of a join of the two tables Cities and Countries.
These “virtual” tables don’t really exist physically. However, for all practical purposes,

Visual Basic acts as if they did. In Visual Basic terminology, a “virtual” table is called a
recordset and SQL statements are said to create a recordset. In standard relational database
books, a “virtual” table is called a view.

SQL also can be used in code with a statement of the form

Data1.RecordSource = “ SELECT ... FROM ...”

to alter the order and kinds of records presented from a database. However, such a statement
must be followed by the statement

Data1.Refresh

to reset the information processed by the data control.

EXAMPLE 1

The following program allows the user to alter the order and kinds of information displayed from a data-
base. When the first command button is pressed, the cities are presented in ascending order based on their

334 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/sql.html
http://www.pearsoncustom.com/link/visualbasic/relationaldatabases.html
http://www.pearsoncustom.com/link/visualbasic/database.html

1995 populations. When the second command button is pressed, the cities are presented in alphabetical
order along with their currencies.

Object Property Setting

frmDBMan Caption Database
Management

cmdOrder Caption Order by
ByPop Population

cmdShow Caption Show
Currency Currency

cmdQuit Caption Exit
datCities Caption Large World Cities

Database MEGACTY2.MDB
Name
Record Cities
Source

lblCity Caption City:
txtCity Data datCities

Source
DataField city
Text (blank)

lblCountry Caption Country:
txtCountry Data datCities

Source
DataField country
Text (blank)

lblPopulation Caption 1995
Population:

txtPopulation Data datCities
Source
DataField pop1995
Text (blank)

lblCurrency Caption Currency:
txtCurrency Data datCities

Source
Text (blank)

Private Sub cmdOrderByPop_Click()
Dim strSQL As String
txtCurrency.DataField = “”
txtCurrency.Text = “”
strSQL = “SELECT * FROM Cities ORDER BY pop1995 ASC”
datCities.RecordSource = strSQL
datCities.Refresh

End Sub

Private Sub cmdQuit_Click()
End

End Sub

Private Sub cmdShowCurrency_Click()

Dim strSQL As String
strSQL = “SELECT city, Cities.country, Cities.pop1995, currency ” & _ “FROM

Cities INNER JOIN Countries ” & _ “ON
Cities.country=Countries.country “ & ”ORDER BY city ASC”

datCities.RecordSource = strSQL
datCities.Refresh txtCurrency.DataField = “currency”

End Sub

R e l a t i o n a l D a t a b a s e s a n d S Q L 335

[Run, and click on Order by Population.]

[Click on Show Currency, and then click on the Next navigator arrow six times.]

The program in Example 1 of Section 11.1 searched a table for a specific record by loop-
ing through all the records. Whereas this technique is fine for small tables, it is not efficient
for searches of large tables. Visual Basic provides a better way with Find methods.

■ FIND METHODS

Suppose a table has been attached to the data control Data1, and an SQL statement has been
used to create and order a recordset. Then a statement of the form

Data1.RecordSet.FindFirst criteria
starts at the beginning of the recordset, searches for the first record in the recordset that

satisfies the criteria, and makes that record the current record. (Here, criteria is a string just
like a criteria phrase that follows WHERE in an SQL statement.) The related methods Find-
Last, FindNext, and FindPrevious function as their names suggest. (FindLast starts at the end
of the recordset. FindNext and FindPrevious start at the current record.) For instance, sup-
pose an SQL statement ordered the cities alphabetically by name. The following statements
and their outcomes show the effects of the various Find methods. (In each case, assume that
the current record is Mexico City.)

Statement New Current Record

datCities.Recordset.FindFirst “pop2015 < 20” Beijing
datCities.Recordset.FindLast “pop2015 < 20” Tianjin
datCities.Recordset.FindNext “pop2015 < 20” New York
datCities.Recordset.FindPrevious “pop2015 < 20” Los Angeles

Visual Basic has two properties, NoMatch and Bookmark, that help when a Find method
fails to locate a suitable record.

If BkMk is a string variable, a statement of the form

BkMk = Data1.Recordset.Bookmark

assigns the location of the current record to the variable BkMk. When desired, the statement

Data1.Recordset.Bookmark = BkMk

will return to the original location in the table.

336 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/stringvariable.html
http://www.pearsoncustom.com/link/visualbasic/sql.html

If a Find method does not locate a record matching the criteria, the first or last record
(depending on where the search is heading) in the recordset becomes the current record and
the NoMatch property is set to True. Therefore, the following lines of code can be used to
keep the current record current whenever the Find method is unsuccessful.

BkMk = Data1.Recordset.Bookmark
Data1.Recordset.FindNext criteria
If Data1.Recordset.NoMatch = True Then
Data1.Recordset.Bookmark = BkMk

End If

EXAMPLE 2

The following program displays the large cities in a country specified by the user. Due to the SQL state-
ment in the setting for datCities.RecordSource, the cities will be presented alphabetically. Notice the han-
dling of the string variable criteria. Had the Find statement been

datCities.Recordset.FindFirst “country = nom”

the error message “Can’t find name ‘nom’.” would have been generated.

Object Property Setting

frmDBMan Caption EXAMPLE 12-2-2
lstCities
cmdFind Caption Find Cities
lblCountry Caption Country
txtCountry Caption (blank)
datCities Caption Large World Cities

Database MEGACTY2.MDB
Name
Record SELECT * FROM
Source Cities ORDER BY

city ASC

Private Sub cmdFind_Click()
Dim nom As String, criteria As String
lstCities.Clear
If txtCountry.Text<> “” Then

nom = txtCountry.Text
criteria = “country = ” & “‘” & nom & “‘”
datCities.Recordset.FindFirst criteria
Do While datCities.Recordset.NoMatch = False

lstCities.AddItem datCities.Recordset.Fields(“city”).Value
datCities.Recordset.FindNext criteria

Loop
If lstCities.ListCount = 0 Then lstCities.AddItem “None”

Else
MsgBox “You must enter a country.”, , “”
txtCountry.SetFocus

End If
End Sub

[Run, type China into the text box, and press the command button.]

R e l a t i o n a l D a t a b a s e s a n d S Q L 337

COMMENTS

1. Each record of the Countries table is related to one or more records of the Cities
table, but each record of the Cities table is related to only one record of the
Countries table. Therefore, we say that there is a one-to-many relationship
from the Countries table to the Cities table.

2. SQL statements are insensitive to case. For instance, the following choices for
criteria have the same effect: City=‘China’, city=‘china’, CITY=‘china’,
CiTy=‘CHINA’.

3. When the Like operator is used, the “pattern” must appear on the right of the
operator. For instance, the SQL statement

SELECT * FROM Cities WHERE city Like ‘S*’

cannot be replaced by

SELECT * FROM Cities WHERE ‘S*’ Like city

4. The operator Like permits a refinement of the wildcard character “?”. Whereas
“?” is a placeholder for any letter, an expression such as “[letter1-letter2]” is a
placeholder for any letter from letter1 to letter2. For instance, the pattern “[A-
F]ad” is matched by Bad and Dad, but not Sad.

5. The Like operator can be used in If blocks in much the same way as the opera-
tors >, =, and <. In this situation, the operator is case-sensitive. For instance, the
condition (“bad” Like “[A-F]ad”) is False. However, when Like is used in SQL
statements, it is case-insensitive. That is, (“bad” Like “[A-F]ad”) is True.

6. Sometimes a pair of fields is specified as a primary key. For instance, in a table
of college courses, a single course might have several sections—a course might
be identified as CMSC 102, Section 3. In this case, the pair of fields course,
section would serve as a primary key for the table.

7. The requirement that no record may have a null primary key is called the Rule
of Entity Integrity.

8. If there is no field with unique entries, database designers usually add a
“counter field” containing the numbers 1, 2, 3, and so on. This field then can
serve as a primary key.

11.3 THREE ADDITIONAL DATA-BOUND CONTROLS;
CREATING AND DESIGNING DATABASES

So far, we have used text boxes to display the contents of a single field in a single row. The
FlexGrid control can display an entire table (or recordset). Data-bound list boxes and data-
bound combo boxes can display the contents of a single field for an entire table or recordset.

There are three ways you can create a database:

1. Use Visual Data Manager, a program supplied with all editions of Visual Basic.

2. Use code.

3. Use database management software, such as Access, Btrieve, FoxPro, or
Paradox.

In this section we give a detailed explanation of how to use Visual Data Manager and
include a code template that you can modify to create a database programmatically.

Before you can use the three additional data-bound controls, you must add them to the
toolbar using the Components dialog box that is invoked from the Project menu. (Place an x
in the check box next to “Microsoft FlexGrid Control 6.0” for the FlexGrid control, and

338 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/visualdatamanager.html
http://www.pearsoncustom.com/link/visualbasic/sql.html
http://www.pearsoncustom.com/link/visualbasic/listbox.html
http://www.pearsoncustom.com/link/visualbasic/ifblocks.html
http://www.pearsoncustom.com/link/visualbasic/flexgridcontrol.html
http://www.pearsoncustom.com/link/visualbasic/database.html
http://www.pearsoncustom.com/link/visualbasic/combobox.html
http://www.pearsoncustom.com/link/visualbasic/checkbox.html

place an x in the check box next to “Microsoft Data Bound List Controls 6.0” for the other
two controls.)

■ USING THE FLEXGRID CONTROL

When you attach the FlexGrid control to a table via a data control, the FlexGrid control will
display the entire contents of the table, including the field names. If the table is too large to
be displayed in entirety, scroll bars will automatically appear to allow you to scroll to other parts
of the table. The FlexGrid control is discussed in Section 10.3. The gray fixed row at the top
will show the field names. You should set the FixedCols property to 0 to avoid having a blank
fixed column at the left. If some of the fields have long entries, you should widen the corre-
sponding columns with the ColWidth method in Form_Load. Although you can use code to
alter the contents of the cells in a FlexGrid (as shown in Section 10.3), changes in the cells of
the FlexGrid will not alter the contents of the database.

You can use an SQL statement to specify the fields displayed in a FlexGrid control. For
instance, if the control has datCities as its DataSource and the DatabaseName setting for
datCities is MEGACTY2.MDB, then the statement

datCities.RecordSource = “SELECT city, country FROM Cities”

causes the FlexGrid to display only the first two columns of the Cities table. The same effect
can be achieved at design time by setting the RecordSource property of datCities to

SELECT city, country FROM Cities

EXAMPLE 1

The following program displays the contents of the Cities table of the MEGACTY2.MDB database. When
you click on the command button, the FlexGrid displays the cities, their countries, and currency. Also, the
caption of the command button changes to “Show City, Country, Populations”. The next time you click
the command button, the contents of the FlexGrid returns to its original state.

Object Property Setting

frm12_3_1 Caption Megacities
datCities Caption Large World Cities

Database MEGACTY2.MDB
Name
Record Cities
Source

msgCities Data datCities
Source
FixedCols 0

cmdShow Caption Show City,
Country,
Currency

Private Sub cmdShow_Click()
If cmdShow.Caption = “Show City, Country, Currency” Then ‘

Join the two tables and display cities, countries, and currency
datCities.RecordSource = “SELECT city, Cities.country, currency FROM “ & _

“Cities INNER JOIN Countries ON Countries.country = Cities.country “ & _
“ORDER BY city”

datCities.Refresh
cmdShow.Caption = “Show City, Country, Populations”

Else
datCities.RecordSource = “Cities”
datCities.Refresh
cmdShow.Caption = “Show City, Country, Currency”

C r e a t i n g a n d D e s i g n i n g D a t a b a s e s 339

http://www.pearsoncustom.com/link/visualbasic/sql.html
http://www.pearsoncustom.com/link/visualbasic/scrollbar.html
http://www.pearsoncustom.com/link/visualbasic/flexgridcontrol.html
http://www.pearsoncustom.com/link/visualbasic/database.html
http://www.pearsoncustom.com/link/visualbasic/checkbox.html

End If
End Sub

Private Sub Form_Load()
msgCities.ColWidth(0) = 1000 ‘Widen the first column slightly

End Sub

[Run]

[Click on the command button.]

■ USING THE DATA-BOUND LIST BOX AND COMBO BOX CONTROLS

The data-bound list box and data-bound combo box controls look like the standard list box and
combo box controls. They are often used with data-entry forms to speed data entry and ensure
that valid data is entered. These controls automatically fill with a column from a table or
recordset after you set a few properties. Note that the data-bound controls display data from
a table or a recordset. Therefore, three methods (AddItem, Clear, and RemoveItem) and two
properties (ListCount and Sorted) used with the regular list box and combo box are not avail-
able with the data-bound controls. The count of items displayed in a data-bound control is de-
termined by the RecordCount property of the recordset.

Two key properties determine the entries of a data-bound list or combo box—Row-
Source and ListField. RowSource specifies a data control, and ListField specifies a field
from the data control’s table or recordset. That field will be used to fill the list.

EXAMPLE 2

The data-bound list box in the following example displays the countries in the Countries table of
MEGACTY2.MDB. When the command button is clicked, SQL is used to sort the countries by their 1995

340 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/listbox.html
http://www.pearsoncustom.com/link/visualbasic/combobox.html

population (in descending order). When an item in the list box is double-clicked, the list box’s Text prop-
erty is used to display the name of the country’s unit of currency in a label. (Recall that the value of the
Text property is the currently highlighted item.) The data control is made invisible since it is not needed
by the user.

Object Property Setting

frmCountries Caption Large Countries
datCountries Caption Countries

Database MEGACTY2.MDB
Name
Record Countries
Source

dblCountries RowSource datCountries
ListField Country

cmdSort Caption Sort by 1995
Population

lblCurrency Caption Currency:
lblUnit Caption (blank)

BorderStyle 1- Fixed Single

Private Sub CmdSort_Click()

datCountries.RecordSource = “SELECT * FROM Countries “ & _ “ORDER by pop1995

DESC”

datCountries.Refresh

End Sub

Private Sub dblCountries_dblClick()

datCountries.Recordset.FindFirst _

“Country =” & “‘“ & dblCountries.Text & “‘“

lblUnit.Caption = datCountries.Recordset.Fields(“currency”).Value

End Sub

[Run, click on the command button, and then double-click on Japan.]

When used to enhance data entry, a data-bound list or combo control is usually linked to two
data controls. The first data control is used to fill the list and the second to update a field in a
table. As demonstrated in Example 2, the first data control fills the list as designated by the
data-bound control’s ListField and RowSource properties. The second control updates a field in
a table specified by the data-bound control’s DataSource and DataField properties. Another
property of the data-bound control, the BoundColumn property, specifies the name of a field
in the first data control’s recordset. Once the user chooses one of the items in the list (and there-
by one of the rows), the value in the row’s specified field is passed to the field to be updated.
Usually, the BoundColumn property has the same setting as the DataField property.

EXAMPLE 3

The following program adds cities to the Cities table of MEGACTY2.MDB. Of course, only cities in a
country found in the Countries table are acceptable. A data-bound combo box is employed to show the
user a list of the acceptable countries. (The experienced data-entry person can just type a name directly
into the text box portion of the combo box, whereas the novice must refer to the list.) When the program

C r e a t i n g a n d D e s i g n i n g D a t a b a s e s 341

is first run, the user should press the command button to clear the text boxes. After that, for each new city
to be entered into the database, the user should fill the text boxes and then press the command button.

Object Property Setting

frm12_3_3 Caption Add Cities to MEGACTY2
datCountries Caption Countries

DatabaseName MEGACTY2.MDB
RecordSource Countries

Visible 0 – False
datCities Caption Cities

DatabaseName MEGACTY2.MDB
RecordSource Cities
Visible 0 – False

cmdAddNew Caption Add New City
cmdQuit Caption Quit
lblCity Caption City:
txtCity DataSource datCities

DataField city
lblCountry Caption Country:
dbcCountry DataSource datCities

DataField country
BoundColumn country
RowSource datCountries
ListField country

lblPop1995 Caption 1995 Population:
txtPop1995 DataSource datCities

DataField pop1995
lblPop2015 Caption 2015 Population:
txtPop2015 DataSource datCities

DataField pop2015

Private Sub cmdAddNew_Click()
datCities.Recordset.AddNew

End Sub

Private Sub cmdQuit_Click()
End

End Sub

[Run, click on the Add New City command button, add the data for a couple of cities, and click
on Quit. Then place the cities table of MEGACTY2.MDB in a FlexGrid to confirm that the
cities have indeed been added.]

Some possible cities to add are:

City country pop1995 pop2015

Jakarta Indonesia 11.5 21.2
Osaka Japan 10.6 10.6
Lagos Nigeria 10.3 24.4

■ CREATING A DATABASE WITH VISUAL DATA MANAGER

You invoke Visual Data Manager (VisData) from Visual Basic by pressing Alt/Add-Ins/Visual
Data Manager. The first two entries of the File menu of VisData are Open Database, used
to view and alter an existing database, and New, used to create a new database. See
Figure 11-3.

342 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/visualdatamanager.html
http://www.pearsoncustom.com/link/visualbasic/database.html

FIGURE 11-2 Visual Data Manager’s File Menu
Let’s focus on creating a new database. After you select New, you are presented with a

drop-down menu used to choose the type of database as shown in Figure 11-2. Choose
Microsoft Access and then specify a version. (Version 7.0 is the latest version of Access, the
one that comes with the Professional Edition of Office 97.) Then a standard file-naming dia-
log box titled “Select Microsoft Access Database to Create” appears. See Figure 11-3.

FIGURE 11-3 Dialog Box Used to Name the Database
After you name the database, say as MEGACITY.MDB, and click Save, the Database

window and SQL Statement box appear. We will work solely with the Database window.

FIGURE 11-4 Database Window. (Appears After the Database is Named. Initially the Win-
dow Will Contain Only the Properties Line. Additional Lines Will Appear as
Tables are Created.)

Suppose you want to create a database with two tables. Starting from the Database win-
dow, the basic steps are as follows:

1. Create the database and the two tables.

(a) Click on the right mouse button within the Database window. Click on New
Table and use the Table Structure window (Figure 11-5) to name the first
table and to specify the fields and their data types. The steps listed after
Figure 11-5 show how to carry out these tasks.

(b) Repeat Step 1 for the second table.

C r e a t i n g a n d D e s i g n i n g D a t a b a s e s 343

http://www.pearsoncustom.com/link/visualbasic/sql.html
http://www.pearsoncustom.com/link/visualbasic/database.html

2. (Optional) Specify a primary key for a table.

(a)Highlight the table name in the Database window.

(b) Press the right mouse button and choose Design to invoke the Table Struc-
ture window (Figure 11-5).

(c) Press the Add Index button to invoke the Add Index window (Figure 11-6)
and follow the steps listed after the figure.

3. Place records into a table.

(Note: The VisData toolbar contains three sets of icons. This discussion
assumes that the left icon of each of the first two sets has been selected. These
are the “Table type Recordset” and “Use Data Control on New Form” icons.)

(a) Double-click on the table in the Database window to invoke the Table win-
dow (Figure 11-7).

(b) Follow the directions listed after Figure 11-7.

FIGURE 11-5 Table Structure Window. (Invoked from the Database Window with the Right
Mouse Button by Choosing New or Design.)

How to use the Table Structure window

1. Type the name of the table in the Table Name text box.

2. Click on the Add Field button. (An Add Field window will be displayed.)

3. Type the name of a field in the Name text box.

4. Click on the down arrow of the Type combo box and select a type from the
dropdown list. (We use primarily the type “Text” for string, and “Single” or
“Integer” for numbers.)

5. If the data type is “Text,” type the length of the largest possible string needed
in the Size box. (For instance, length 20 should suffice for names of cities. The
length must be no longer than 255 characters.)

6. Press OK to add the field to the table.

7. Repeat Steps 3 through 6 until you have added all the fields to the table. When
you are through, click on the Close button to return to the Database window.

8. To delete a field, highlight the field by clicking on it in the list box and then
press the Remove Field button.

344 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/listbox.html
http://www.pearsoncustom.com/link/visualbasic/combobox.html

9. When all fields have been specified, press the “Build the Table” button to save
the table and return to the Database window. (If we later decide to add a new
field or delete an existing field, we can return to the Table Structure window by
highlighting the table in the Database window, clicking the right mouse button,
and choosing Design.)

(Note: The “Build the Table” button appears only for new tables, otherwise, use
the Close button return to the Database window.)

FIGURE 11-6 Add Index Window (Invoked from the Table Structure Window by Pressing
Add Index.)

How to use the Add Index window to specify a primary key

1. Type in a name for an index, such as Principal, click on the field which is to be
the primary field, and place check marks in the Primary and Unique check
boxes.

2. Click OK and then click Close.

Note: To specify an ordinary index, follow all steps except turning on the Pri-
mary check box.

3. Press “Build the Table” or Close to return to the Database window.

FIGURE 11-7 Table window (Invoked from the Database Window by Double-Clicking on
the Table name. Or, Choose the Table, Click on the Right Mouse Button,
and Click on Open.)

How to use the Table window

1. If the table has no records, the Value text boxes will be blank. To add a record,
type data into the fields and press the Update button.

2. To add a new record to the end of a table that already contains records, click the
Add button, type data into the fields, and press the Update button. If you make
a mistake entering the data, click on the Cancel button.

C r e a t i n g a n d D e s i g n i n g D a t a b a s e s 345

http://www.pearsoncustom.com/link/visualbasic/checkbox.html
http://www.pearsoncustom.com/link/visualbasic/checkbox.html

3. To view an existing record, use the navigator buttons (identical to those of the
data control) or the Find button to move to a record of a specified value.

4. To remove the current record from the table, click the Delete button. The record
is immediately deleted and cannot be recovered.

5. To edit an existing record, make changes in the data and click on the Update
button.

6. Press the Close button to return to the Database window.

At any time, the main section of the Database window contains a list of the
tables you have specified. Initially the main section is blank except for Proper-
ties. (This is a list of properties pertaining to the database.) If you click the right
mouse button while highlighting a table, a menu will appear with the following
options:

Menu Item Use

Open Open the table to allow records to be added.
Design Specify the design (number and types of fields).
Rename Rename the given table.
Delete Remove the given table from the database.
Copy Structure Copies the structure of the given database with or without the data currently

contained in the database.
Refresh List Redisplay the list in the Database window.
New Table Open the Table Structure window.
New Query Open the Query Builder window.

■ CREATING A DATABASE IN CODE

The following lines of code create a database named “DBNAME.MDB” with two tables,
TABLE1 and TABLE2. TABLE1 has the fields FIELD1A (type Text with maximum length 50)
and FIELD1B (numeric of type Single). TABLE2 has analogous fields called FIELD2A and
FIELD2B, and also FIELD2C of type Integer. FIELD1A is a primary key of TABLE1 and
FIELD2A is a foreign key in TABLE2 referring to FIELD1A of TABLE1. FIELD2C is a pri-
mary key of TABLE2. The record (“alpha”, 1997) is placed in TABLE1 and the record (“alpha”,
2000, 1) is placed in TABLE2. This code, which is contained in the file CREATEDB.TXT ac-
companying this textbook, is intended as a template that you can modify to create a database
programmatically. (Note: The code can be placed into an event procedure. Before you run the
program, click on References in the Project menu and make sure that “DAO 3.51 Object
Library” is selected.)

Dim MyDB As Database, MyWs As Workspace
Dim T1, T2 As TableDef
Dim T1Flds(1 To 2), T2Flds(1 To 3) As Field
Dim TempFld As Field
Dim T1Idx, T2Idx As Index
Dim Rel As Relation
Dim MyRec As Recordset
’Create Database
Set MyWs = DBEngine.Workspaces(0)
Set MyDB = MyWs.
CreateDatabase(“C:\DBNAME.MDB”, dbLangGeneral)’Create first Table, TABLE1
Set T1 = MyDB.CreateTableDef(“TABLE1”)
’Specify fields for TABLE1
’Note the use of the optional parameter 50 for field size
’If 50 is omitted, the size will default to 20
Set T1Flds(1) = T1.CreateField(“FIELD1A”, dbText, 50)
Set T1Flds(2) = T1.CreateField(“FIELD1B”, dbSingle)
’Add the New fields to the field list in the Table

346 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/foreignkey.html
http://www.pearsoncustom.com/link/visualbasic/database.html

T1.Fields.Append T1Flds(1)
T1.Fields.Append T1Flds(2)
’Specify a primary field for TABLE1
Set T1Idx = T1.CreateIndex(“FIELD1A”)
T1Idx.Primary = True
T1Idx.Unique = True
T1Idx.Required = True
Set T1Flds(1) = T1Idx.CreateField(“FIELD1A”)
’Add this field to the field list of the Index
T1Idx.Fields.Append T1Flds(1)
’Add this Index to the index list of the Table
T1.Indexes.Append T1Idx
’Add the Table to the Database
MyDB.TableDefs.Append T1
’Create TABLE2
Set T2 = MyDB.CreateTableDef(“TABLE2”)
’Specify fields for TABLE2
Set T2Flds(1) = T2.CreateField(“FIELD2A”, dbText, 50)
Set T2Flds(2) = T2.CreateField(“FIELD2B”, dbSingle)
Set T2Flds(3) = T2.CreateField(“FIELD2C”, dbInteger)
’Add the new fields to the field list of the Table
T2.Fields.Append T2Flds(1)
T2.Fields.Append T2Flds(2)
T2.Fields.Append T2Flds(3)
’Set the primary field for TABLE2Set T2Idx = T2.CreateIndex(“FIELD2C”)
T2Idx.Primary = True
T2Idx.Unique = True
T2Idx.Required = True
Set T2Flds(3) = T2Idx.CreateField(“FIELD2C”)
’Add this field to the field list of the Index
T2Idx.Fields.Append T2Flds(3)
’Add this index to the index list of TABLE2
T2.Indexes.Append T2Idx
’Add TABLE2 to the Database
MyDB.TableDefs.Append T2
’Set up the relation between the tables
Set Rel = MyDB.CreateRelation(“foreign”, “TABLE1”, “TABLE2”)
Rel.Attributes = 0
’Mark the primary field in TABLE1
Set T2Flds(1) = Rel.CreateField(“FIELD1A”)
’Mark the foreign key field in TABLE2
T2Flds(1).ForeignName = “FIELD2A”
’Add the field to the field list of the relation
Rel.Fields.Append T2Flds(1)
’Add the relation to the database
MyDB.Relations.Append Rel
’Add a record to each table
’Open a recordset referring to TABLE1
Set MyRec = T1.OpenRecordset
’Create a record
MyRec.AddNew
MyRec(“FIELD1A”) = “alpha”
MyRec(“FIELD1B”) = 1997
’Update the recordset
MyRec.Update

C r e a t i n g a n d D e s i g n i n g D a t a b a s e s 347

’Close the recordset referring to TABLE1

MyRec.Close

’Open a recordset referring to TABLE2

Set MyRec = T2.OpenRecordset

’Create a record

MyRec.AddNewMyRec(“FIELD2A”) = “alpha”

MyRec(“FIELD2B”) = 2000

MyRec(“FIELD2C”) = 1

’Update the recordset

MyRec.Update

’Close the recordset

MyRec.Close

’Close the database

MyDB.Close

■ PRINCIPLES OF DATABASE DESIGN

In order to design a database, you must decide how many tables to use, what fields to include
in each table, what fields to make primary or foreign keys, and what validation criteria to
specify. The programming paradigm “Plan first, code later” also applies to databases. Before
you design a database, you first must understand how the database will be used. For instance,
you must know in what way and how often the user will update the data, and what types of re-
ports the user will want to be generated from the database. Failure to plan ahead can be very
costly.

You have no doubt read about the “year 2000 crisis.” Databases designed in the 1960s
and 1970s saved space by using just two digits to refer to each year. As a result, they cannot
distinguish between the year 2000 and the year 1900. Correcting this oversight is predicted
to cost government and industry billions of dollars.

Good relational database design is more an art than a science. However, there are certain
fundamental guidelines that the designer should keep in mind.

Include the necessary data.

After you have a clear picture of the types of reports the user must generate, you will
know what fields and relationships to include. On the other hand, some data that seem rele-
vant do not have to be kept.

Be aware that data should often be stored in their smallest parts.

For instance, city, state, and zip code are usually best stored in three fields. So doing will
allow you to sort a mailing by zip code or target a mailing to the residents of a specific city.

Avoid redundancy.

The process of avoiding redundancy by splitting a table into two or more related tables
is called data normalization. For instance, the excessive duplication in Table 11.5(a) can be
avoided by replacing the table with the two related tables, Tables 11.5(b) and 11.5(c).

TABLE 11.5(A)
A Table with Redundant Data

course section name time credits prerequisite

CS102 1001 Intro to Databases MWF 8–9 3 CS101
CS102 1002 Intro to Databases MWF 1–2 3 CS101
CS102 1003 Intro to Databases MWF 2–3 3 CS101
CS102 1004 Intro to Databases MWF 3–4 3 CS101
CS105 1001 Visual Basic MWF 1–2 4 CS200

348 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/sort.html
http://www.pearsoncustom.com/link/visualbasic/relationaldatabases.html
http://www.pearsoncustom.com/link/visualbasic/foreignkey.html
http://www.pearsoncustom.com/link/visualbasic/database.html

TABLE 11.5(B)

course section time

CS102 1001 MWF 8–9
CS102 1002 MWF 1–2
CS102 1003 MWF 2–3
CS102 1004 MWF 3–4
CS105 1001 MWF 1–2

TABLE 11.5(C)

course name credits prerequisite

CS102 Intro to Databases 3 CS101
CS105 Visual Basic 4 CS200

Avoid tables with intentionally blank entries.

Tables with entries that are intentionally left blank waste space and are inefficient to use.
Table 11.6, which serves as a directory of faculty and students, has an excessive number of
blank entries. The table should be split into two tables, each dealing with just one of the
groups.

TABLE 11.6
A Table with an Excessive Number of Blank Entries

name ssn classifi- date office credits
cation hired dept number gpa earned

Sarah Brown 816-34-9012 student 3.7 78
Pat Riley 409-22-1234 faculty 9/1/90 biology Y-3014
Joe Russo 690-32-1108 faculty 9/1/88 math T-2008
Juan Lopez 509-43-4110 student 3.2 42

Strive for table clarity.

Each table should have a basic topic and all the data in the table should be connected to that
topic.

Don’t let a table get unnecessarily large.

A bookstore might keep a permanent record of each purchase for the purpose of targeting
mailings. A better solution is to add a couple of extra fields to the customer table that identi-
fy the types of books of interest to the customer.

Avoid fields whose values can be calculated from existing fields.

A calculated field is one whose value can be determined from other fields. For instance, if a
table has fields for both the population and area of a state, then there is no need to include a
field for the population density.

COMMENTS

1. Visual Data Manager can not create foreign keys.

2. You can add additional fields to a database table, but you cannot rename, mod-
ify, or delete fields without deleting the entire table and rebuilding each field.
For this reason, design your tables carefully.

3. The total length of a record in a table is limited to 2000 bytes.

4. Be careful if you create a database with empty tables. If you pull it into a pro-
gram and try to move through it with the navigator arrows, an error will be gen-
erated. You must add at least one record before starting to navigate.

C r e a t i n g a n d D e s i g n i n g D a t a b a s e s 349

http://www.pearsoncustom.com/link/visualbasic/visualdatamanager.html
http://www.pearsoncustom.com/link/visualbasic/foreignkey.html
http://www.pearsoncustom.com/link/visualbasic/database.html
http://www.pearsoncustom.com/link/visualbasic/byte.html

SUMMARY

1. A table is a group of data items arranged in a rectangular array, each contain-
ing the same categories of information. Each data item (row) is called a record.
Each category (column) is called a field. Two tables with a common field are
said to be related. A database is a collection of one or more, usually related,
tables.

2. The data control is used to access a database. When a text box is bound to a
data control through its DataSource and DataField properties, the user can read
and edit a field of the database. At any time, one record is specified as the
current record. The user can change the current record with the data control’s
navigator arrows or with Move statements. The property RecordCount count
records, the property BOF indicates whether the beginning of the recordset has
been reached, and the property EOF indicates whether the end of the recordset
has been reached. The Value property of Fields (“fieldName”) reads the con-
tents of a field of the current record. The Validate event, which can be used to
control edits, is triggered whenever the current record is about to be changed.

3. A primary key is a field or set of fields that uniquely identifies each row of a
table. The rule of entity integrity states that no record can have a null entry in a
primary key. A foreign key is a field or set of fields in one table that refers to a
primary key in another table. The rule of referential integrity states that each
value in the foreign key must also appear in the primary key.

4. Structured Query Language (SQL) is used to create a “virtual” table consisting
of a subtable of a table or of a join of two tables and imposes an order on the
records. The subtable is specified with the reserved words SELECT, FROM,
WHERE, ORDER BY, and INNER JOIN . . . ON. The WHERE clause of an
SQL statement commonly uses the Like operator in addition to the standard
operators. SQL statements are either employed at design time or run time as the
setting of the RecordSource property. During run time, the Refresh method for
the data control should be executed after the RecordSource property is set.

5. The MS FlexGrid grid control can show an entire “virtual” table in a spread-
sheet-like display. Data-bound list box and data-bound combo box controls can
display the contents of a single field for an entire table or recordset.

6. Visual Data Manager, a database management program supplied with most ver-
sions of Visual Basic, can be used to create a database and specify primary keys
and validation criteria. A database can be created by code with the Profession-
al or Enterprise editions of Visual Basic.

7. Although good database design is an art, there are several fundamental princi-
ples that usually should be followed.

PROGRAMMING PROJECTS

1. The database MICROLND.MDB (on the accompanying CD) is maintained by
the Microland Computer Warehouse, a mail order computer supply company.
Tables 11.7 through 11.9 show parts of three tables in the database. The table
Customers identifies each customer by an ID number and gives, in addition to
the name and address, the total amount of purchases during the current year.
The table Inventory identifies each product in stock by an ID number and gives,
in addition to its description and price (per unit), the quantity currently in stock.
The table Orders gives the orders received today. Suppose it is now the end of
the day. Write a program that uses the three tables to do the following:

350 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/visualdatamanager.html
http://www.pearsoncustom.com/link/visualbasic/sql.html
http://www.pearsoncustom.com/link/visualbasic/listbox.html
http://www.pearsoncustom.com/link/visualbasic/foreignkey.html
http://www.pearsoncustom.com/link/visualbasic/database.html
http://www.pearsoncustom.com/link/visualbasic/combobox.html

(a) Update the quantity field of the Inventory table.

(b) Display in a list box the items that are out of stock and therefore must be
reordered.

(c) Update the amtOfSales field of the Customers table.

(d) Print bills to all customers who ordered during the day. (You can assume that
each customer only calls once during a particular day and therefore that all
items ordered by a single customer are grouped together. The bill should
indicate if an item is currently out of stock. You can just display the bills one
at a time in a picture window instead of actually printing them.)

TABLE 11.7
First Three Records of the Customers Table

custID name street city amtPurchases

1 Michael Smith 2 Park St. Dallas, TX 75201 234.50
2 Brittany Jones 5 Second Ave Tampa, FL 33602 121.90
3 Warren Pease 7 Maple St Boston, MA 02101 387.20

TABLE 11.8
First Three Records of the Inventory Table

itemID description price quantity

PL208 Visual Basic – Standard 89.50 12
SW109 MS Office Upgrade 195.95 2
HW913 PaperPort ix 300.25 8

TABLE 11.9
First Four Records of the Orders Table

custID itemID quantity

3 SW109 1
1 PL208 3
1 HW913 2
2 PL208 1

2. Most college libraries have a computerized online catalog that allows you to look
up books by author or title. Use the database BIBLIO.MDB to design such a cat-
alog. You should create a new database with the necessary tables and fields and
copy all needed information from BIBLIO.MDB into the new database. (One field
should hold the number of copies that the library owns and another field should
hold the number of copies currently on the shelf. Use the Rnd function to fill the
first field with numbers from 1 to 3.) The user should be able to do the following.

(a) View the books by author in either alphabetical or chronological order and
then obtain relevant information (publisher, ISBN, copyright year, number
of copies available and owned) on a specific book.

(b) Determine if a book with a specified title is owned by the library.

(c) Search for all books containing a certain word in its title.

(d) Check out a book that is on the shelf.

(e) Reserve a book that is currently not on the shelf. (A number can be assigned
to each reservation to determine priority.)

The librarian should be able to generate a listing of all books for which there is
a waiting list.

P r o g r a m m i n g P r o j e c t s 351

http://www.pearsoncustom.com/link/visualbasic/listbox.html
http://www.pearsoncustom.com/link/visualbasic/database.html

S E C T I O N

OBJECT-ORIENTED
PROGRAMMING

1212

355

12.1 CLASSES AND OBJECTS

noun A word used to denote or name a person, place, thing, quality, or act.
verb That part of speech that expresses existence, action, or occurrence.
adjective Any of a class of words used to modify a noun or other substantive by limit-

ing, qualifying, or specifying.

The American Heritage Dictionary of the English Language

“A good rule of thumb for object-oriented programming is that classes are the nouns in
your analysis of the problem. The methods in your object correspond to verbs that the
noun does. The properties are the adjectives that describe the noun.”

Gary Cornell & David Jezak1

Practical experience in the financial, scientific, engineering, and software design industries has
revealed some difficulties with traditional program design methodologies. As programs grow
in size and become more complex, and as the number of programmers working on the same
project increases, the number of dependencies and interrelationships throughout the code in-
creases exponentially. A small change made by one programmer in one place may have many
effects, both intended and unintended, in many other places. The effects of this change may rip-
ple throughout the entire program, requiring the rewriting of a great deal of code along the way.

A partial solution to this problem is “data hiding” where, within a unit, as much imple-
mentation detail as possible is hidden. Data hiding is an important principle underlying
object-oriented programming. An object is an encapsulation of data and procedures that act
on the data. The only thing of concern to a programmer using an object is the tasks that the
object can perform and the parameters used by these tasks. The details of the data structures
and procedures are hidden within the object.

Two types of objects will be of concern to us, control objects and code objects. Exam-
ples of control objects are text boxes, picture boxes, command buttons and all the other con-
trols that can be created from the Visual Basic toolbox. Code objects are specific instances
of user-defined types that are defined similarly to record types in a separate module. Both
types of objects have properties and respond to methods. The main differences are that con-
trol objects are predefined and have physical manifestations, whereas code objects must be
created by the programmer and exist solely in a portion of memory. In this section, when we
use the word “object” without a qualifier, we mean “code object.”

1FActiveX Visual Basic 5 Control Creation Edition, Prentice-Hall, 1997.

http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/objectorientedprogramming.html

Whenever you double-click on the TextBox icon in the toolbar, a new text box is creat-
ed. Although each text box is a separate entity, they all have the same properties and meth-
ods. Each text box is said to be an instance of the class TextBox. In some sense, the TextBox
icon in the toolbox is a template for creating text boxes. (When you look at the properties
window for a text box, the dropdown list box at the top of the window says something like
“Text1 TextBox”. “Text1” is the name of the control object and “TextBox” is the name of its
class.) You can’t set properties or invoke methods of the TextBox icon, only of the specific
text boxes that it creates. The analogy is often made between the TextBox icon and a cookie
cutter. The cookie cutter is used to create cookies that you can eat, but you can’t eat the cook-
ie cutter.

Object-oriented programs are populated with objects that hold data, have properties,
respond to methods, and raise events. (The generation of events will be discussed in the next
section.) Six examples are as follows:

1. In a professor’s program to assign and display semester grades, a student object
might hold a single student’s name, social security number, midterm grade, and
final exam grade. A SemGrade method might calculate the student’s semester
grade. Events might be raised when improper data is passed to the object.

2. In a payroll program, an employee object might hold an employee’s name,
hourly wage, and hours worked. A CalculatePay method would tell the object to
calculate the wages for the current pay period.

3. In a checking account program, a check register object might record and total
the checks written during a certain month, a deposit slip object might record
and total the deposits made during a certain month, and an account object might
keep a running total of the balance in the account. The account object would
raise an event to alert the bank when the balance gets too low.

4. In a bookstore inventory program, a textbook object might hold the name,
author, quantity in stock, and wholesale price of an individual textbook. A
RetailPrice method might instruct the book object to calculate the selling price
of the textbook. An event could be triggered when the book goes out of stock.

5. In a game program, an airplane object might hold the location of an airplane.
At any time, the program could tell the object to display the airplane at its cur-
rent location or to drop a bomb. An event can be triggered each time a bomb
moves so that the program can determine if anything was hit.

6. In a card game, a card object might hold the denomination and suit of a specif-
ic card. An IdentifyCard method might return a string such as “Ace of Spades.”
A deck of cards object might consist of an array of card objects. A ShuffleDeck
method might thoroughly shuffle the deck and a Shuffling event might indicate
the progress of the shuffle.

The most important object-oriented term is class. A class is a template
from which objects are created. The class specifies the properties and methods
that will be common to all objects that are instances of that class. Classes are
formulated in class modules. An object, which is an instance of a class, can be
created in a program with a pair of statements of the form

Private objectName As className ‘In General Declarations section

Set objectName = New className ‘In procedure

In the program, properties of the object is accessed with statements of the form
shown in the following table.

356 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/listbox.html

Task Statement

Assign a value to a property objectName.propertyName = value
Display the value of a property picBox.Print objectName.propertyName
Carry out a method objectName.methodName(arg1, ...)
Raise an event RaiseEvent eventName

The following walkthrough creates a student class and a program that uses that class.
The data stored by an object of this class are name, social security number, and grades on
two exams (midterm and final).

1. Start a new program.

2. From the Project menu on the toolbar, click on Add Class Module.

3. Double-click on Class Module in the Add Class Module dialog box. (The win-
dow that appears looks like an ordinary code window.)

4. If the Properties window is not visible, press F4 to display it. (Notice that the
class has the default name Class1.)

5. Change the setting of the Name property to CStudent. (We will follow the com-
mon convention of beginning each class name with the uppercase letter C.)

6. Type the following lines into the code module.

Private m_name As String
Private m_ssn As String
Private m_midterm As Single
Private m_final As Single

(These lines of code declare four variables that will be used to hold data. The
word Private guarantees that the variables cannot be accessed directly from out-
side the object. In object-oriented programming terminology, these variables
are called member variables (or instance variables). We will follow the com-
mon convention of beginning the name of each member variable with the pre-
fix “m_”.)

7. From the Tools menu on the toolbar, click on Add Procedure. (As before, an
Add Procedure dialog box will appear.)

8. Type “Name” into the Name text box, click on Property in the Type frame, and
click on OK. The following lines will appear in the class module window.

Public Property Get Name() As Variant

End Property

Public Property Let Name(ByVal vNewValue As Variant)

End Property

9. Change the words Variant to String, the word vNewValue to vName, and type
code into the two property procedures as shown below.

Public Property Get Name() As String
Name = m_name

End Property
Public Property Let Name(ByVal vName As String)
m_name = vName

End Property

The first procedure will be called by our program to retrieve the value of the
variable m_name and the second procedure will be called to assign a value to
the variable m_name.

C l a s s e s a n d O b j e c t s 357

http://www.pearsoncustom.com/link/visualbasic/objectorientedprogramming.html

10. In the same manner as in Steps 7–9, create the following pair of property pro-
cedures that will be used to retrieve and assign values to the variable m_ssn.

Public Property Get SocSecNum() As String
SocSecNum = m_ssn

End Property

Public Property Let SocSecNum(ByVal vNum As String)
m_ssn = vNum

End Property

11. Property procedures can be typed directly into the class module without the use
of Add Procedure. Also, property procedures needn’t come in pairs. For
instance, if we wanted the value of a member variable to be “write only,” we
would use a Property Let procedure and have no Property Get procedure. Type
the following two property procedures into the class module. The inclusion of
the word Public is optional.

Property Let midGrade(ByVal vGrade As Single)
m_midterm = vGrade

End Property

Property Let finGrade(ByVal vGrade As Single)
m_final = vGrade

End Property

12. Create the following ordinary Public function with the name SemGrade.

Public Function SemGrade() As String
Dim grade As Single
grade = (m_midterm + m_final) / 2
grade = Round(grade) ‘Round the grade
Select Case grade

Case Is = 90
SemGrade = “A”

Case Is = 80
SemGrade = “B”

Case Is = 70
SemGrade = “C”

Case Is = 60
SemGrade = “D”

Case Else
SemGrade = “F”

End Select
End Function

(This function will be used by our program to invoke a method requesting an
object to calculate a student’s semester grade.)

13. From the File menu, click on Save CStudent As and save the class module with
the name 13-1-1S.cls. (We chose this name since the class will be used in
Example 1. Another good choice of name would have been Student.cls. The
extension cls is normally given to files holding class modules.)

14. Click on the form window to activate it. We can now write a program that cre-
ates an object, call it pupil, that is an instance of the class and uses the object
to calculate a student’s semester grade. The object variable is declared (in the
general declarations section of the code module) with the statement

Private pupil As CStudent

358 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

and then an instance of the class is created inside a procedure with the state-
ment

Set pupil = New CStudent

The object pupil will be local to the procedure. That is, it will cease to exist
after the procedure has ended. The Property Let procedures are used to assign
values to the member variables, and the Property Get procedures are used to
retrieve values. The function SemGrade becomes a method for obtaining the
student’s grade.

Some examples are

pupil.Name = “Adams, Al” ‘Assign a value to m_name
picBox.Print pupil.Name ‘Display the student’s name
picBox.Print pupil.SemGrade ‘Display the student’s semester grade

The first statement calls the Property Let Name procedure, the second state-
ment calls the Property Get Name procedure, and the third statement calls the
method procedure SemGrade.

EXAMPLE 1

The following program uses the class CStudent to calculate and display a student’s semester grade.

Object Property Setting

frm13_1_1 Caption Semester Grade
lblName Caption Name
txtName Text (blank)
lblSSN Caption SSN
txtSSN Text (blank)
lblMidterm Caption Midterm
txtMidterm Text (blank)
lblFinal Caption Final
txtFinal Text (blank)
cmdEnter Caption &Enter Information
cmdDisplay Caption &Display Grade
cmdQuit Caption &Quit
picGrade

‘Student Class (CStudent)
Private m_name As String
Private m_ssn As String
Private m_midterm As Single
Private m_final As Single
Property Get Name() As String

Name = m_name
End Property

Property Let Name(ByVal vName As String)
m_name = vName

End Property

Property Get SocSecNum() As String
SocSecNum = m_ssn

End Property

Property Let SocSecNum(ByVal vNum As String)
m_ssn = vNum

End Property

C l a s s e s a n d O b j e c t s 359

Property Let midGrade(ByVal vGrade As Single)
m_midterm = vGrade

End Property

Property Let finGrade(ByVal vGrade As Single)
m_final = vGrade

End Property

Public Function SemGrade() As String
Dim grade As Single
grade = (m_midterm + m_final) / 2
grade = Round(grade) ‘Round the grade
Select Case grade

Case Is = 90
SemGrade = “A”

Case Is = 80
SemGrade = “B”

Case Is = 70
SemGrade = “C”

Case Is = 60
SemGrade = “D”

Case Else SemGrade = “F”
End Select

End Function

‘Form Code
Private pupil As CStudent ‘pupil is an object of class CStudent

Private Sub Form_Load()
Set pupil = New CStudent

End Sub

Private Sub cmdEnter_Click()
‘Read the values stored in the text boxes
pupil.Name = txtName
pupil.SocSecNum = txtSSN
pupil.midGrade = Val(txtMidterm)
pupil.finGrade = Val(txtFinal)
‘Clear Text Boxes
txtName.Text = “”
txtSSN.Text = “”
txtMidterm.Text = “”
txtFinal.Text = “”
picGrade.Cls
picGrade.Print “Student recorded.”

End Sub

Private Sub cmdDisplay_Click()
picGrade.Cls
picGrade.Print pupil.Name; Tab(28); pupil.SocSecNum(); _

Tab(48); pupil.SemGrade
End Sub

Private Sub cmdQuit_Click()
End

End Sub

360 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

[Run, enter the data for a student (such as “Adams, Al”, “123-45-6789”, “82”, “87”), press the Enter
Information button to send the data to the object, and press the Display Grade button to display the stu-
dent’s name, social security number, and semester grade.]

In summary, the following seven steps are used to create a class.

1. Identify a thing in your program that is to become an object.

2. Determine the properties and methods you would like the object to have.

3. A class will serve as a template for the object. Add a class module from the Pro-
ject menu.

4. Set the name property of the class. (A common convention is to begin the name
with the letter C.)

5. For each of the properties in Step 2, declare a private member variable with a
statement of the form

Private m_variableName As dataType

6. For each of the member variables in Step 5, create one or two public property
procedures to retrieve and assign values of the variable. The general forms of
the procedures are

Public Property Get ProcedureName() As DataType
ProcedureName = m_variableName
(Possibly additional code.)

End Property

Public Property Let Procedurename(ByVal vNewValue As DataType)
m_variableName = vNewValue
(Possibly additional code.)

End Property

Note: Since the member variables were declared as Private, they cannot be accessed
directly from outside an object. They can only be accessed through Property proce-
dures which allow values to be checked and perhaps modified. Also, a Property pro-
cedure is able to take other steps necessitated by a change in a member variable.

7. For each method in Step 2, create a Sub procedure or Function procedure to
carry out the task.

EXAMPLE 2

Modify the program in Example 1 to calculate semester grades for students who have registered on a
“Pass/Fail” basis. Use a class module to calculate the semester grade.

C l a s s e s a n d O b j e c t s 361

SOLUTION:
We will create a new class, named CPFStudent, with the same member variables and property procedures
as the class CStudent. The only change needed in the class module occurs in the SemGrade method. The
new code for this method is

Public Function SemGrade() As String
Dim grade As Single
grade = (m_midterm + m_final) / 2
grade = Round(grade) ‘Round the grade
If grade = 60 Then

SemGrade = “Pass”
Else
SemGrade = “Fail”

End If
End Function

The only change needed in the Form code is to replace the two occurrences of CStudent
with CPFStudent. When the program is run with the same input as in Example 1, the output
will be

Adams, Al 123-45-6789 Pass

■ THE INITIALIZE EVENT PROCEDURE

The Object drop-down combo box in a class module window displays two items General and
Class. When you click on Class, the following template appears:

Private Sub Class_Initialize()

End Sub

This event procedure is automatically invoked when an object is created from the class. Any
code you type into the procedure is then executed. This procedure is used to set default val-
ues for member variables and to create other objects associated with this object.

Since methods are created with ordinary Function or Sub procedures, arguments can be
passed to them when they are called. The graphical program in Example 3 makes use of argu-
ments. The program involves “twips,” which are a unit of screen measurement. (One inch is
about 1440 twips.) The settings for the Top, Left, Height, and Width properties of a control
are given in twips. For instance, the statements

Image1.Width = 1440 ‘1 inch
Image1.Height = 2160 ‘1.5 inch
Image1.Top = 2880 ‘2 inches
Image1.Left = 7200 ‘5 inches

set the size of the image control as 1” by 1.5”, and place the control 2 inches from the top of
the form and 5 inches from the left side of the form. (See Figure 6-6 in Section 6.3.) Programs
using the Height property of the form should have the BorderStyle property of the form set to
“0-None” since otherwise the height of the border is included in the height of the form.

EXAMPLE 3

Write a program containing a Circle object. The object should keep track of the center and radius of the
circle. (The center is specified by two numbers, called the coordinates, giving the distance from the left
side and top of the form. Distances and the radius should be measured in twips.) A Show method should
display the circle on the form and a Move method should add 500 twips to each coordinate of the center
of the circle. Initially, the circle should have its center at (500, 500) and radius 500. The form should have
a command button captioned “Move and Show Circle” that invokes both methods.

362 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/combobox.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html

SOLUTION:

Object Property Setting

frmCircles BorderStyle 0-None
cmdMove Caption Move and Show Circle
cmdQuit Caption Quit

‘Class module for CCircle
Private m_x As Integer ‘Dist from center of circle to left side of form
Private m_y As Integer ‘Distance from center of circle to top of form
Private m_r As Single ‘Radius of circle

Private Sub Class_Initialize()
‘Set the initial center of the circle to the upper
‘left corner of the form and set its radius to 500.
m_x = 0
m_y = 0
m_r = 500

End Sub

Public Property Get Xcoord()
As Integer Xcoord = m_x

End Property

Public Property Let Xcoord(ByVal vNewValue As Integer)
m_x = vNewValue

End Property

Public Property Get Ycoord() As Integer
Ycoord = m_y

End Property

Public Property Let Ycoord(ByVal vNewValue As Integer)
m_y = vNewValue

End Property

Public Sub Show()
‘Display the circle.
‘See discussion of Circle method in Section 10.4.
frmCircles.Circle (m_x, m_y), m_r

End Sub

Public Sub Move(Dist)
‘Move the center of the circle Dist twips to the right
‘and Dist twips down.
m_x = m_x + Dist
m_y = m_y + Dist
Call Show

C l a s s e s a n d O b j e c t s 363

End Sub

‘Form code
Private round As CCircle

Private Sub Form_Load()
Set round = New CCircle

End Sub

Private Sub cmdMove_Click()
round.Move (500)

End Sub

Private Sub cmdQuit_Click()
End

End Sub

[Run, and press the command button five times.]

COMMENTS

1. The statement

Set objectVar = Nothing

dissociates the object variable from the actual object and frees up the memory
used by the variable.

2. An object variable declared inside a procedure ceases to exist when the proce-
dure is exited. (We say that the object falls out of scope.) The effect is the same
as when the variable is set to Nothing.

3. The counterpart to the Initialize event is the Terminate event procedure which
has the template

Private Sub Class_Terminate()

End Sub

and is automatically invoked when all references to the object are Set to Noth-
ing or when the object falls out of scope. This procedure is often used to set any
objects you may have created inside the class module to Nothing.

364 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

4. Methods can be either Function or Sub procedures. A method that returns a
value must be a Function procedure; otherwise it can be a Sub procedure.

5. A program with a class module has at least three components: a form, form
code, and class module code. Although the View menu gives you access to the
form (Alt/V/B) and the form code (Alt/V/C), only the Project Explorer gives
access to all three. To view the code for a class module, double-click on the
name of the class in the Project Explorer.

6. A class module is saved in a file whose file name has the extension .cls. There-
fore, classes have both a name (Csomething) and a file name (something.cls).

7. To insert an existing (saved) class module into a program, click on Add Class
Module in the Project menu, click on the Existing tab, and enter the filespec for
the class module.

8. To delete a class from a program, right click on the class name in the Project
Explorer and click on Remove className.

9. An object also can be declared with a statement of the form

Private pupil As Object

However, objects so declared require more time and effort for Visual Basic to
access.

10. The set of properties, methods, and events for a class is called the class inter-
face. The classes CStudent and CPFStudent have the same interface, even
though they carry out the task of computing a grade differently. The program-
mer need only be aware of the SemGrade method and needn’t be concerned
about its implementation. The feature that two classes can have behaviors that
are named the same and have essentially the same purpose but different imple-
mentations is called polymorphism.

11. Sometimes you will have difficulty deciding whether an interface item should
be a property or a method. As a rule of thumb, properties should access data and
methods should perform operations.

12. The ByVal (which stands for “by value”) keyword is automatically inserted
before parameters in Property Let statements invoked from the Tools menu.
However, this keyword is optional. The default way of passing an argument to
a parameter is ByRef (which stands for “by reference”). Usually, passing by
value is more efficient than passing by reference.

13. The default parameter name in a Property Let procedure is vNewValue.
Although we usually substitute a meaningful name, we retain the convention of
beginning the name with the prefix v.

14. We could have preceded our member variables with the keyword Public and
allowed direct access to the variables. However, this is considered poor pro-
gramming practice. By using Property Let procedures to update the data, we
can enforce constraints and carry out validation.

15. In a class module, a property is implemented by two procedures, one to set and
the other to retrieve the property value. These procedures that access properties
are sometimes referred to as accessor methods.

12.2 COLLECTIONS AND EVENTS

“An object without an event is like a telephone without a ringer.”

Anonymous

A collection is an entity, similar to an array, that is especially well-suited to working with sets
of objects. This section discusses collections of objects and user-defined events for classes.

C o l l e c t i o n s a n d E v e n t s 365

http://www.pearsoncustom.com/link/visualbasic/userdefinedevents.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/interface.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/interface.html

■ COLLECTIONS

A collection of objects is an ordered set of objects where the objects are identified by the
numbers 1, 2, 3, . . . A collection is declared with a statement of the form

Dim collectionName As New Collection

and initially contains no objects. (We say that the variable collectionName has type Collection.)
The statement

collectionName.Add objectName

adds the named object to the collection and automatically assigns it the next available num-
ber. The numbers for the different objects will reflect the order they were added to the col-
lection. The statement

collectionName.Remove n

deletes the nth object from the collection and automatically reduces the object numbers from
n +1 on by 1 so that there will be no gap in the numbers. At any time, the value of

collectionName.Count

is the number of objects in the collection. The value of

collectionName.Item(n).propertyName

is the value of the named property in the nth object of the collection. The statement

collectionName.Item(n).methodName

runs the named method of the nth object of the collection.

EXAMPLE 1

In the following program, the user enters four pieces of data about a student into text boxes and selects a
type of registration. When the AddStudent button is pressed, the data is used to create and initialize an
appropriate object (either from class CStudent or class CPFStudent) and the object is added to a collec-
tion. When the Calculate Grades button is pressed, the name, social security number, and semester grade
for each student in the collection is displayed in the picture box.

Object Property Setting

frm13_2_1 Caption Semester Grades
lblName Caption Name
txtName Text (blank)
lblSSN Caption SSN
txtSSN Text (blank)
lblMidterm Caption Midterm
txtMidterm Text (blank)
lblFinal Caption Final
txtFinal Text (blank)
fraType Caption Type of

Registration
optReg Caption Regular
optP Caption Pass/Fail
cmdAdd Caption &Add Student
cmdSemGrade Caption &Calculate Grades
cmdQuit Caption &Quit
picGrades

366 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

‘Student Class (CStudent)
Private m_name As String
Private m_ssn As String
Private m_midterm As Single
Private m_final As Single

Property Get Name() As String
Name = m_name

End Property

Property Let Name(ByVal vName As String)
m_name = vName

End Property

Property Get SocSecNum() As String
SocSecNum = m_ssn

End Property

Property Let SocSecNum(ByVal vNum As String)
m_ssn = vNum

End Property

Property Let midGrade(ByVal vGrade As Single)
m_midterm = vGrade

End Property

Property Let finGrade(ByVal vGrade As Single)
m_final = vGrade

End Property

Public Function SemGrade() As String
Dim grade As Single
grade = (m_midterm + m_final) / 2
grade = Round(grade) ‘Round the grade
Select Case grade

Case Is = 90
SemGrade = “A”

Case Is = 80
SemGrade = “B”

Case Is = 70
SemGrade = “C”

Case Is = 60
SemGrade = “D”

Case Else SemGrade = “F”
End Select

End Function

‘Pass/Fail Student Class (CPFStudent)
Private m_name As String
Private m_ssn As String
Private m_midterm As Single
Private m_final As Single

C o l l e c t i o n s a n d E v e n t s 367

Property Get Name() As String
Name = m_name

End Property

Property Let Name(ByVal vName As String)

m_name = vName
End Property

Property Get SocSecNum() As String
SocSecNum = m_ssn

End Property

Property Let SocSecNum(ByVal vNum As String)
m_ssn = vNum

End Property

Property Let midGrade(ByVal vGrade As Single)
m_midterm = vGrade

End Property

Property Let finGrade(ByVal vGrade As Single)
m_final = vGrade

End Property

Public Function SemGrade() As String
Dim grade As Single
grade = (m_midterm + m_final) / 2
grade = Round(grade) ‘Round the grade
If grade = 60 Then

SemGrade = “Pass”
Else
SemGrade = “Fail”

End If
End Function

‘Form code
Dim section As New Collection

Private Sub cmdAdd_Click()
Dim pupil As Object
If optReg.Value Then

Set pupil = New CSTudent
Else
Set pupil = New CPFStudent

End If
‘Read the Values stored in the Text boxes
pupil.Name = txtName
pupil.SocSecNum = txtSSN
pupil.midGrade = Val(txtMidterm)
pupil.finGrade = Val(txtFinal)
section.Add pupil
‘Clear Text Boxes
txtName.Text = “”
txtSSN.Text = “”
txtMidterm.Text = “”

368 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

txtFinal.Text = “”
picGrades.Print “Student added.”

End Sub

Private Sub cmdSemGrade_Click()
Dim i As Integer, grade As String
picGrades.Cls
For i = 1 To section.Count
picGrades.Print section.Item(i).Name; _

Tab(28); section.Item(i).SocSecNum(); _
Tab(48); section.Item(i).SemGrade

Next i
End Sub

Private Sub cmdQuit_Click()
End

End Sub

Private Sub Form_Load()
‘Initially, regular student should be selected
optReg = True

End Sub

[Run, type in data for Al Adams, press the Add Student button, repeat the process for Brittany Brown and
Carol Cole, press the Calculate Grades button, and then enter data for Daniel Doyle.]

■ KEYS

The items in a collection are automatically paired with the numbers from 1 on. Visual Basic
provides an alternative device for accessing a specific item. At the time an item is added to a
collection, we can associate a key for the item via a statement of the form

collectionName.Add objectName, keyString

After that, the object can be referred to as collectionName.Item(keyString).
A property of the object can be accessed with

collectionName.Item(keyString).property

C o l l e c t i o n s a n d E v e n t s 369

For instance, consider the situation of Example 1. If we are using social security num-
ber as a key, and the object pupil contains the data for Brittany Brown, then the statement

section.Add pupil, “222-33-4444”

would assign the string “222-33-4444” as a key for her data. Then her name property can
be accessed with

section.Item(“222-33-4444”).Name

EXAMPLE 2

Extend the program of Example 1 so that the grade for an individual student can be displayed by giving
a social security number.

SOLUTION:
There are no changes in the two classes. In the Sub cmdAdd_Click procedure of the form code, change
the line

section.Add pupil

to

section.Add pupil, txtSSN.Text

Place an additional command button (cmdDisplay) with the caption “Display Single Grade” on the form
and add the following event procedure for this button:

Private Sub cmdDisplay_Click()
Dim ssn As String
ssn = InputBox(“Enter the student’s social security number.”)
picGrades.Cls
picGrades.Print section.Item(ssn).Name; _

Tab(28); section.Item(ssn).SocSecNum(); _
Tab(48); section.Item(ssn).SemGrade

End Sub

When this command button is pressed, the input box in Figure 12-1 appears. To obtain the output in Fig-
ure 12-2, run the program, enter the same data as in the execution of Example 1, press the “Display Sin-
gle Grade” button, type 222-33-4444 into the input box, and press Enter.

FIGURE 12-1 Input Box FIGURE 12-2 Output of Program

370 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html

■ EVENTS

In the previous section we drew a parallel between objects and controls and showed how to de-
fine properties and methods for classes. In addition to the two predefined events for classes,
Initialize and Terminate, other events can be defined by the programmer to communicate
changes of properties, errors, and the progress of lengthy operations. Such events are called
user-defined events. The statement for triggering an event is located in the class module and
the event is dealt with in the form code. Suppose the event is named UserDefinedEvent and
has the arguments arg1, arg2, and so on. In the class module, the statement

Public Event UserDefinedEvent(arg1, arg2, ...)

should be placed in the (Declarations) section of (General), and the statement

RaiseEvent UserDefinedEvent(arg1, arg2, ...)

should be placed at the locations in the class module code at which the event should be trig-
gered. In the form code, an instance of the class, call it object1, must be declared with a state-
ment of the type

Private WithEvents object1 As CClassName

in order to be able to respond to the event. That is, the keyword WithEvents must be inserted
into the standard declaration statement. The header of an event procedure for object1 will be

Private Sub object1_UserDefinedEvent(par1, par2, ...)

EXAMPLE 3

Consider the circle class defined in Example 3 of Section 12.1. Add a user-defined event that is triggered
whenever the center of a circle changes. The event should have parameters to pass the center and radius
of the circle. The form code should use the event to determine if part (or all) of the drawn circle will fall
outside the form. If so, the event procedure should display the message “Circle Off Screen” in a label and
cause all future circles to be drawn in red.

SOLUTION:
Let’s call the event PositionChanged.

Object Property Setting

frmCircles BorderStyle 0-None
cmdMove Caption Move and Show

Circle
lblCaution BorderStyle 1-Fixed Single

Caption, (blank)
cmdQuit Caption, Quit

‘Class module for CCircle
Private m_x As Integer ‘Dist from center of circle to left side of form
Private m_y As Integer ‘Distance from center of circle to top of form
Private m_r As Single ‘Radius of circle
Public Event PositionChanged(x As Integer, y as Integer, r As Single)
’Event is triggered by a change in the center of the circle

Private Sub Class_Initialize()

C o l l e c t i o n s a n d E v e n t s 371

http://www.pearsoncustom.com/link/visualbasic/userdefinedevents.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html

‘Set the initial center of the circle to the upper
‘left corner of the form and set its radius to 500.
m_x = 0
m_y = 0
m_r = 500

End Sub

Public Property Get Xcoord() As Integer
Xcoord = m_x

End Property

Public Property Let Xcoord(ByVal vNewValue As Integer)
m_x = vNewValue

End Property

Public Property Get Ycoord() As Integer
Ycoord = m_y

End Property

Public Property Let Ycoord(ByVal vNewValue As Integer)
m_y = vNewValue

End Property

Public Sub Show()
‘Display the circle.
‘See discussion of Circle method in Section 10.4.
frmCircles.Circle (m_x, m_y), m_r

End Sub

Public Sub Move(Dist)
‘Move the center of the circle Dist twips to the right
‘and Dist twips down.
m_x = m_x + Dist
m_y = m_y + Dist
RaiseEvent PositionChanged(m_x, m_y, m_r)
Call Show

End Sub

‘Form code
Private WithEvents round As CCircle

Private Sub Form_Load()
Set round = New CCircle

End Sub

Private Sub cmdMove_Click()
round.Move (500)

End Sub

Private Sub round_PositionChanged(x As Integer, y As Integer, _
r As Integer)

‘This event is triggered when the center of the circle changes.
‘The code determines if part of the circle is off the screen.
If (x + r > frmCircles.Width) Or (y + r]] frmCircles.Height) Then

lblCaution.Caption = “Circle Off Screen”

372 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

frmCircles.ForeColor = vbRed ‘Make future circles red
End If

End Sub

Private Sub cmdQuit_Click()
End

End Sub

[Run and press the “Move and Show Circle” button seven times. Note: The last circle will be colored
red.]

COMMENTS

1. Perhaps a better name for “user-defined events.” would be “programmer-
defined events.”

2. A statement of the form

collectionName.Add objectName, keyString

can also be written as

collectionName.Add Item:=objectName, Key:=keyString

3. The WithEvents keyword cannot be inserted into a declaration statement of the
form

Private objectName As Object

It can only be used when a specific class follows the word “As.”

4. Collections require more memory than arrays and slow down execution time. If
either a collection or an array would suffice, choose an array. This will often be
the case when the number of items is fixed. For instance, a deck of cards should
be represented as an array of card objects rather than a collection of card
objects.

12.3 CLASS RELATIONSHIPS

The three relationships between classes are “use,” “containment,” and “inheritance.” One class
uses another class if it manipulates objects of that class. We say that class A contains class B

C o l l e c t i o n s a n d E v e n t s 373

http://www.pearsoncustom.com/link/visualbasic/userdefinedevents.html

when a member variable of class A has class B as its type. Inheritance is a process by which
one class (the child class), inherits the properties, methods, and events of another class (the
parent class). Visual Basic does not support the strict academic definition of inheritance. In this
section, we present programs that illustrate “use” (Example 1) and “containment” (Example 2).

In this section we will be setting variables to existing objects. In that case, the proper
statement is

Set objVar = existingObject

EXAMPLE 1

Write a program to create and control two airplane objects (referred to as a bomber and a plane) and a
bomb object. The airplane object should keep track of its location (that is, the number of twips from the
left side and the top side of the form), be capable of moving in a direction (Right, Up, or Down) speci-
fied by the user from a combo box, and should be able to drop a bomb when so commanded. The last task
will be carried out by the bomb object. In the event that a bomb dropped from the bomber hits the plane,
the plane should disappear. The airplanes and the bomb will have physical representations as pictures
inside image controls. By their locations we mean the upperleft corners of their respective image con-
trols.The picture files AIRPLANE.BMP and BOMB.BMP can be found in the Pictures directory of the
CD accompanying this textbook.

SOLUTION:

Object Property Setting

frmPlanes BackColor (white)
BorderStyle 0-None
WindowState 2-Maximized

imgBomberPic Picture AIRPLANE.BMP
Stretch True

imgPlanePic Picture AIRPLANE.BMP
Stretch True

imgBombPic Picture BOMB.BMP
Stretch True
Visible False

cboDirection List Right
Up
Down

cmdMove Caption Move Bomber
cmdDropBomb Caption Drop Bomb
cmdQuit Caption Quit

‘Class module for CPlane

Private m_imgPlane As Image ‘image control associated with plane

Property Let imagePlane(newPlane As Image)

Set m_imgPlane = newPlane

End Property

Public Function Present() As Boolean

‘Determine if the plane is visible

‘Will be needed by the bomb object.

If m_imgPlane.Visible Then

Present = True

Else

Present = False

End If

End Function

374 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

Public Function X() As Integer
X = m_imgPlane.Left

End Function

Public Function Y() As Integer
Y = m_imgPlane.Top

End Function

Public Function W() As Integer
W = m_imgPlane.Width

End Function

Public Function H() As Integer
H = m_imgPlane.Height

End Function

Public Sub Fly(ByVal dir As String, ByVal Height As Integer, ByVal Width As
Integer)

m_imgPlane.Visible = True
‘Meanings of variables
‘dir Direction of airplane (Right, Up, or Down)
‘Height Height of form
‘Width Width of form
If dir = “Up” Then

‘Prevent airplane from rising off the screen.
If (m_imgPlane.Top - 500)>= 0 Then

m_imgPlane.Top = m_imgPlane.Top - 500
End If

ElseIf dir = “Down” Then
‘Prevent airplane from falling off the screen.
If (m_imgPlane.Top + m_imgPlane.Height + 500) <= Height Then

m_imgPlane.Top = m_imgPlane.Top + 500
End If

ElseIf dir = “Right” Then
‘Prevent airplane from moving off the screen.
If (m_imgPlane.Left + m_imgPlane.Width + 500) <= Width Then

m_imgPlane.Left = m_imgPlane.Left + 500
End If

End If
End Sub

Public Sub Destroy()
m_imgPlane.Visible = False

End Sub

Private Sub Class_Terminate()
Set m_imgPlane = Nothing

End Sub

‘Class module for CBomb
Private imgBomb As Image
Public Event BombPositionChanged(X As Integer, Y As Integer, _

W As Integer, H As Integer)
Property Let imageBomb(bomb As Image)

Set imgBomb = bomb
End Property

C l a s s R e l a t i o n s h i p s 375

Public Sub GoDown(plane As CPlane, ByVal FormHeight As Integer)
Dim j As Integer
imgBomb.Left = plane.X + 0.5 * plane.W
imgBomb.Top = plane.Y + plane.H
imgBomb.Visible = True
Do While imgBomb.Top < FormHeight
imgBomb.Top = imgBomb.Top + 5
RaiseEvent BombPositionChanged(imgBomb.Left, imgBomb.Top, _

imgBomb.Width, imgBomb.Height)
‘Pause
For j = 1 To 2000
Next j

Loop
imgBomb.Visible = False

End Sub

Public Sub Destroy()
imgBomb.Visible = False

End Sub

Private Sub Class_Terminate()
Set imgBomb = Nothing

End Sub

‘Form code
Private bomber As CPlane
Private plane As CPlane
Private WithEvents bomb As CBomb

Private Sub Form_Load()
Set bomber = New CPlane
Set plane = New CPlane
Set bomb = New CBomb
bomber.imagePlane = imgBomberPic
plane.imagePlane = imgPlanePic
bomb.imageBomb = imgBombPic

End Sub

Private Sub bomb_BombPositionChanged(X As Integer, Y As Integer, H As Inte-
ger, W As Integer)

‘Check to see if Plane is hit, i.e. the bomb is inside plane or vice
versa.
If plane.Present() Then

If (plane.X <= X) And (plane.X + plane.W >= X) And _
(plane.Y <= Y) And (plane.Y + plane.H >= Y) Or _
(X <= plane.X) And (X + W >= plane.X) And _
(Y <= plane.Y) And (Y + H >= plane.Y) Then
plane.Destroy
bomb.Destroy

End If
End If

End Sub

Private Sub cmdMove_Click()
bomber.Fly cboDirection.Text, frmPlanes.Height, frmPlanes.Width

376 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

End Sub

Private Sub cmdDropBomb_Click()
bomb.GoDown bomber, frmPlanes.Height

End Sub

Private Sub cmdQuit_Click()
End

End Sub

[Run, press the Move button twice, and then press the Drop Bomb button.]

EXAMPLE 2

Write a program to deal a five-card poker hand. The program should have a deck-of-cards object con-
taining an array of 52 card objects.

SOLUTION:
Our card object will have two properties, Denomination and Suit, and one method, IdentifyCard. The
IdentifyCard method returns a string such as “Ace of Spades.” In the DeckOfCards object, the Initialize
event procedure assigns denominations and suits to the 52 cards. The method ReadCard(n) returns the
string identifying the nth card of the deck. The method ShuffleDeck uses Rnd to mix-up the cards while
making 200 passes through the deck. The event Shuffling(n As Integer, nMax As Inte-
ger) is triggered during each shuffling pass through the deck and its parameters communicate the num-
ber of the pass and the total number of passes, so that the program that uses it can keep track of the
progress.

Object Property Setting

frmPokerHand Caption Poker Hand
picHand
cmdShuffle Caption &Shuffle
cmdDeal Caption &Deal
cmdQuit Caption &Quit

‘Class module for CCard
Private m_Denomination As String
Private m_Suit As String

Public Property Let Denomination(ByVal vDenom As String)
m_Denomination = vDenom

End Property

C l a s s R e l a t i o n s h i p s 377

Public Property Let Suit(ByVal vSuit As String)
m_Suit = vSuit

End Property

Public Property Get Denomination() As String
Denomination = m_Denomination

End Property

Public Property Get Suit() As String
Suit = m_Suit

End Property

Public Function IdentifyCard() As String
Dim Denom As String
Select Case Val(m_Denomination)

Case 1
Denom = “Ace”

Case Is <= 10
Denom = m_Denomination

Case 11
Denom = “Jack”

Case 12
Denom = “Queen”

Case 13
Denom = “King”

End Select
IdentifyCard = Denom & “ of ” & m_Suit

End Function

‘Class module for CDeckOfCards
Private m_deck(1 To 52) As CCard
Public Event Shuffling(n As Integer, nMax As Integer)

Private Sub Class_Initialize()
Dim i As Integer
For i = 1 To 52

Set m_deck(i) = New CCard
‘Make the first thirteen cards hearts, the
‘next thirteen cards diamonds, and so on.
Select Case i

Case Is <= 13
m_deck(i).Suit = “Hearts”

Case Is <= 26
m_deck(i).Suit = “Diamonds”

Case Is <= 39
m_deck(i).Suit = “Clubs”

Case Else
m_deck(i).Suit = “Spades”

End Select
‘Assign numbers from 1 through 13 to the
‘cards of each suit.
If (i Mod 13 = 0) Then

m_deck(i).Denomination = Str(13)
Else m_deck(i).Denomination = Str(i Mod 13)

End If

378 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

Next i

End Sub

Public Function ReadCard(cardNum As Integer) As String

ReadCard = m_deck(cardNum).IdentifyCard

End Function

Private Sub Swap(ByVal i As Integer, ByVal j As Integer)

‘Swap the ith and jth card in the deck

Dim TempCard As New CCard

TempCard.Denomination = m_deck(i).Denomination

TempCard.Suit = m_deck(i).Suit

m_deck(i).Denomination =

m_deck(j).Denomination

m_deck(i).Suit = m_deck(j).Suit

m_deck(j).Denomination = TempCard.Denomination

m_deck(j).Suit = TempCard.Suit

End Sub

Public Sub ShuffleDeck()

‘Do 200 passes through the deck. On each pass

‘swap each card with a randomly selected card.

Dim index As Integer, i As Integer, k As Integer

Randomize ‘Initialize random number generator

For i = 1 To 200

For k = 1 To 52

index = Int((52 * Rnd) + 1)

Call Swap(k, index)

Next k

RaiseEvent Shuffling(i, 200)

Next i

End Sub

‘Form Code

Public WithEvents cards As CDeckOfCards

Private Sub Form_Load()

Set cards = New CDeckOfCards

End Sub

Private Sub cmdShuffle_Click()

Call cards.ShuffleDeck

End Sub

Private Sub cmdDeal_Click()

Dim str As String

Dim i As Integer

picHand.Cls

For i = 1 To 5

str = cards.ReadCard(i)

picHand.Print str

Next i

End Sub

C l a s s R e l a t i o n s h i p s 379

Private Sub cards_shuffling(n As Integer, nMax As Integer)
‘n is the number of the specific pass through the deck (1, 2, 3..)
‘nMax is the total number of passes when the deck is shuffled
picHand.Cls
picHand.Print “Shuffling Pass:”; n; “out of”; nMax

End Sub

Private Sub cmdQuit_Click()
End

End Sub

[Run, click on the Shuffle button, and click on the Deal button after the shuffling is complete.]

COMMENT

1. Example 1 illustrates “use” since the GoDown object of the bomb object
receives a plane object. In general, class A uses Class B if an object of class B
is sent a message by a property or method of class A, or a method or property
of class A returns, receives, or creates objects of class B.

SUMMARY

1. An object is an entity that stores data, has methods that manipulate the data, and
can trigger events. A class describes a group of similar objects. A method spec-
ifies the way in which an object’s data are manipulated. An event is a change in
the state of an object.

2. Classes are defined in a separate module called a class module. Data is stored
in member variables and accessed by procedures called methods.

3. Property Let and Property Get procedures are used to set and retrieve values of
member variables. These procedures can also be used enforce constraints and
carry out validation.

4. The Initialize and Terminate event procedures are automatically invoked when
an object is created and falls out of scope, respectively.

5. An object variable is declared in the declarations section of a program with a
statement of the form Private objectName As className and created
with a statement of the form Set objectName = New className.

6. A collection is a convenient devise for grouping together diverse objects.
Objects are added to collections with the Add method and removed with the

380 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

Remove method. The number of objects in a collection is determined with the
Count property and object is returned by the Item method using either a num-
ber or a key.

7. Events are declared in the general declarations section of class module with a
statement of the form Public Event UserDefinedEvent (arg1, arg2,
...) and triggered with a RaiseEvent statement. In the form code, the declara-
tion statement for an object, must include the keyword WithEvents in order for
the events coming from the object to be processed.

8. Objects interact through use and containment.

PROGRAMMING PROJECTS

1. Son of Deep Blue. Write a program that plays a game of tic-tac-toe in which a
person competes with the computer. The game should be played in a control
array of nine labels. See Figure 12-3. After the user moves by placing an X in
a label, the program should determine the location for the O. The program
should use a tic-tac-toe object that raises events when a player moves and when
the game is over. The outcome of the game should be announced in a message
box.

FIGURE 12-3 Tic-Tac-Toe

2. Bank Account. Write a program to maintain a person’s Savings and Checking
accounts. The program should keep track of and display the balances in both
accounts, and maintain a list of transactions (deposits, withdrawals, fund trans-
fers, and check clearings) separately for each account. The two lists of transac-
tions should be stored in sequential files so that they will persist between
program sessions.

Consider the form in Figure 12-4. The two drop-down combo boxes should each
contain the items Checking and Savings. Each of the four frames corresponds
to a type of transaction. (When Savings is selected in the Account combo box,
the Check frame should disappear.) The user makes a transaction by typing data
into the text boxes of a frame and pressing the command button. The items
appearing in the transactions list box should correspond to the type of account
that has been selected. The caption of the second label in the Transfer frame
should toggle between “to Checking” and “to Savings” depending on the item
selected in the “Transfer from” combo box. If a transaction cannot be carried
out, a message (such as “Insufficient funds”) should be displayed.

P r o g r a m m i n g P r o j e c t s 381

http://www.pearsoncustom.com/link/visualbasic/sequentialfile.html
http://www.pearsoncustom.com/link/visualbasic/messagebox.html
http://www.pearsoncustom.com/link/visualbasic/listbox.html
http://www.pearsoncustom.com/link/visualbasic/controlarray.html
http://www.pearsoncustom.com/link/visualbasic/combobox.html
http://www.pearsoncustom.com/link/visualbasic/controlarray.html
http://www.pearsoncustom.com/link/visualbasic/messagebox.html

FIGURE 12-4 Bank Accounts

The program should use two classes, CTransaction and CAccount. The class CTransaction
should have properties for transaction type, amount, paid to, previous balance, new balance,
and transaction date. It should have a method that puts the data into a string that can be added
to the Transaction list box, and methods that place data into and retrieve data from a sequen-
tial file.

The class CAccount, which will have both a checking account and a savings account as in-
stances, should contain a collection of CTransaction objects. In addition, it should have prop-
erties for name (Checking or Savings) and balance. It should have methods to carry out a
transaction (if possible), display the list of transactions, and to load and retrieve the set of
transactions into or from a sequential file. The events InsufficientFunds and
TransactionCommitted should be triggered at appropriate times. [Hint: In order to make
CAccount object to display a list of transactions, a list box should be passed to a method as
an argument. The method might begin with Public Sub EnumerateTransactions(LB As
ListBox).]

382 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/sequentialfile.html
http://www.pearsoncustom.com/link/visualbasic/listbox.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/sequentialfile.html

S E C T I O N

COMMUNICATING WITH
OTHER APPLICATIONS

1313

385

13.1 OLE

OLE, which stands for Object Linking and Embedding, is the evolving technology that allows
programmers to use Visual Basic to glue together applications like spreadsheets and word
processors. The three types of OLE are known as automation, linking, and embedding. With
automation, you control an application from outside. With linking and embedding, you bring
an application into your program. In this section, OLE is illustrated with Microsoft Excel and
Word. However, the programs and walkthroughs can be modified for other spreadsheet and
word processing software packages.

■ OLE AUTOMATION

The objects in the Visual Basic toolbox have both properties and methods, and Visual Basic
controls them by manipulating their properties and methods. In general, anything that can be
controlled by manipulating its properties and methods is called an object. In particular, an
Excel spreadsheet or a Word document can be specified as an OLE Automation object.

We have worked extensively with the data types String, Integer, and Single. There are
eight other data types, including one called Object. A variable that has been declared as an
Object variable can be assigned to refer to an OLE Automation object. The CreateObject
function is used to create an OLE Automation object and the Set statement is used to assign
the object to an object variable. For instance, the pair of statements

Dim objExcel As Object
Set objExcel = CreateObject(“Excel.sheet”)

creates an Excel spreadsheet object and assigns it to the Object variable objExcel. The pair of
statements

Dim objWord As Object
Set objWord = CreateObject(“Word.Basic”)

creates a Word document object and assigns it to the Object variable objWord. After the ob-
ject is no longer needed, a statement of the form

Set objVar = Nothing

should be executed to discontinue association of objVar with the specific object and release
all the resources associated with the previously referenced object.

An object is controlled by manipulating its properties and methods. For instance, the
statement

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/objectlinkingandembedding.html
http://www.pearsoncustom.com/link/visualbasic/objectlinkingandembedding.html

objExcel.Application.Cells(4, 3).Value = “49”

places the number 49 into the cell in the fourth row and third column (that is, C4) of the
spreadsheet. Some other Excel statements are

objExcel.Application.Visible = True ‘Display spreadsheet
objExcel.Application.Cells(4, 3).Font.Bold = True ‘Make cell bold
objExcel.Application.Cells(7, 3).Formula = “=SUM(C1:C5)” ‘Specify that

‘cell C7 hold the sum of the numbers in cells C1 through C5
objExcel.Application.Quit ‘Exit Excel

With the Word object, the statement

objWord.Insert = “We’ll always have Paris.”

inserts the sentence into the document at the current insertion point. Some other Word state-
ments are

objWord.FileNewDefault ‘Create a new document based on
‘the Normal template

objWord.WordLeft ‘Move the insertion point left one word
‘(Counts period as a word.)

objWord.Bold ‘Change font to bold
objWord.FileSaveAs filespec ‘Save document with specified name
objWord.FilePrint ‘Print the current document
objWord.FileClose ‘Close the current document

OLE Automation involves the following four steps:

1. Declare an Object variable with a Dim statement.

2. Create an OLE Automation object with a CreateObject function and assign it to
the variable with a Set statement.

3. Transfer commands and/or data to the OLE Automation object to carry out the
desired task.

4. Close the object and assign the value Nothing to the Object variable.

EXAMPLE 1

The following program, which requires that Microsoft Excel be present in your computer, creates a
spreadsheet for college expenses and uses the spreadsheet to add up the values for the different categories.
The user should place numbers into the text boxes and then press the first command button to tabulate
total college expenses. This process can be repeated as many times as desired.

Object Property Setting

frm14_1_1 Caption College Expenses
lblTuitNFees Caption Tuition and Fees
txtTuitNFees Text blank)
lblBooksNSuppl Caption Books and Supplies
txtBooksNSuppl Text (blank)
lblBoard Caption Board
txtBoard Text (blank)
lblTransportation Caption Transportation
txtTransportation Text (blank)
lblOther Caption Other Expenses
txtOther Text (blank)
Line1
LblTotal Caption TOTAL:
LblHoldTotal Caption (blank)
CmdCalculate Caption &Calculate Total Expenses
CmdQuit Caption &Quit

386 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/objectlinkingandembedding.html

Dim objExcel As Object ‘In (Declarations) section of (General)

Private Sub cmdCalculate_Click()
Set objExcel = CreateObject(“Excel.Sheet”)
‘Make Excel visible objExcel.Application.Visible = True
‘Fill in Rows Values
objExcel.Application.Cells(1, 3).Value = txtTuitNFees.Text
objExcel.Application.Cells(2, 3).Value = txtBooksNSuppl.Text
objExcel.Application.Cells(3, 3).Value = txtBoard.Text
objExcel.Application.Cells(4, 3).Value = txtTransportation.Text
objExcel.Application.Cells(5, 3).Value = txtOther.Text
‘Set up a cell to total the expenses
objExcel.Application.Cells(6, 3).Formula = “=SUM(C1:C5)”
objExcel.Application.Cells(6, 3).Font.Bold = True
‘Set total as the contents of this cell
lblHoldTotal = objExcel.Application.Cells(6, 3).Value
‘Make Excel invisible
objExcel.Application.Visible = False

End Sub

Private Sub cmdQuit_Click()
‘Close Excel
objExcel.Application.Quit
‘Release the object variable
Set objExcel = Nothing
End

End Sub

[Run, place numbers into the text boxes, and click on the Calculate Total Expenses button. Note: If the
form is not visible, click on the College icon in the Window’s task bar at the bottom of the screen.]

EXAMPLE 2

The following program creates a Word document, prints the contents of the document, and saves the doc-
ument to a file.

Object Property Setting

frm14_1_2 Caption EXAMPLE 2
cmdCreate Caption &Create Word

Document

O L E 387

Private Sub cmdCreate_Click()

Dim objWord As Object

Set objWord = CreateObject(“Word.Basic”)

objWord.FileNewDefault

objWord.Insert “I can resist everything.”

objWord.Wordleft

objWord.Bold

objWord.Insert “ except temptation”

objWord.FilePrint ‘Make sure your printer is on

objWord.FileSaveAs “QUOTE.DOC”

objWord.FileClose Set

objWord = Nothing

End Sub

[Run and click the command button. The printer will produce the following output.]

I can resist everything except temptation.

THE OLE CONTAINER CONTROL

An OLE Container control provides a bridge to Windows applications, such as spreadsheets
and word processors. For instance, it can hold an Excel spreadsheet or a Word document. The
application can be either linked or embedded through the OLE Container control. With link-
ing, a link is established to the data associated with the application and only a snapshot of the
data is displayed. Other applications can access the object’s data and modify them. For ex-
ample, if you link a text file to a Visual Basic application, the text file can be modified by any
application linked to it. The modified version appears in all documents linked to this text.
With embedding, all the application’s data are actually contained in the OLE Container con-
trol and no other application has access to the data.

When you place an OLE Container control on a form, the dialog box in Figure 13-1
appears. You can select an application from the list and then press the OK button (or double-
click on the application) to insert it into the control. Alternately, you can click on the “Cre-
ate from File” option button to produce the dialog box in Figure 13-2. From this second
dialog box, you specify a file (such as a Word .DOC file or an Excel .XLS file) by typing it
into the text box or clicking the Browse command button and selecting it from a standard file
selection dialog box. After the file has been selected, you have the option of checking the
Link check box before clicking on the OK button to insert the contents of the file into the
OLE Container control.

FIGURE 13-1 An Insert Object Dialog Box

388 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/objectlinkingandembedding.html
http://www.pearsoncustom.com/link/visualbasic/checkbox.html

FIGURE 13-2 Dialog Box for Inserting Contents of a File into an OLE Container Control.

■ AN EMBEDDING WALKTHROUGH USING EXCEL

1. Press Alt/File/New Project and click on OK.

2. Click the OLE icon in the Toolbox and use the single-click-draw technique to
create a very large rectangle on the form.

3. The Insert Object dialog box appears. Double-click on “Microsoft Excel Work-
sheet” in the Object Type list.

Excel will be invoked and you will be able to create a spreadsheet. (Most like-
ly, the Excel menu bar will replace the Visual Basic menu bar. In some cases,
the Excel menu bar will appear on the form just below the title bar.)

4. Enter data into cells as shown in the first three rows of the spreadsheet in Fig-
ure 13-3

5. Drag to select cells A1 through F3.

6. If you are using Excel 97, click Insert, click Chart, and then proceed to Step 8.
If you are using Excel 95, click Insert, then Chart, and then On This Sheet.

7. (A new mouse pointer consisting of a thin plus sign and a small bar chart
appears.) Move the mouse pointer to cell A5, drag to the bottom-right corner of
the OLE Container control, and then release the left mouse button.

A Chart Wizard dialog box appears.

8. Click on the Finish button.

Your spreadsheet should be similar to the one in Figure 13-3.

FIGURE 13-3 An Excel Spreadsheet

O L E 389

http://www.pearsoncustom.com/link/visualbasic/objectlinkingandembedding.html

9. Click on the form to exit Excel.

The values you created in Excel are now displayed in the OLE rectangle with-
out any Excel embellishments. If needed, you can resize the OLE rectangle to
show any hidden material.

10. Run the program.

11. Double-click on the OLE rectangle to reinvoke Excel.

12. Change the value in one of the cells and then click on any other cell.

Notice that the change is reflected in the bar chart.

13. Click the End icon to end the program.

Notice that the changes to the data and graph have been lost. They are perma-
nently gone.

14. Add a command button to the form and caption it Save Sheet.

15. Double-click on the command button to open the Command1_Click event pro-
cedure code window.

16. With Excel 97, enter the following program lines into this code window. (With
Excel 95, delete “worksheet(“sheet1”)”.)

Dim objExcel As Object
Set objExcel = OLE1.Object
objExcel.worksheet(“sheet1”).SaveAs “MySheet.xls”
Set objExcel = Nothing

The first two lines of this code make the contents of OLE1 into an OLE
Automation object.

17. Run the program, double-click on the OLE rectangle to invoke Excel, change
the contents of one of the cells, and click on another cell.

18. Click on the Save Sheet command button.

19. Click the End icon to end the program.

Again the changes to the data and graph have been lost. However, the saved file
now can be used to recover the changes if you so desire. To do so, go to the
SourceDoc property of OLE1, click on the ellipsis, type MYSHEET.XLS into
the text box, click on the OK button, and click on Yes in the “Delete Current
Embedded Object?” message box.

■ A LINKING WALKTHROUGH USING WORD

1. Before starting Visual Basic, invoke Word, type in a few sentences, and save the
document. In this walkthrough we assume that the document you have created
now resides on drive A and is named MYWORK.DOC.

2. Invoke Visual Basic.

3. Click the OLE icon in the Toolbox and use the single-click-draw technique to
create a large rectangle on the form.

4. Click on the “Create from File” option button, type A:\MYWORK.DOC into
the text box, click the Link check box, and click on the OK button.

The document saved in MYWORK. DOC is displayed in the OLE rectangle.

5. Run the program and double-click the OLE rectangle. The complete Word pro-
gram is invoked and the document in MYWORK.DOC is displayed.

6. Make some changes to the document, and then press Alt/File/Save and
Alt/File/Exit to save your changes and exit Word. The modified document is
displayed in the OLE rectangle on the Visual Basic form.

7. End the program and display the form if it is hidden.

390 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/objectlinkingandembedding.html
http://www.pearsoncustom.com/link/visualbasic/messagebox.html
http://www.pearsoncustom.com/link/visualbasic/checkbox.html

Notice that the document in the OLE rectangle is the original document, not the
modified version. Visual Basic maintains an image of this original document in
the program to display at run time if it is unable to display the latest version of
the data (document).

8. Run the program.

The document is still the original version.

9. Double-click on the OLE rectangle to invoke Word.

Notice that the document displayed is the modified version.

10. Exit back to Visual Basic and then end the Visual Basic program.

11. Double-click on the form and add the code

Ole1.Action = 6 ‘Update OLE image
to the Form_Load event procedure.

12. Run the program.

Notice that Visual Basic has updated the document to the last version saved
while in Word even though you have not yet accessed Word by double-clicking.

COMMENTS

1. OLE requires a powerful computer to operate at a reasonable speed.

2. An embedded application in the container OLE1 can be made into an OLE
Automation object by a pair of statements of the form

Dim objVar As Object
Set objVar = OLE1.Object

3. After an Excel spreadsheet has been opened as an object, data can be assigned
to and read from a single cell with statements such as

objExcel.Application.Cells(4, 2).Value = “49”
num = objExcel.Application.Cells(1, 3).Value

These statements can be replaced by the following statements that use the stan-
dard spreadsheet notation for cells.

objExcel.Application.Range(“B4”).Value = “49”
num = objExcel.Application.Range(“C1”).Value

4. A linked or embedded application can be activated by double-clicking on the
OLE container. They can also be activated with the code

OLE1.Action = 7

and deactivated with the code

OLE1.Action = 9

5. The OLE Automation function GetObject, which is similar to CreateObject, can
be used to access existing Excel spreadsheets. For instance, if a worksheet
resides in the root directory on a diskette in drive A and has the name EXPENS-
ES.XLS, then the spreadsheet can be accessed with the pair of statements

Dim objExcel As Object
Set objExcel = GetObject(“A:\EXPENSES.XLS”)

6. Some other Word statements for use in OLE Automation are

O L E 391

http://www.pearsoncustom.com/link/visualbasic/objectlinkingandembedding.html

objWord.FileOpen filespec ‘Open the specified document
objWord.FontSize n ‘Assign the value n to the font size
objWord.StartOfLine ‘Move the insertion point to the ‘begin-

ning of the current line
objWord.EndOfLine ‘Move the insertion point to the ‘end of

the current line
objWord.StartOfDocument ‘Move the insertion point to the ‘begin-

ning of the document
objWord.EndOfDocument ‘Move the insertion point to the ‘end of

the document
objWord.FileSave ‘Save the current document

7. The following key combinations can be used to carry out tasks with an embed-
ded Excel application:

Ctrl+; Insert the date in the current cell
Alt+= Sum continuous column of numbers containing the current cell
Ctrl+Z Undo the last operation
Shift+F3 Invoke the Function Wizard
F7 Check spelling

8. The standard prefix for the name of an OLE container control is ole.

9. OLE replaces an earlier technology known as Dynamic Data Exchange (DDE)
that was used to integrate applications into Visual Basic programs. DDE is
slower and more difficult to use than OLE.

13.2 ACCESSING THE INTERNET WITH VISUAL BASIC

■ WHAT IS THE INTERNET?
The Internet began in the late 1960s as a plan to link computers at scientific laboratories across
the country so that researchers could share computer resources. This plan was funded by the
Defense Department’s Advanced Research Projects Agency (ARPA) and initially was known
as ARPANET. Over time, many research institutions and universities connected to this network.
Eventually, the National Science Foundation took over ARPANET and ultimately it became
what we now know as the Internet. The past few years has seen an amazing amount of growth
in this global network. It more than doubles in size every 6 months.

The Internet often is confused with one of its most popular components, the World Wide
Web (WWW) or “the Web.” The Internet is much more than the Web. It also consists of elec-
tronic mail (e-mail), file transfer (FTP), news groups, and remote login capabilities. E-mail
allows people to send messages to one another over the Internet. FTP allows people to trans-
fer files from one machine to another. This is often the preferred method of retrieving share-
ware or freeware programs over the Internet. Usenet is a large collection of electronic
discussion groups called newsgroups. There are newsgroups dedicated to every topic imag-
inable. People can post messages that all members of the group can read and answer.

The World Wide Web is made up of documents called pages, which contain pictures and
text. The pages are accessed through programs called browsers. The best known Web
browsers are Netscape, Mosaic, Lynx, and Internet Explorer. Web pages usually include links
to other pages. These links are often set apart from the regular text by using boldface, under-
lining, or color. When you click on a link, you call up the page referred to by that link. This
technology for connecting documents is called hypertext.

392 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/objectlinkingandembedding.html
http://www.pearsoncustom.com/link/visualbasic/internet.html
http://www.pearsoncustom.com/link/visualbasic/browser.html

To access an initial Web page, you must specify an address called a Uniform Resource
Locator (URL). You can do this by typing in a URL (or Locator) text box found toward the
top of your browser or by typing in the dialog box that appears when selecting the Open com-
mand from the File menu or clicking the Open button in the toolbar.

■ A WEB BROWSER WALKTHROUGH

1. Connect to the Internet either through your commercial service provider or by
using your school’s network computers.

2. Start up a Web browser such as Netscape, Mosaic, Lynx, or Internet Explorer.

3. In the Location or URL text box toward the top of the browser, type in
http://www.whitehouse.gov

4. Press Enter.

5. Click on one of the highlighted or underlined phrases (links) in the document.

The page associated with this link will load. For instance if you click on “The
President & Vice President:” you will see pictures of them and their wives along
with information on how to send e-mail to them.

6. Click on some other links to see what pages are brought up.

7. When you are through exploring the White House page, try other URL address-
es such as:

Microsoft’s Visual Basic Page http://www.microsoft.com/vbasic

Carl and Gary’s Visual Basic Page http://www.apexsc.com/vb

Prentice-Hall’s Home Page http://www.prenhall.com

The remainder of this section is devoted to using Visual Basic to create our own Web
browser. The requirements for this task are as follows:

1. A modem, or a direct internet connection.

2. A Windows TCP/IP stack, usually referred to as a Winsock. (If you are using an
Internet connection through your school, it almost certainly meets this require-
ment. If you are using a dialup connection from home, the Microsoft hookup to
the network that comes with Windows will work.)

3. Microsoft Internet Explorer 4.0 (or higher) must be installed.

To Add the Web Browrser Control to Your Visual Basic Toolbox

1. Invoke Visual Basic.

2. Press Ctrl+T to invoke the Components dialog box.

3. Click the check box next to Microsoft Internet Controls.

4. Click the OK button.

The Web Browser icon should now appear in your toolbox.

EXAMPLE 1

The following program creates a simplified Web browser. (Before running the program, be sure you are
connected to the Internet as discussed above.) The primary task of the program, accessing the Web, is
accomplished with the single statement

WebBrowser1.Navigate(txtURL.Text)

The On Error Resume Next statement specifies that when a run-time error occurs, control goes to the
statement immediately following the statement where the error occurred where execution continues. This

A c c e s s i n g t h e I n t e r n e t w i t h V i s u a l B a s i c 393

http://www.pearsoncustom.com/link/visualbasic/internet.html
http://www.pearsoncustom.com/link/visualbasic/checkbox.html
http://www.pearsoncustom.com/link/visualbasic/browser.html

statement is needed because the LocationURL of the Web Browser control can easily return an error and
crash the program. (For instance, this would happen if the intended web site was down.)
After you run the program as specified in what follows, click on one of the links. Note: The home page
of Internet Explorer will also be the home page of the Web Browser control.

Object Property Setting

frm14_2_1 Caption Simple Web Browser
txtURL Text (blank)
mdRetrieve Caption &Retrieve Document
Default True
CmdQuit Caption &Quit
LblURL Caption URL:
WebBrowser1

Private Sub Form_Load()
WebBrowser1.GoHome ‘Calls up Internet Explorer’s home page

End Sub

Private Sub cmdRetrieve_Click()
‘Calls up the URL typed in the text box
WebBrowser1.Navigate(txtURL.Text)

End Sub

Private Sub Form_Resize()
‘Resizes the WebBrowser control with the Form,
‘as long as the form is not minimized.
‘occurs when the Form is first displayed
If frm14_2_1.WindowState > 1 Then

WebBrowser1.Width = frm14_2_1.ScaleWidth
WebBrowser1.Height = frm14_2_1.ScaleHeight – 740 ‘Subtract toolbar
height

End If
End Sub

Private Sub WebBrowser1_NavigateComplete (ByVal URL As String)
‘Is activated when the HTML control finishes retrieving the
‘requested Web page.
‘Updates the text box to display the URL of the current page.
On Error Resume Next ‘Eliminates error messages
txtURL.Text = WebBrowser1.LocationURL

End Sub

Private Sub cmdQuit_Click()
End

End Sub

[Run. The Internet Explorer’s home page will be displayed. Type http://www.whitehouse.gov/ into the text
box, and click on the “Retrieve Document” command button.]

394 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

EXAMPLE 2

The following enhancement of Example 1 adds a label that shows the status of the Web Browser control,
a command button that returns you back to the most recently accessed page, and a command button that
displays the Prentice-Hall web site. (The picture of the Prentice-Hall trademark is contained in the Pic-
tures directory of the accompanying CD.)

Object Property Setting

frm14_2_2 Caption Simple Web Browser
lblURL Caption URL:
txtURL Text (blank)
lblStatus Caption (blank)
cmdRetrieve Caption &Retrieve Document

Default
cmdBack Caption &Back
cmdPH Caption (none)

Style Graphical
Picture PHICON.BMP

CmdQuit Caption &Quit
WebBrowser1

Add the following code to the program in Example 1.

Private Sub WebBrowser1_StatusTextChange(ByVal Text As String)
‘Event is called whenever the address of the page being
‘displayed changes. The address is assigned to the string Text.
lblStatus.Caption = Text

End Sub

A c c e s s i n g t h e I n t e r n e t w i t h V i s u a l B a s i c 395

Private Sub cmdBack_Click()
WebBrowser1.GoBack ‘Return to the previous web site or page

End Sub

Private Sub cmdPH_Click()
WebBrowser1.Navigate (“http://www.prenhall.com”)

End Sub

[Run. After the Internet Explore home page appears, click on the command button with the picture of the
Prentice-Hall trademark.]

COMMENTS

1. The abbreviation HTTP stands for HyperText Transfer Protocol.

2. Some additional properties of the Web Browser control are

LocationURL Gives the URL of the current page.

LocationName Gives the title of the current page.

Busy Has the value True if the control is downloading a file
or navigating to a new location.

3. Some additional methods of the Web Browser control are

GoForward Undoes the most recent GoBack method.

GoSearch Goes to the user’s web searching page.

Stop Cancels the current operation of the control.

4. Some additional events of the Web Browser control are

BeforeNavigate Triggered right before the control moves to a new
location.

ProgressChange Triggered periodically as the downloading continues.

396 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

DownloadComplete Triggered when the download is complete, halter, or
failed.

5. If a file on your disk is an HTML document, you can view it as a web page with
the statement WebBrowser1.Navigate “filespec”.

6. Three good books about the Internet are

C.L. Clark, A Student’s Guide to the Internet, Prentice Hall, Inc. 1996.

B. P. Kehoe, Zen and the Art of the Internet, Prentice Hall, Inc. 1996.

K. Hafner and M. Lyon, Where Wizards Stay Up Late: The Origins of the Inter-
net, Simon & Schuster, 1996.

13.3 WEB PAGE PROGRAMMING WITH VBSCRIPT

Note: This section requires that the Internet Explorer Web browser be installed on your com-
puter.

Web browsers display Web pages created as text files, called HTML1 [stands for Hyper-
Text Markup Language] documents. The text files can be written with Notepad or any other
word processor. VBScript is a subset of the Visual Basic programming language that is used
to make Web pages interactive. (You can use any VBScript code in VB itself.) In this section,
we learn how to create Web pages with HTML, add controls to Web pages, and write
VBScript code that manipulates the controls.

■ HTML
Here is a typical line in an HTML document.

This sentence will be printed in bold.

The items and are called tags. Here the letter B stands for Bold and the pair of tags
tells the browser to display everything between the two tags in boldface. The first tag is called
the begin tag and the second tag is called the end tag. Most tags come in pairs in which the
second tag differs from the first only in the addition of a slash (/). The combination of pair of
tags and the data characters enclosed by them is called an element. In general, a tag defines
a format to apply or an action to take. A pair of tags tells the browser what to do with the text
between the tags. Some pairs of tags and their effect on the text between them are as follows.

<I>, </I> Display the text in italics
<U>, </U> Display the text underlined.
<Hn>, </Hn> Display the text in a size n header (1 ≤ n ≤ 6)
<BIG>, </BIG> Display the text one font size larger.
<SMALL>, </SMALL> Display the text one font size smaller.
<DIV ALIGN=CENTER>, </DIV> Center the text.
<TITLE>, </TITLE> Place the text in the Web page title bar.

An example of a tag that does not come in pairs is <P>, which tells the browser to start
a new paragraph and insert a blank line. A similar tag is
 which inserts a carriage return
and a line feed to start a new line. The lines

Line One
Line Two

in an HTML document will be displayed as

Line One Line Two

in the Web page, since browsers combine all the white space (including spaces, tabs, and line
breaks) into a single space. On the other hand,

Line One
 Line Two

W e b P a g e P r o g r a m m i n g W i t h V B S c r i p t 397

http://www.pearsoncustom.com/link/visualbasic/vbscript.html
http://www.pearsoncustom.com/link/visualbasic/internet.html
http://www.pearsoncustom.com/link/visualbasic/html.html
http://www.pearsoncustom.com/link/visualbasic/browser.html

will be displayed as

Line One
Line Two

and

Line One <P> Line Two

will be displayed as

Line One

Line Two

Sometimes the begin tag of a pair of tags contains additional information needed to
carry out the task. The pair of tags and create a hyperlink to the
Web page with the specified address and the text between the tags underlined. For instance,
the element

 This is a link to Prentice-Hall.

in an HTML document will be displayed by the browser as

This is a link to Prentice-Hall.

When you click anywhere on this line, the browser will move to the Prentice-Hall Web site.
HTML documents consist of two parts, called the head and the body, that are delineated

by the pairs of tags <HEAD>, </HEAD> and <BODY>, </BODY>. In addition, the entire
HTML document is usually enclosed in the pair of tags <HTML>, </HTML>. The HTML
document in Figure 13-4 produces the Web page shown in Figure 13-5.

FIGURE 13-4 HTML Document

398 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/html.html
http://www.pearsoncustom.com/link/visualbasic/browser.html

FIGURE 13-5 Web Page

■ PLACING ACTIVEX CONTROLS IN HTML DOCUMENTS

With Internet Explorer, ActiveX controls, such as text boxes, command buttons, and user-
built controls, can be placed on Web pages. For instance, the element

<OBJECT ID="cmdPush" WIDTH=115 HEIGHT=49
CLASSID="CLSID:D7053240-CE69-11CD-A777-00DD01143C57">
<PARAM NAME="Caption" VALUE="Push Me">
<PARAM NAME="Size" VALUE="3037;1291">
<PARAM NAME="FontCharSet" VALUE="0">
<PARAM NAME="FontPitchAndFamily" VALUE="2">
<PARAM NAME="ParagraphAlign" VALUE="3">
<PARAM NAME="FontWeight" VALUE="0">

</OBJECT>

tells Internet Explorer to place a command button (named cmdPush) on the Web page. The
string beginning with CLSID is the control's identification number in the Windows registry.
The PARAM tags set properties of the control. For instance, the first PARAM tag sets the cap-
tion of the command button to “Push Me.”

Creating the OBJECT element is so cumbersome that Microsoft has developed a tool,
called the ActiveX Control Pad, that makes placing a control on a Web page nearly as easy
as placing a control on a Visual Basic form. The ActiveX Control Pad is sometimes includ-
ed with Internet Explorer. Also, the ActiveX Control Pad can be downloaded separately from
the Microsoft Web site. (See Comment 7.)

The ActiveX Control Pad is actually a word processor that looks and acts much like
Notepad. The following walkthrough uses the ActiveX Control Pad to create a Web page con-
taining a text box and a command button.

W e b P a g e P r o g r a m m i n g W i t h V B S c r i p t 399

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/activex.html

1. Click the Start button on the Windows taskbar, point to Programs, point to
Microsoft ActiveX Control Pad, and then click on Microsoft ActiveX Control
Pad in the final pop-up list. The window that appears (see Figure 13-6) contains
a template for an HTML document.

FIGURE 13-6 ActiveX Control Pad

2. In the Title element, replace “New Page” with “My First Web Page”.

3. Just below the begin Body tag, type the following lines.

<BIG>Hello</BIG>
<P>Type your first name into the box.<P>

4. Press Alt/Edit/Insert ActiveX Control. (An Insert ActiveX dialog box appears
containing a list of all available controls.)

5. Scroll down the list and double-click on Microsoft Forms 2.0 TextBox. (Two
windows appear. One window, titled Edit ActiveX Control, contains a text box
and is similar to a Visual Basic form. The other window is an abbreviated text
box Properties window.)

6. Scroll down the Properties window and click on ID. (The default setting
TextBox1 appears next to ID and in the settings text box at the top of the Prop-
erties window. The ID property is the same as Visual Basic's Name property.)

7. Replace the words in the settings text box with txtFirstName and click on the
Apply button.

8. Go to the Edit ActiveX Control window and make the text box a little larger.

9. Close the windows by clicking on their X buttons. (An OBJECT element for the
text box has been added to the ActiveX Control Pad.)

10. Type <P>.

11. Repeat Steps 4 through 9 to add a command button OBJECT element. (Select
Microsoft Forms 2.0 Command button, give it the ID cmdShow, and the caption
“Show Greeting.”)

12. Press Alt/File/Save As, select a location and name (with extension htm) for the
file, and click on the Save button.

13. Invoke Internet Explorer. (There is no need to actually connect to the internet
via a phone line.)

14. Type the filespec for your saved HTML page into the address box and press
Enter. (The window in Figure 13-7 will appear.)

400 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/internet.html
http://www.pearsoncustom.com/link/visualbasic/html.html
http://www.pearsoncustom.com/link/visualbasic/activex.html

FIGURE 13-7

14. Feel free to type into the text box and click on the command button. Nothing
will happen since no code has yet been written for them.

■ ACTIVATING A WEB PAGE WITH VBSCRIPT

The VBScript programming language is an offshoot of Visual Basic. It has most of the fa-
miliar features, such as If blocks, Do loops, Select Case blocks, procedures, and arrays.
However, VBScript has some differences from Visual Basic. For instance, all variables are of
type Variant and are declared with a statement of the form Dim variableName. VBScript sup-
ports the functions FormatNumber, FormatCurrency, FormatPercent, and FormatDateTime,
but not the plain Format function. Some additional differences between Visual Basic and
VBScript are listed in Comments 5 and 6.

Code is written into a SCRIPT element with begin tag

<SCRIPT LANGUAGE="VBSCRIPT">

and end tag </SCRIPT>. Let's continue the walkthrough above by adding some code to the
HTML document created in the walkthrough. (If you have already closed the HTML document,
you can bring it back into the ActiveX Control Pad with Alt/File/Open.)

15. Type the following code into the body element of the document, just below the
OBJECT elements, and then Save the document.

<SCRIPT LANGUAGE="VBSCRIPT">
Sub cmdShow_Click()

Dim nom
nom = txtFirstName.text
MsgBox “Greetings ” & nom

End Sub
</SCRIPT>

16. Return to Internet Explorer and look at the revised Web page. (If you have not
changed the Address since the walkthrough, just click on the Refresh icon to
load the revised HTML page. Otherwise type in its filespec and press the Enter
key.)

17. Type your name, say David, into the text box and click on the command button.
A message box will pop up with the message “Greetings David”.

W e b P a g e P r o g r a m m i n g W i t h V B S c r i p t 401

http://www.pearsoncustom.com/link/visualbasic/vbscript.html
http://www.pearsoncustom.com/link/visualbasic/selectcaseblocks.html
http://www.pearsoncustom.com/link/visualbasic/messagebox.html
http://www.pearsoncustom.com/link/visualbasic/ifblocks.html
http://www.pearsoncustom.com/link/visualbasic/html.html
http://www.pearsoncustom.com/link/visualbasic/formatfunctions.html
http://www.pearsoncustom.com/link/visualbasic/doloop.html
http://www.pearsoncustom.com/link/visualbasic/activex.html

COMMENTS

1. You can obtain extensive information about HTML and VBScript from the Help
menu in the ActiveX Control Pad. (If the documentation for VBScript is not
present on your computer, you can either download the documentation or read
it online at http://microsoft.com/scripting.)

2. HTML tags are not case sensitive. For instance, has the same effect as .

3. A TITLE element must placed inside the HEAD portion of an HTML docu-
ment.

4. VBScript programs can contain code that is not in any procedure. If so, this
code is executed by Internet Explorer as soon as the Web page is displayed. It
is analogous to Visual Basic code found in the Form_Load event procedure.

5. Some features of Visual Basic that are not available in VBScript are ranges of
values and the Is keyword in Case clauses, Str and Val functions, the Open
statement, On Error GoTo statement, arrays declared with lower bound ≠ 0, line
labels, collections, and picture box controls.

6. If i is the index of a For...Next loop, in Visual Basic the final statement should
be Next i. In VBScript, the i must be dropped from the final statement.

7. To download the ActiveX Control Pad, enter the address
http://www.microsoft.com/gallery/tools/contents.htm into your browser and
follow the directions.

8. You can place your own custom-built ActiveX controls into an HTML docu-
ment provided the control has been compiled into an ocx file. However, in order
to use these controls you will have to ease Internet Explorer's safety level. To
invoke the lowest level of security, select Internet Options from Internet Explor-
er's View menu, click on the Security tab, and select Low. Note: Before you
actually connect to the internet, reset the safety level to High.

9. Visual Basic allows you to place controls exactly where you want on a form.
The ActiveX Control Pad has a device, called an HTML Layout, that lets you
achieve the same result. An HTML Layout is actually an ActiveX control that
acts as a container for other controls. It has a grid like a form that allow for pre-
cision alignment. The steps for creating an HTML Layout are as follows.

(a) From the ActiveX Control Pad, click on New HTML Layout in the File
menu. (A form-like window and a square toolbar containing about a dozen
icons will appear.)

(b) Place a control on the Layout with the click and drag method. To set the
properties of a control in the Layout, double-click on the control to produce
a Properties window.

(c) After all the controls have been drawn and their properties set, save the
Layout (in an ALX file).

(d) To insert the Layout into an HTML document, position the cursor at the
insertion point, and click on Insert HTML Layout in the Edit menu to open
a file-selection dialog box. Select the location and name of the file, and
then press the Open button. (An OBJECT element will be created for the
Layout.)

(e) Whenever you want to alter the Layout, place the cursor anywhere inside
the OBJECT element and select Edit HTML Layout from the Edit menu.

402 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/vbscript.html
http://www.pearsoncustom.com/link/visualbasic/internet.html
http://www.pearsoncustom.com/link/visualbasic/html.html
http://www.pearsoncustom.com/link/visualbasic/fornextloop.html
http://www.pearsoncustom.com/link/visualbasic/browser.html
http://www.pearsoncustom.com/link/visualbasic/activex.html

SUMMARY

1. OLE, a technology developed by Microsoft, gives Visual Basic access to other
applications.

2. OLE Automation allows you to control other applications with Visual Basic
code. The other application is declared as an object with the Set statement and
CreateObject function.

3. Other applications can be embedded in or linked to a form with the OLE Con-
tainer control.

4. The WebBrowser control can be used to create a browser for the World Wide
Web.

5. The document-formatting language used by Web browsers is called HTML.
Tags are used to mark up text with display instructions. The combination of a
pair of tags and the text enclosed is called an element.

6. The ActiveX Control Pad is used to place text, controls, and programs into
HTML documents.

7. VBScript is a subset of Visual Basic that is used to make Web pages interactive.

S u m m a r y 403

http://www.pearsoncustom.com/link/visualbasic/vbscript.html
http://www.pearsoncustom.com/link/visualbasic/objectlinkingandembedding.html
http://www.pearsoncustom.com/link/visualbasic/html.html
http://www.pearsoncustom.com/link/visualbasic/browser.html
http://www.pearsoncustom.com/link/visualbasic/activex.html

A P P E N D I C E S

407

APPENDIX A
ANSI VALUES

ANSIValue Character ANSIValue Character ANSIValue Character

000 (null) 040 (080 P

001 ■■ 041) 081 Q

002 ■■ 042 * 082 R

003 ■■ 043 + 083 S

004 ■■ 044 , 084 T

005 ■■ 045 – 085 U

006 ■■ 046 . 086 V

007 ■■ 047 / 087 W

008 ■■ 048 0 088 X

009 (tab) 049 1 089 Y

010 (line feed) 050 2 090 Z

011 ■■ 051 3 091 [

012 ■■ 052 4 092 \

013 (carriage return) 053 5 093]

014 ■■ 054 6 094 ^

015 ■■ 055 7 095 _

016 ■■ 056 8 096 `

017 ■■ 057 9 097 a

018 ■■ 058 : 098 b

019 ■■ 059 ; 099 c

020 ■■ 060 < 100 d

021 ■■ 061 = 101 e

022 ■■ 062 > 102 f

023 ■■ 063 ? 103 g

024 ■■ 064 @ 104 h

025 ■■ 065 A 105 i

026 ■■ 066 B 106 j

027 ■■ 067 C 107 k

028 ■■ 068 D 108 l

029 ■■ 069 E 109 m

030 ■■ 070 F 110 n

031 ■■ 071 G 111 o

032 072 H 112 p

033 ! 073 I 113 q

034 ” 074 J 114 r

035 # 075 K 115 s

036 $ 076 L 116 t

037 % 077 M 117 u

038 & 078 N 118 v

039 ’ 079 O 119 w

ANSIValue Character ANSIValue Character ANSIValue Character

120 x 166 212 Ô

121 y 167 § 213 Õ

122 z 168 ¨ 214 Ö

123 { 169 © 215 �

124 | 170 ¶ 216 �

125 } 171 « 217 Ù

126 ~ 172 ¬ 218 Ú

127 ■■ 173 - 219 Û

128 ■■ 174 ® 220 Ü

129 ■■ 175
_

221 Ý

130 , 176 ° 222 bp

131 ƒ 177 ± 223 ß

132 ” 178 2 224 à

133 … 179 3 225 á

134 † 180 Ç 226 â

135 ‡ 181 � 227 ã

136 ^ 182 ¶ 228 ä

137 ‰ 183 . 229 å

138 Š 184 , 230 æ

139 ‹ 185 1 231 ç

140 Œ 186 0 232 è

141 ■■ 187 » 233 é

142 ■■ 188 1/4 234 ê

143 ■■ 189 1/2 235 ë

144 ■■ 190 3/4 236 ì

145 ‘ 191 ¿ 237 í

146 ’ 192 À 238 î

147 “ 193 Á 239 ï

148 ” 194 Â 240 õ

149 • 195 Ã 241 ñ

150 – 196 Ä 242 ò

151 — 197 Å 243 ó

152 ~ 198 Æ 244 ô

153 ™ 199 Ç 245 õ

154 š 200 È 246 ö

155 › 201 É 247 ÷

156 œ 202 Ê 248 ø

157 ■■ 203 Ë 249 ù

158 ■■ 204 Ì 250 ú

159 Ÿ 205 Í 251 û

160 206 Î 252 ü

161 ¡ 207 Ï 253 ý

162 ¢ 208 –D 254 bp

163 £ 209 Ñ 255 ÿ

164 ¤ 210 Ò

165 ¥ 211 Ó

408 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

APPENDIX B
HOW TO

HOW TO: INSTALL, INVOKE, AND EXIT VISUAL BASIC

A. Install the Working Model Edition of Visual Basic

1. Place the CD accompanying this book into your CD drive.

2. Wait about five seconds. You will most likely hear a whirring sound from the
CD drive and then a large window with the words “Visual Basic 6.0 Working
Model” will appear. If so, go to Step 5.

3. If nothing happens automatically after Step 1, double-click on My Computer in
the Windows Desktop.

4. A window showing the different disk drives will appear. Double-click on the
icon containing a picture of a CD (along with a drive) and having the drive let-
ter below the label. A large window with the words “Visual Basic 6.0 Working
Model” will appear.

5. The title bar of the large window says “Installation Wizard for Visual Basic 6.0
Working Model.” The installation wizard will guide you through the installation
process. Click on Next to continue.

6. An End User License Agreement will appear. After reading the agreement, click
on the the circle to the left of the sentence “I accept the agreement.” and then
click on Next.

7. The next window to appear has spaces for an ID number, your name, and your
company’s name. Ignore the ID number. Just type in your name and, optionally,
a company name, and then click Next.

8. Visual Basic 6.0 requires that you have Internet Explorer 4.0 or later version on
your computer. If a recent version is not present, the Installation Wizard will
install it for you. If so, successive windows will guide you through the installa-
tion. At some point you will be required to restart your computer. We recom-
mend doing the standard installation and using the recommended destination
folder.

9. You will next be guided through the installation of DCOM98, which is also
needed to Visual Basic 6.0. After installing DCOM98, the installation wizard
will automatically restart your computer and then continue with the installation
of VB6.0. Note: If another widow is covering the Installation Wizard window,
then click on the Installation Wizard window. If you can’t find the Installation
Wizard window, repeat Steps 1–5.

You will now be guided through the installation of the Working Model Edition VB6.0. At the
end of the installation, Visual Basic will be invoked.

10. The next window requests the name of the Common Install Folder. We recom-
mend that you simply click on Next, which will accept the default folder and
copy some files into it.

11. The next window to appear is the Visual Basic 6.0 Working Model Setup. Click
on Continue.

12. The next screen shows your Product ID number. Enter your name and then click
on OK.

A p p e n d i x B 409

13. The next window asks you to choose between Typical and Custom installations.
We recommend that you click on the Typical icon.

14. About one minute is required for the VB6.0 Working Model to be installed. On
the next screen to appear, click on Restart Windows.

15. The next window to appear gives you the opportunity to register your copy of
VB6.0 over the web. Uncheck the Register Now box and click on Finish.

B. Invoke Visual Basic after installation.

1. Click the Start button.

2. Point to Programs.

3. Point to Microsoft Visual Basic 6.0. (A new panel will open on the right.)

4. In the new panel, click on Microsoft Visual Basic 6.0.

C. Exit Visual Basic.

1. Press the Esc key.

2. Press Alt/F/X.

3. If an unsaved program is present, Visual Basic will prompt you about saving it.

Note: In many situations, Step 1 is not needed.

HOW TO: MANAGE PROGRAMS

A. Run a program from Visual Basic.

1. Click on the Start icon (right arrowhead) in the Toolbar.

or

1. Press F5.

or

1. Press Alt/R and make a selection from the Run menu.

B. Save the current program on a disk.

1. Press Alt/F/V [or click the Save Project icon (shows a diskette) on the Toolbar].

2. Fill in the requested information. Do not give an extension as part of the pro-
ject name or the file name. Two files will be created [\m]one with extension
.VBP and the other with extension .FRM. The .VBP file holds a list of files
related to the project. The .FRM file actually holds the program.

Note: After a program has been saved once, updated versions can be saved with the
same filenames by pressing Alt/F/V. Alt/F/E and Alt/F/A are used to save the pro-
gram with new file names.

C. Begin a new program.

1. Press Alt/F/N.

2. If an unsaved program is present, Visual Basic will prompt you about saving it.

D. Open a program stored on a disk.

1. Press Alt/F/O [or click the Open Project icon (shows an open folder) on the
Toolbar].

2. Click on one of the two tabs, Existing or Recent.

3. If you selected Existing, choose a folder for the “Look in:” box, type a filename
into the “File name:”box, and press the Enter key. Alternatively, double-click on
one of the filenames displayed in the large box in the middle of the dialog box.

410 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

4. If you selected Recent, double-click on one of the files in the list.

Note 1: (In Steps 3 and 4, if an unsaved program is present, Visual Basic will
prompt you about saving it.)

Note 2: The form or code for the program may not appear, but can be accessed
through the Project Explorer window. Another way to obtain the Code and Form
windows is to run and then terminate the program.

E. Use the Project Explorer.

Note: Just below the Project Explorer title bar are three icons (View Code, View
Object, and Toggle Folders), and below them is the List window. At any time, one
item in the List window is selected.

1. Click on View Code to see the code associated with the selected item.

2. Click on View Object to see the Object (usually the form) associated with the
selected item.

F. Display the form associated with a program.

1. Press Alt/V/B. (If the selection Object is grayed, first run and then terminate the
program.)

or

1. Press Shift+F7.

or

1. Press Alt/V/P to activate the Project Explorer window.

2. Select the name of the form.

3. Click on the View Object button.

HOW TO: USE THE EDITOR

A. Mark a section of text as a block.

1. Move the cursor to the beginning or end of the block.

2. Hold down a Shift key and use the direction keys to highlight a block of text.

3. Release the Shift key.

or

1. Move the mouse to the beginning or end of the block.

2. Hold down the left mouse button and move the mouse to the other end of the
block.

3. Release the left mouse button.

Note 1: To unblock text, press a direction key or click outside the block.

Note 2: To select a word, double-click on it. To select a line, move the mouse point-
er just far enough into the left margin so that the pointer changes to an arrow, and
then single-click there.

B. Delete a line of a program.

1. Move the cursor to the line.

2. Press Ctrl+Y.

or

1. Mark the line as a block. (See item A of this section.)

2. Press Alt/E/T or press Ctrl+X.

A p p e n d i x B 411

Note: In the preceding maneuvers, the line is placed in the clipboard and can be
retrieved by pressing Ctrl+V. To delete the line without placing it in the clipboard,
mark it as a block and press Del.

C. Move a line within the Code window.

1. Move the cursor to the line and press Ctrl+Y.

2. Move the cursor to the target location.

3. Press Ctrl+V.

D. Use the clipboard to move or duplicate statements.

1. Mark the statements as a block.

2. Press Ctrl+X to delete the block and place it into the clipboard. Or press Ctrl+C
to place a copy of the block into the clipboard.

3. Move the cursor to the location where you desire to place the block.

4. Press Ctrl+V to place a copy of the text from the clipboard at the cursor.

E. Search for specific text in the program.

1. Press Alt/E/F or Ctrl+F.

2. Type sought-after text into the rectangle.

3. Select desired options if different from the defaults.

4. Press the Enter key.

5. To repeat the search, press Find Next or press Cancel and then F3.

F. Find and Replace.

1. Press Alt/E/E or Ctrl+H.

2. Type sought-after text into first rectangle.

3. Press Tab.

4. Type replacement text into second rectangle.

5. Select desired options if different from the defaults.

6. Press the Enter key.

7. Press Replace to make the change or press Replace All to make all such
changes.

G. Cancel a change.

1. Press Alt/E/U or Ctrl+Z to undo the last change made to a line.

HOW TO: GET HELP

(Available only with Learning, Professional, and Enterprise Editions.)

A. Obtain information about a Visual Basic topic.

1. Press Alt/H/M.

2. Click on the Index tab and follow the instructions.

3. To display a topic, double-click on it.

4. If a second list pops up, double-click on an item from it.

B. View the syntax and purpose of a Visual Basic keyword.

1. Type the word into a Code window.

2. Place the cursor on, or just following, the keyword.

412 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/clipboard.html

3. Press F1.

C. Display an ANSI table.

1. Press Alt/H/M and click on the Index tab.

2. Type ANSI and press the Enter key.

3. To move between the displays for ANSI characters 0-127 and 128-255, click on
“See Also,” and then click on the Display button.

D. Obtain a list of Visual Basic’s reserved words.

1. Press Alt/H/M.

2. Type “keywords”, press the down-arrow key, and double-click on a category of
keywords from the list below the blue bar.

E. Obtain a list of shortcut keys.

1. Press Alt/H/M and click on the Contents tab.

2. Double-click on the Additional Information book.

3. Double-click on the Keyboard Guide book.

4. Double-click on one of the collections of shortcut keys.

F. Obtain information about a control.

1. Click on the control at design time.

2. Press F1.

G. Exit Help.

1. Press Esc.

HOW TO: MANIPULATE A DIALOG BOX

A. Use a dialog box.

A dialog box contains three types of items: rectangles (text or list boxes), option
lists, and command buttons. An option list is a sequence of option buttons or check
boxes of the form ° option or ■■ option.

1. Move from item to item with the Tab key. (The movement is from left to right
and top to bottom. Use Shift+Tab to reverse the direction.)

2. Inside a rectangle, either type in the requested information or use the direction
keys to make a selection.

3. In an option list, an option button of the form ° option can be selected with
the direction keys. A dot inside the circle indicates that the option has been
selected.

4. In an option list, a check box of the form ■■ option can be checked or
unchecked by pressing the space bar. An X or ✓ inside the square indicates that
the option has been checked.

5. A highlighted command button is invoked by pressing the Enter key.

B. Cancel a dialog box

1. Press the Esc key.

or

1. Press the Tab key until the command button captioned “Cancel” is highlighted
and then press the Enter key.

A p p e n d i x B 413

http://www.pearsoncustom.com/link/visualbasic/listbox.html
http://www.pearsoncustom.com/link/visualbasic/checkbox.html
http://www.pearsoncustom.com/link/visualbasic/checkbox.html

HOW TO: MANAGE MENUS

A. Open a drop-down menu.

1. Click on the menu name.

or

1. Press Alt.

2. Press the underlined letter in the name of the menu. Alternatively, use the Right
Arrow key to move the highlighted cursor bar to the menu name, and then press
the Down Arrow key.

B. Make a selection from a drop-down menu.

1. Open the drop-down menu.

2. Click on the desired item.

or

1. Open the drop-down menu. One letter in each item that is eligible to be used
will be underlined.

2. Press the underlined letter. Alternatively, use the Down Arrow key to move the
cursor bar to the desired item and then press the Enter key.

C. Obtain information about the selections in a drop-down menu.

1. Press Alt/H/M and click on the Contents tab.

2. Double-click on the Interface Reference book.

3. Double-click on the Menu book.

4. Double-click on the name of the menu of interest.

5. Double-click on the selection of interest.

D. Look at all the menus in the menu bar.

1. Press Alt/F.

2. Press the Right Arrow key each time you want to see a new menu.

E. Close a drop-down menu.

1. Press the Esc key or click anywhere outside the menu.

HOW TO: UTILIZE THE WINDOWS ENVIRONMENT

A. Place a section of code in the Windows clipboard.

1. Mark the section of code as a block as described in the How to Use the Editor
section.

2. Press Ctrl+C.

B. Access Windows’ Notepad.

1. Click the Start button.

2. Point to Programs.

3. Point to Accessories.

4. Click Notepad.

C. Display all characters in a font.

1. Click the Start button.

414 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/interface.html
http://www.pearsoncustom.com/link/visualbasic/clipboard.html

2. Point to Programs.

3. Point to Accessories.

4. Click Character Map.

5. Click on the underlined down arrow at the right end of the Font box.

6. Highlight the desired font and press the Enter key or click on the desired font.

D. Display an ANSI or ASCII code for a character with a code above 128.

1. Proceed as described in item C above to display the font containing the charac-
ter of interest.

2. Click on the character of interest. Displayed at the right end of the bottom line
of the font table is Alt+0xxx, where xxx is the code for the character.

HOW TO: DESIGN A FORM

A. Display the ToolBox.

1. Press Alt/V/X.

B. Place a new control on the form.

Option I: (new control with default size and position)

1. Double-click on the control’s icon in the ToolBox. The new control appears at
the center of the form.

2. Size and position the control as described in items G and H, which follow.

Option II: (a single new control sized and positioned as it is created)

1. Click on the control’s icon in the ToolBox.

2. Move the mouse to the approximate position on the form desired for the upper-
left corner of the control.

3. Press and hold the left mouse button.

4. Move the mouse to the position on the form desired for the lower-right corner
of the control. A dashed box will indicate the overall shape of the new control.

5. Release the left mouse button.

6. The control can be resized and repositioned as described in items G and H.

Option III: (create multiple instances of the same control)

1. Click on the control’s icon in the ToolBox while holding down the Ctrl key.

2. Repeatedly use Steps 2 to 5 of Option II to create instances of the control.

3. When finished creating instances of this control, click on the arrow icon in the
ToolBox.

C. Create a related group of controls.

1. To hold the related group of controls, place a picture box or frame control on
the form.

2. Use Option II or III in item B of this section to place controls in the picture box
or frame.

D. Select a particular control.

1. Click on the control.

or

1. Press the Tab key until the control is selected.

A p p e n d i x B 415

E. Delete a control.

1. Select the control to be deleted.

2. Press the Del key.

F. Delete a related group of controls.

1. Select the picture box or frame holding the related group of controls.

2. Press the Del key.

G. Move a control, related group of controls, or form to a new location.

1. Move the mouse onto the control, the picture box or frame containing the relat-
ed group of controls, or the title bar of the form.

2. Drag the object to the new location.

H. Change the size of a control.

1. Select the desired control.

2. Move the mouse to one of the eight sizing handles located around the edge of
the control. The mouse pointer will change to a double-arrow which points in
the direction that resizing can occur.

3. Drag to the desired size.

I. Change the size of a Project Container window.

1. Move the mouse to the edge or corner of the window that is to be stretched or
shrunk. The mouse pointer will change to a double-arrow which points in the
direction that resizing can occur.

2. Drag to the desired size.

J. Use the Color palette to set foreground and background colors.

1. Select the desired control or the form.

2. Press Alt/V/L to activate the Color palette.

3. If the Color palette obscures the object you are working with, you may wish to
use the mouse to grab the Color palette by its title bar and move it so that at
least some of the object shows.

4. To set the foreground color, click on the square within a square at the far left in
the Color palette and click on the desired color from the palette.

5. To set the background color, click on the region within the outer square but out-
side the inner square and click on the desired color from the palette.

or

1. Select the desired control or the form.

2. Press Alt/V/W or F4 to activate the Properties window.

3. To set the foreground color, click on the down-arrow to the right of the Fore-
Color settings box, click on the Palette tab, and click on the desired color.

4. To set the background color, click on the down-arrow to the right of the Back-
Color settings box, click on the Palette tab, and click on the desired color.

HOW TO: WORK WITH THE PROPERTIES OF AN OBJECT

A. Activate the Properties window.

1. Press Alt/V/W.

or

416 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

1. Press F4.

or

1. Click on an object on the form with the right mouse button.

2. In the shortcut menu, click on Properties.

B. Highlight a property in the Properties window.

1. Activate the Properties window and press the Enter key.

2. Use the Up or Down Arrow keys to move the highlight bar to the desired prop-
erty.

or

1. Activate the Properties window.

2. Click on the up or down arrow located at the ends of the vertical scroll bar at
the right side of the Properties window until the desired property is visible.

3. Click on the desired property.

C. Select or specify a setting for a property.

1. Highlight the property whose setting is to be changed.

2. Click on the settings box or press Tab to place the cursor in the settings box.

a. If a black down-arrow appears at the right end of the settings box, click on
the down-arrow to display a list of all allowed settings, and then click on the
desired setting.

b. If an ellipsis (three periods: . . .) appears at the right end of the settings box,
press F4 or click on the ellipsis to display a dialog box. Answer the questions
in the dialog box and click on OK or Open, as appropriate.

c. If the cursor moves to the settings box, type in the new setting for the
property.

D. Change a property setting of an object.

1. Select the desired object.

2. Activate the Properties window.

3. Highlight the property whose setting is to be changed.

4. Select or specify the new setting for the property.

E. Let a label change size to accommodate its caption.

1. Set the label’s AutoSize property to True. (The label will shrink to the smallest
size needed to hold the current caption. If the caption is changed, the label will
automatically grow or shrink horizontally to accommodate the new caption. If
the WordWrap property is set to True as well, the label will grow and shrink
vertically, keeping the same width.)

F. Let a label caption use more than one line.

1. Set the label’s WordWrap property to True. [If the label is not wide enough to
accommodate the entire caption on one line, part of the caption will wrap to
additional lines. If the label height is too small, then part or all of these wrapped
lines will not be visible (unless the AutoSize property is set to True).]

G. Let a text box display more than one line.

1. Set the text box’s MultiLine property to True. (If the text box is not wide enough
to accommodate the text entered by the user, the text will scroll down to new

A p p e n d i x B 417

http://www.pearsoncustom.com/link/visualbasic/scrollbar.html

lines. If the text box is not tall enough, lines will scroll up out of view, but can
be redisplayed by moving the cursor up.)

H. Assign an access key to a label or command button.

1. When assigning a value to the Caption property, precede the desired access key
character with an ampersand (&).

I. Allow a particular command button to be activated by a press of the Enter key.

1. Set the command button’s Default property to True.

Note: Setting the Default property True for one command button automatically sets
the property to False for all the other command buttons on the form.

J. Adjust the order in which the Tab key moves the focus.

1. Select the first control in the tabbing sequence.

2. Change the setting of the TabIndex property for this control to 0.

3. Select the next control in the tabbing sequence.

4. Change the setting of the TabIndex property for this control to 1.

5. Repeat Steps 3 and 4 (adding 1 to the Tab Index property) until all controls on
the form have been assigned a new TabIndex setting.

Note: In Steps 2 and 4, if an object is moved to another position in the sequence,
then the TabIndex property for the other objects will be renumbered accordingly.

K. Allow the pressing of Esc to activate a particular command button.

1. Set the command button’s Cancel property to True. (Setting the Cancel proper-
ty to True for one command button automatically sets it to False for all other
command buttons.)

L. Keep the contents of a picture box from being erased accidentally.

1. Set the picture box’s AutoRedraw property to True. (The default is False. Unless
the property is set to True, the contents will be erased when the picture box is
obscured by another window.)

HOW TO: MANAGE PROCEDURES

A. Access the Code window.

1. Press Alt/V/C or F7. (If the Code window does not appear, run and then termi-
nate the program.)

or

1. Press Alt/V/P to activate the Project Explorer window.

2. Select the name of the form.

3. Click on the “View Code”button.

B. Look at an existing procedure.

1. Access the Code window.

2. Press Ctrl+Down Arrow or Ctrl+Up Arrow to see all the procedures.

or

1. Access the Code window.

2. Click on the down arrow at the right of the Object box and then select an object.
[For general procedures select (General) as the Object.]

418 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

3. Click on the down arrow at the right of the Procedure box and then select a pro-
cedure.

C. Create a general procedure.

1. Access the Code window.

2. Move to a blank line that is not inside a procedure.

3. Type Private Sub (for a Sub procedure) or Private Function (for a Function pro-
cedure) followed by the name of the procedure and any parameters.

4. Press the Enter key. (The Code window will now display the new procedure
heading and an End Sub or End Function statement.)

5. Type the procedure into the Code Window.

or

1. Access the Code window.

2. Press Alt/T/P. (A dialog box will appear.)

3. Type the name of the procedure into the Name rectangle.

4. Select the type of procedure.

5. Select the Scope by clicking on Public or Private. (In this book, we always use
Private.)

6. Press the Enter key. (The Code window will now display the new procedure
heading and an End Sub or End Function statement.)

7. Type the procedure into the Code Window.

D. Alter a procedure.

1. View the procedure in the Code Window as described in item B of this section.

2. Make changes as needed.

E. Remove a procedure.

1. Bring the procedure into the Code Window as described in item B of this sec-
tion.

2. Mark the entire procedure as a block. That is,

a. Press Ctrl+PgUp to move the cursor to the beginning of the procedure.

b. Hold down the Shift key and press Ctrl+PgDn to move the cursor to the start
of the next procedure.

c. Press the Up Arrow key until just after the end of the procedure to be
deleted.

3. Press the Del key.

F. Insert an existing procedure into a program.

1. Open the program containing the procedure.

2. View the procedure in the Code Window as described in item B of this section.

3. Mark the entire procedure as a block, as described in step 2 of item E of this
section.

4. Press Ctrl+C to place the procedure into the clipboard.

5. Open the program in which the procedure is to be inserted and access the Code
Window.

6. Move the cursor to a blank line.

7. Press Ctrl+V to place the contents of the clipboard into the program.

A p p e n d i x B 419

http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/clipboard.html

HOW TO: MANAGE WINDOWS

A. Enlarge the active window to fill the entire screen.

1. Click on the Maximize button (page icon; second icon from the right) on the
Title bar of the window.

2. To return the window to its original size, click on the Restore (double-page)
button that has replaced the Maximize button.

B. Move a window.

1. Move the mouse to the title bar of the window.

2. Drag the window to the desired location.

C. Change the size of a window.

1. Move the mouse to the edge of the window which is to be adjusted or to the cor-
ner joining the two edges to be adjusted.

2. When the mouse becomes a double arrow, drag the edge or corner until the win-
dow has the desired size.

D. Close a window.

1. Click on the X button on the far right corner of the title bar.

HOW TO: USE THE PRINTER

A. Obtain a printout of a program.

1. Press Alt/F/P.

2. Press the Enter key.

Note: To print just the text selected as a block or the active (current) window, use
the direction keys to select the desired option.

B. Obtain a printout of the form during run time.

1. Place the statement PrintForm in the Form_Click() or other appropriate proce-
dure of the program which will be executed at the point when the desired out-
put will be on the form.

HOW TO: USE THE DEBUGGER

A. Stop a program at a specified line.

1. Place the cursor on the desired line.

2. Press F9 or Alt/D/T to highlight the line in red. (This highlighted line is called
a breakpoint. When the program is run it will stop at the breakpoint before exe-
cuting the statement.)

Note: To remove this breakpoint, repeat Steps 1 and 2.

420 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

B. Remove all breakpoints.

1. Press Alt/D/C or Ctrl+Shift+F9.

C. Run a program one statement at a time.

1. Press F8. The first executable statement will be highlighted. (An event must
first occur for which an event procedure has been written.)

2. Press F8 each time you want to execute the currently highlighted statement.

Note: You will probably need to press Alt+Tab to switch back and forth between the
form and the VB environment. Also, to guarantee that output is retained while step-
ping through the program, the AutoRedraw property of the form and any picture
boxes may need to be set to True.

D. Run the program one statement at a time, but execute each general procedure call
without stepping through the statements in the procedure one at a time.

1. Press Shift+F8. The first executable statement will be highlighted.

2. Press Shift+F8 each time you want to execute the currently highlighted state-
ment.

E. Continue execution of a program that has been suspended.

1. Press F5.

Note: Each time an attempt is made to change a suspended program in a way that
would prevent the program from continuing, Visual Basic displays a dialog box
warning that the program will have to be restarted from the beginning and gives the
option to cancel the attempted change.

F. Have further stepping begin at the line containing the cursor (no variables are
cleared).

1. Press Alt/D/R or Ctrl+F8.

G. Set the next statement to be run in the current procedure.

1. Place the cursor anywhere in the desired statement.

2. Press Alt/D/N or Ctrl+F9.

H. Determine the value of an expression during run time.

1. Press Alt/D/A (Add Watch)

2. Type the expression into the Expression text box, adjust other entries in dialog
box (if necessary), and click on OK.

Note: The value of the expression will appear in the Watches window during break
mode.

or

1. In Break mode, hover the cursor over the variable to have its value displayed.

A p p e n d i x B 421

APPENDIX C
VISUAL BASIC STATEMENTS, FUNCTIONS, METHODS,
PROPERTIES, EVENTS, DATA TYPES, AND OPERATORS

This appendix applies to the following objects: form, printer, text box, command button,
label, and picture box. The last four are also called controls. Terms in brackets follow

some of the discussions. These terms refer to supporting topics presented at the end of this
appendix.

ABS The function Abs strips the minus signs from negative numbers while leaving other
numbers unchanged. If x is any number, then the value of Abs(x) is the absolute value of x.

ACTION The type of a common dialog box can be determined by the setting of the Action
property (1-Open, 2-Save As, 3-Color, 4-Font, 5-Print). This use is obsolete. Instead, use the
methods ShowOpen, ShowSave, ShowColor, ShowFont, and ShowPrinter. For an OLE control,
the setting of the Action property during run time determines the action to take.

ADD A statement of the form collectionName.Add objectName adds the named object to a
collection. A statement of the form collectionName.Add objectName keyString adds the named
object to a collection with the key keyString.

ADDITEM The AddItem method adds an additional item to a list box or combo box and adds
an additional row to a grid. A statement of the form List1.AddItem str inserts the string either
at the end of the list (if Sorted = False) or in its proper alphabetical position (if Sorted = True).
The statement List1.AddItem str, n inserts the item at the position with index n. The use of an
index is not recommended when Sorted = True. The statement MSFlexGrid1.AddItem “”, n
inserts a new row into the grid at position n.

ADDNEW The AddNew method is used with a data control to set the stage for the addition
of a new record to the end of a file. It clears any controls bound to the data control. The actu-
al addition takes place after Value and Update statements are executed.

ALIGNMENT The Alignment property of a text box or label affects how the text assigned to
the Text property is displayed. If the Alignment property is set to 0 (the default), text is dis-
played left-justified; if set to 1, text is right-justified; and if set to 2, text is centered.

AND (Logical Operator) The logical expression condition1 And condition2 is true only if
both condition1 and condition2 are true. For example, (3<7) And (“abc”>”a”) is true because
3<7 is true as is “abc”>”a”. Also, (“apple”>”ape”) And (“earth”>”moon”) is false because
“earth”>”moon”is false.

AND (Bitwise Operator) The expression byte1 And byte2 is evaluated by expressing each
byte as an 8-tuple binary number and then Anding together corresponding digits, where 1 And
1 equals 1, 1 And 0, 0 And 1, and 0 And 0 all equal 0. For example, the expression 37 And 157
translated to binary 8-tuples becomes 00100101 And 10011101. Anding together corresponding
digits gives the binary 8-tuple 00000101 or decimal 5. Thus, 37 And 157 is 5.

ARRAY If arglist is a comma-delimited list of values, then the value of the function Array(ar-
glist) is a variant containing an array of these values. See Dim for discussion of arrays.

ASC Characters are stored as numbers from 0 to 255. If str is a string of characters, then
Asc(str) is the number corresponding to the first character of str. For any n from 0 to 255,
Asc(Chr(n)) is n.

ATN The trigonometric function Atn, or arctangent, is the inverse of the tangent function.
For any number x, Atn(x) is an angle in radians between –pi/2 and pi/2 whose tangent is x.
[radians]

A p p e n d i x C 423

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/objectlinkingandembedding.html
http://www.pearsoncustom.com/link/visualbasic/logicaloperators.html
http://www.pearsoncustom.com/link/visualbasic/listbox.html
http://www.pearsoncustom.com/link/visualbasic/combobox.html
http://www.pearsoncustom.com/link/visualbasic/byte.html

AUTOREDRAW The AutoRedraw property determines what happens to graphics and Printed
material on a form or picture box after another object (for example, another picture box) or
program temporarily obscures part of the form or picture box. If AutoRedraw is True, then
Visual Basic will restore the graphics and Printed material from a copy that it has saved in mem-
ory. If AutoRedraw is False, then Visual Basic does not keep track of graphics and Printed
material that have been obscured, but it does invoke the Paint event of the form or picture box
when the obstruction is removed. Thus, only graphics and Printed material generated by the
Paint event will be restored when AutoRedraw is False.

AUTOSIZE If the AutoSize property of a label or picture box is True, Visual Basic auto-
matically sets the width and height of the label so that the entire caption can be accommo-
dated. If the AutoSize property is False, the size of the label is not adjusted by Visual Basic,
and captions are clipped if they do not fit.

BACKCOLOR The BackColor property determines the background color of an object. For
a command button, the background color is only valid when the style property is set to “1-
Graphical.” (Such a command button can display a picture.) If the BackColor of a form or
picture box is changed while a program is running, all graphics and Printed text directly on
the form or picture box are erased. [color]

BACKSTYLE The BackStyle property of a label or shape is opaque (1) by default. The rec-
tangular, square, circular, or oval region associated with the control is filled with the con-
trol’s background color and possibly caption. If the BackStyle is set to transparent (0),
whatever is behind the control remains visible; the background color of the control essen-
tially becomes “see through.”

BEEP The statement Beep produces a sound of frequency 800 Hz that lasts a fraction of a
second.

BOF When the BOF property of a data control is True, the current record position in the file
is before the first record.

BOOLEAN A variable of type Boolean requires 2 bytes of memory and holds either the
value True or False. If boolVar is a Boolean variable, then the statement Print boolVar dis-
plays True when the value is True and displays False when the value is False.

BORDERCOLOR The BorderColor property determines the color of a line or shape con-
trol. [color]

BORDERSTYLE The BorderStyle property determines the border style for a form [0-none,
1-fixed single, 2-sizeable (default), 3-fixed double, 4-Fixed ToolWindow, 5-Sizable Tool-
Window], line or shape [0-transparent, 1-solid, 2-dash, 3-dot, 4-dash-dot, 5-dash-dot-dot, 6-
inside solid], grid image, label, picture box, and text box [0-none, 1-fixed single (default)].
You cannot change the borders of forms and text boxes during run time.

BORDERWIDTH The BorderWidth property (with settings from 1 through 8192) deter-
mines the thickness of a line or shape control.

BYTE A variable of type Byte uses a single byte of memory and holds a value from 0 to
255.

CALL A statement of the form Call ProcedureName(argList) is used to execute the named
Sub procedure, passing to it the variables and values in the list of arguments. Arrays appear-
ing in the list of arguments should be specified by the array name followed by empty paren-
theses. The value of a variable argument may be altered by the Sub procedure unless the
variable is surrounded by parentheses. After the statements in the Sub procedure have been
executed, program execution continues with the statement following Call. Note: The keyword
Call may be omitted. In this case, the parentheses are omitted and the statement is written
ProcedureName argList.

424 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/byte.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html

CANCEL The Cancel property provides a means of responding when the user presses the
Esc key. At most one command button on a form may have its Cancel property set to True.
If the Esc key is pressed while the program is running, Visual Basic will execute the click
event procedure of the command button whose Cancel property is True.

CAPTION The Caption property holds the text that is to appear as the caption for a form,
command button, data control, or label. If an ampersand (&) is placed in the caption of a
command button or label, the ampersand will not be displayed, but the character following
the ampersand will become an underlined access key. Access keys provide a quick way to
access a command button or the control (usually a text box) following (in tab index order) a
label. Access keys are activated by holding down the Alt key and pressing the access key
character.

CBOOL The function CBool converts byte, currency, double-integer, integer, long integer,
and single-precision numbers to the Boolean values True or False. Nonzero values are con-
verted to True and zero is converted to False. If x is any number, then the value of CBool(x)
is the Boolean value determined by x.

CBYTE The function CByte converts integer, long integer, single-precision, double-preci-
sion, and currency numbers to byte numbers. If x is any number, then the value of CByte(x)
is the byte number determined by x.

CCUR The function CCur converts byte integer, long integer, single-precision, and double-
precision numbers to currency numbers. If x is any number, then the value of CCur(x) is the
currency number determined by x.

CDATE The function CDate converts byte, currency, double-integer, integer, long integer,
and single-precision numbers to dates. If x is any number, then the value of CDate(x) is the
date determined by x.

CDBL The function CDbl converts byte, integer, long integer, single-precision, and curren-
cy numbers to double-precision numbers. If x is any number, then the value of CDbl(x) is the
double-precision number determined by x.

CHANGE The Change event occurs when the contents of a combo box, directory list box,
drive list box, label, picture box, scroll bar, or text box are altered in a specific way. The alter-
ations are: (a) change of text (combo box or text box), (b) user selects a new directory or
drive (directory and drive list boxes), (c) thumb moves (scroll bar), (d) change of Caption
property (label), and (e) change of Picture property (picture box).

CHDIR The statement ChDir path changes the current directory on the specified disk drive
to the subdirectory specified by path. For example, ChDir “C:\”specifies the root directory
of the C drive as the current directory. Omitting a drive letter in path causes the default drive
to be used. [directories]

CHDRIVE The statement ChDrive drive changes the default drive to the drive specified by
drive. For example, ChDrive “A”specifies the A drive as the new default drive.

CHR If n is a number from 0 to 255, then a statement of the form objectName.Print Chr(n)
displays the nth character of the current font.

CINT The function CInt converts byte, long integer, single-precision, double-precision, and
currency numbers to integer numbers. If x is any number from –32768 to 32767, the value
of CInt(x) is the (possibly rounded) integer constant that x determines.

CIRCLE The graphics method objectName.Circle (x, y), r, c, r1, r2, a draws on objectName
a portion, or all, of an ellipse. The center of the ellipse is the point (x, y) and the longer radius
is r. The color of the ellipse is determined by c. If r1 and r2 are present, then the computer
draws only the portion of the ellipse that extends from the radius line at an angle of Abs(r1)
radians with the horizontal radius line to the radius line at an angle of Abs(r2) radians with
the horizontal radius line in a counterclockwise direction. If either r1 or r2 is negative, the

A p p e n d i x C 425

http://www.pearsoncustom.com/link/visualbasic/scrollbar.html
http://www.pearsoncustom.com/link/visualbasic/listbox.html
http://www.pearsoncustom.com/link/visualbasic/combobox.html
http://www.pearsoncustom.com/link/visualbasic/byte.html

computer also draws its radius line. The ratio of the length of the vertical diameter to the
length of the horizontal diameter will be a. After the Circle method is executed, the value of
objectName.CurrentX becomes x and the value of objectName.CurrentY becomes y. [color]
[coordinate systems] [radians]

CLEAR The method ClipBoard.Clear clears the clipboard, setting its contents to the null
string. The statements List1.Clear and Combo1.Clear remove all items from the control’s list.

CLICK The Click event applies to check boxes, combo boxes, command buttons, directory
list boxes, file list boxes, forms, frames, grids, images, labels, list boxes, menu items, OLE
controls, option buttons, picture boxes, and text boxes. A Click event occurs whenever the
left mouse button is pressed and released while the mouse cursor is over the control or over
a blank area on the form. In the case of a command button, the Click event is also called if
the spacebar or Enter key is pressed while the command button has the focus, or if the but-
ton’s access key is used.

CLNG The function CLng converts byte, integer, single-precision, double-precision, and
currency numbers to long integer numbers. If x is any number from –2,147,483,648 to
2,147,483,647, the value of CLng(x) is the (possibly rounded) long integer constant that x
determines.

CLOSE The statement Close #n closes the file that has been opened with reference number
n. By itself, Close closes all open files. The Close method for a data control closes the data-
base.

CLS The method formName.Cls clears the form formName of all text and graphics that have
been placed directly on the form with methods like formName.Print, formName.Circle, and
so on. The method pictureBox.Cls clears the named picture box. The Cls method resets the
CurrentX and CurrentY properties of the cleared object to the coordinates of the upper-left
corner [usually (0, 0)].

COL and ROW The Col and Row properties specify the current cell of a grid. The state-
ments MSFlexGrid1.Col = m and MSFlexGrid1.Row = n specify the cell in column m and
row n to be the current cell. The statement MSFlexGrid1.Text = str places the string into the
current cell. When the user clicks on a nonfixed cell, its column number is assigned to the
Col property and its row number is assigned to the Row property.

COLALIGNMENT The statement MSFlexGrid1.ColAlignment(m) = n, aligns the text in
column m both vertically and horizontally according to the following table.

n Horizontally Vertically

0 Left Top

1 Left Centered

2 Left Bottom

3 Centered Top

4 Centered Centered

5 Centered Bottom

6 Right Top

7 Right Centered

8 Right Bottom

9 Strings left-justified
Numbers right-justified

COLOR The value of the Color property of a Color common dialog box identifies the select-
ed color.

426 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/objectlinkingandembedding.html
http://www.pearsoncustom.com/link/visualbasic/listbox.html
http://www.pearsoncustom.com/link/visualbasic/database.html
http://www.pearsoncustom.com/link/visualbasic/combobox.html
http://www.pearsoncustom.com/link/visualbasic/clipboard.html
http://www.pearsoncustom.com/link/visualbasic/checkbox.html
http://www.pearsoncustom.com/link/visualbasic/byte.html
http://www.pearsoncustom.com/link/visualbasic/database.html

COLS and ROWS The Cols and Rows properties of a grid specify the numbers of rows and
columns.

COLWIDTH The statement MSFlexGrid1.Colwidth(m) = n specifies that column m of the
grid be n twips wide. (There are about 1440 twips in an inch.)

CONST The statement Const constantName = expression causes Visual Basic to treat every
occurrence of constantName as the value of the expression. This replacement takes place
before any lines of the program are executed. Unlike an assignment statement, Const does
not set up a location in the program’s memory for a variable. A constantName may appear in
only one Const statement and may not appear on the left side of an assignment statement. We
call constantName a “symbolic constant” or “named constant.”

CONTROL The Control data type may be used in the parameter lists of Sub and Function
definitions to allow the passing of control names to the procedure.

CONTROLBOX The ControlBox property determines whether or not a form has a Control-
menu button displayed in the upper left corner. If the ControlBox property is set to True (the
default), the Control-menu button is displayed. Among the operations available from the
ControlBox menu is the ability to close the form and thereby end the program. If the Con-
trolBox property of a form is set to False, the Control-menu button is not displayed. Because,
in this case, the user cannot end the program by using the Control-menu button or by press-
ing Alt+F4, it is important to provide a command button for this purpose.

CONNECT The Connect property of a data control identifies the format (such as Access,
FoxPro, Dbase) of the database determined by the DatabaseName property.

COS The value of the trigonometric function Cos(x) is the cosine of an angle of x radians.
[radians]

COUNT The value of collectionName.Count is the number of objects in the collection.

CREATEOBJECT If appName is the name of an application and objectType is the type or
class of the object to create, then the value of the function CreateObject(appName. object-
Type) is an OLE Automation object. For instance, CreateObject(“Excel.sheet”) creates an
Excel worksheet and CreateObject(“Word. Basic”) creates a Word document.

CSNG The function CSng converts byte, integer, long integer, and double-precision~ num-
bers to single-precision numbers. If x is any number, the value of CSng(x) is the single-pre-
cision number that x determines.

CSTR The function CStr converts byte, integer, long integer, single-precision, double-preci-
sion, currency, and variant numbers to strings. If x is any number, the value of CStr(x) is the
string determined by x Unlike the Str function, CStr does not place a space in front of posi-
tive numbers. [variant]

CURDIR The value of the function CurDir(drive) is a string specifying the current directo-
ry on the drive specified by drive. The value of CurDir(“”) or CurDir is a string specifying
the current directory on the default drive. [directories]

CURRENCY The currency data type is extremely useful for calculations involving money.
A variable of type Currency requires 8 bytes of memory and can hold any number from
–922,337,203,685,477.5808 to 922,337,203,685,477.5807 with at most four decimal places.
Currency values and variables may be indicated by the type tag @: 21436587.01@, Bal-
ance@.

CURRENTX, CURRENTY The properties CurrentX and CurrentY give the horizontal and
vertical coordinates of the point on a form, picture box, or the printer at which the next Print
or graphics method will begin. Initially, CurrentX and CurrentY are the coordinates of the
upper-left corner of the object. [coordinate systems]

A p p e n d i x C 427

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/objectlinkingandembedding.html
http://www.pearsoncustom.com/link/visualbasic/database.html
http://www.pearsoncustom.com/link/visualbasic/byte.html

CVAR The function CVar converts strings and byte, integer, long integer, single-precision~,
double-precision, and currency numbers to variants. If x is any string or number, the value of
CVar(x) is the variant determined by x. [variant]

CVDATE The function CVDate converts a numeric or string expression to an equivalent ser-
ial date. If x is any expression representing a valid date, the value of CVDate(x) is the serial
date determined by x. Valid numeric values are –657434 (January 1, 100 AD.) to 2958465
(December 31, 9999). Valid string expressions either look like one of these valid numeric
values (for example, “19497”corresponding to May 18, 1953) or look like a date (for exam-
ple, “10 Feb 1955”, “August 13, 1958”, etc.) [date]

DATABASENAME The value of the DatabaseName property of a data control is the file-
spec of the file containing the database.

DATAFIELD After the DataSource property of a data-aware control has been set to bind the
control to a data control, the DataField property is set to a field of the table accessed by the
data control.

DATASOURCE To bind a data-aware control to a data control at design time, set the value
of the DataSource property of the data-aware control to the name of the data control.

DATE The value of the function Date is the current date. If dateStr is a string representing
a date, the statement Date = dateStr changes the date as specified by dateStr.

DATE A variable of type Date requires 8 bytes of memory and holds numbers representing
dates from January 1, 100 to December 31, 9999. Literal date values can be assigned to date
variables with statements such as dateVar = #5/12/1999#, dateVar = #5 Jan, 1997#, and dat-
eVar = #February 10, 2004#. However, values of dateVar are displayed in the form
month/day/year (for example, 5/12/99).

DATESERIAL The value of the function DateSerial(year, month, day) is the serial date cor-
responding to the given year, month, and day. Values from 0 to 9999 are acceptable for year,
with 0 to 99 interpreted as 1900 to 1999. Values of 1 to 12 for month, and 1 to 31 for day are
normal, but any integer value is acceptable. Often, numeric expressions are used for month
or day that evaluate to numbers outside these ranges. For example, DateSerial(1993, 2, 10 +
90) is the date 90 days after Feb. 10, 1993. [date]

DATEVALUE The value of the function DateValue(str) is the serial date corresponding to
the date given in str. DateValue recognizes the following date formats: “2-10-1955”,
“2/10/1955”, “February 10, 1955”, “Feb 10, 1955”, “10-Feb-1955”, and “10 February 1955”.
For the years 1900 through 1999, the initial “19”is optional. [date]

DAY The function Day extracts the day of the month from a serial date. If d is any valid ser-
ial date, the value of Day(d) is an integer from 1 to 31 giving the day of the month recorded
as part of the date and time stored in d. [date]

DBLCLICK The DblClick event applies to combo boxes, file list boxes, forms, frames,
grids, images, labels, list boxes, OLE controls, option buttons, picture boxes, and text boxes.
A DblClick event occurs whenever the left mouse button is pressed and released twice, in
quick succession, while the mouse cursor is over the control or over a blank area on the form.
Double-clicking on an object will first cause that object’s Click event to occur, followed by
its DblClick event. Note: When you double-click on an item in a drive list box, the item is
automatically assigned to the Path property. When you double-click on an item in a file list
box, the item is automatically assigned to the FileName property.

DEFAULT When the Default property of a command button is set to True and the focus is
on an object that is not another command button, pressing the enter key has the same effect
as clicking on the button. At most, one command button on a form can have True as the value
of its Default property.

428 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/objectlinkingandembedding.html
http://www.pearsoncustom.com/link/visualbasic/listbox.html
http://www.pearsoncustom.com/link/visualbasic/database.html
http://www.pearsoncustom.com/link/visualbasic/combobox.html
http://www.pearsoncustom.com/link/visualbasic/byte.html

DEFINT, DEFLNG, DEFSNG, DEFDBL, DEFSTR, DEFCUR, DEFVAR, DEFBYTE,
DEFBOOL, DEFDATE, DEFOBJ A variable can be assigned a type by either a type-decla-
ration tag or an As clause. A statement of the form DefInt letter specifies that any “untyped”
variable whose name begins with the specified letter will have integer type. A statement of
the form DefInt letter1-letter2 specifies that all “untyped” variables whose names begin with
a letter in the range letter1 through letter2 will have integer type. The statements DefLng,
DefSng, DefDbl, DefStr, DefCur, DefVar, DefByte, DefBool, DefDate, and DefObj specify
the corresponding types for long integer, single-precision, double-precision, string, curren-
cy, variant, byte, boolean, date, and object variables, respectively. DefType statements are
placed in the (Declarations) section of (General). [variant]

DELETE The Delete method for a data control deletes the current record.

DIM The statement Dim arrayName(m To n) As variableType declares an array with sub-
scripts ranging from m to n, inclusive, where m and n are in the normal integer range of
–32768 to 32767. The variableType must be Integer, Long, Single, Double, Currency, String,
String*n, Variant, Boolean, Byte, Date, or a user-defined type. A statement of the form Dim
arrayName(m To n, p To q) As variableType declares a doubly subscripted, or two-dimen-
sional, array. Three- and higher-dimensional arrays are declared similarly. If m and p are
zero, the preceding Dim statements may be changed to Dim arrayName(n) As variableType
and Dim arrayName(n, q) As variableType. The statement Dim arrayName() As variable-
Type defines an array whose size is initially unknown but must be established by a ReDim
statement before the array can be accessed. The statement Dim variableName As variable-
Type specifies the type of data that will be stored in variableName. Variables and arrays
Dimmed in the (Declarations) section of (General) are available to all procedures. In proce-
dures, Dim is used to declare variables, but ReDim is often used to dimension arrays.
[dynamic vs. static] [variant]

DIR If fileTemplate specifies a file (or a collection of files by including ? or *), then the
value of the function Dir(fileTemplate) is the filename of the first file matching the pattern
specified by fileTemplate. If this value is not the null string, the value of the function Dir is
the name of the next file that matches the previously specified pattern. For example, the
value of Dir(“*.VBP”) will be the name of the first file in the current directory of the default
drive whose name has the .VBP extension. [directories] [filespec]

DO/LOOP A statement of the form Do, Do While cond, or Do Until cond is used to mark
the beginning of a block of statements that will be repeated. A statement of the form Loop,
Loop While cond, or Loop Until cond is used to mark the end of the block. Each time a
statement containing While or Until followed by a condition is encountered, the truth value
of the condition determines whether the block should be repeated or whether the program
should jump to the statement immediately following the block. A Do loop may also be exit-
ed at any point with an Exit Do statement.

DOEVENTS Executing the statement DoEvents permits Visual Basic to act on any events
may have occurred while the current event procedure has been executing.

DOUBLE A variable of type Double requires 8 bytes of memory and can hold 0, the num-
bers from 4.9406520 � 2010–324 to 1.797693134862316 � 10308 with at most 17 significant
digits and the negatives of these numbers. Double values and variables may be indicated by
the type tag #: 2.718281828459045#, Pi#.

DRAWMODE The property DrawMode determines whether graphics are drawn in black,
white, foreground color, or some interaction of these colors with the current contents of the
form or picture box. The following table lists the allowed values for the DrawMode proper-
ty and the rules for what RGB color number will be assigned at a given point when the RGB
color number for the color currently displayed at that point is display and the RGB color
number for the draw color is draw. [color]

A p p e n d i x C 429

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/doloop.html
http://www.pearsoncustom.com/link/visualbasic/byte.html

DrawMode Color Produced

1 &H00000000& (Black)

2 Not draw And Not display (inverse of #15)

3 display And Not draw (inverse of #14)

4 Not draw (inverse of #13)

5 draw And Not display (inverse of #12)

6 Not display (inverse of #11)

7 draw Xor display

8 Not draw Or Not display (inverse of #9)

9 draw And display

10 Not (draw Xor display) (inverse of #7)

11 display (transparent)

12 display Or Not draw

13 draw (draw color)

14 draw Or Not display

15 draw Or display

16 &H00FFFFFF& (White)

DRAWSTYLE When DrawWidth is 1 for a form or picture box (the default), the property
DrawStyle determines whether graphics are drawn using a solid line or some combinations
of dots and dashes. Use a DrawStyle of 0 (the default) for solid lines, 1 for dashed lines, 2
for dotted lines, 3 for dash-dot lines, or 4 for dash-dot-dot lines. A DrawStyle of 5 produces
“invisible” graphics.

When thick lines are drawn as a result of setting DrawWidth to values greater than 1,
graphics are always drawn using solid lines. In this case, DrawStyle can be used either to cen-
ter the thick line over where a line with a DrawWidth of 1 would be drawn or, when drawing
closed figures like ellipses and rectangles, to place the thick line just inside where the line
with a DrawWidth of 1 would be drawn. To draw thick graphics inside the normal closed fig-
ure, use a DrawStyle of 6. DrawStyles 1 through 4 will center thick graphics over the normal
location.

DRAWWIDTH The property DrawWidth determines the width in pixels of the lines that are
drawn by graphics methods. The default is 1 pixel. Values from 1 to 32,767 are permitted.

DRIVE The Drive property of a drive list box gives the contents of the currently selected
item.

ENABLED The property Enabled determines whether or not a form or control responds to
events. If the Enabled property of a form or control is set to True (the default), and if an event
occurs for which an event procedure has been written, the event procedure will be executed.
When the Enabled property of a form or control is set to False, all events relating to that con-
trol are ignored; no event procedures are executed.

END The statement End terminates the execution of the program and closes all files. Also,
the statements End Def, End Function, End If, End Select, End Sub, and End Type are used
to denote the conclusion of multiline function definitions, function blocks, If blocks, Select
Case blocks, Sub procedures, and user-defined, record-type declarations.

ENDDOC The method Printer.EndDoc is used to indicate that the document currently being
printed is complete and should be released to the printer.

430 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/selectcaseblocks.html
http://www.pearsoncustom.com/link/visualbasic/listbox.html
http://www.pearsoncustom.com/link/visualbasic/ifblocks.html
http://www.pearsoncustom.com/link/visualbasic/selectcaseblocks.html

ENVIRON Visual Basic has an environment table consisting of equations of the form
“name=value”that is inherited from DOS when Windows is invoked. If name is the left side
of an equation in Visual Basic’s environment table, then the value of the function Envi-
ron(“name”) will be the string consisting of the right side of the equation. The value of Env-
iron(n) is the nth equation in Visual Basic’s environment table.

EOF Suppose a file has been opened for sequential input with reference number n. The
value of the function EOF(n) will be True (–1) if the end of the file has been reached and
False (0) otherwise. [Note: The logical condition Not EOF(n) is true until the end of the file
is reached.] When used with a communications file, EOF(n) will be true if the communica-
tions buffer is empty and false if the buffer contains data.

ERR After an error occurs during the execution of a program, the value of Err.Number will
be a number identifying the type of error. Err.Number is used in conjunction with the On
Error statement. If n is a whole number from 0 to 32,767, then the statement Err.Raise n gen-
erates the run-time error associated with the number n.

EQV The logical expression condition1 Eqv condition2 is true if condition1 and condition2
are both true or both false. For example, (1>2) Eqv (“xyz”<“a”) is true because both 1>2 and
“xyz”<“a” are false, whereas (“apple”>“ape”) Eqv (“earth”>“moon”) is false because
“apple”>“ape” is true but “earth”>“moon” is false.

ERASE For static arrays, the statement Erase arrayName resets each array element to its
default value. For dynamic arrays, the statement Erase arrayName deletes the array from
memory. Note: After a dynamic array has been Erased, it may be ReDimensioned. However,
the number of dimensions must be the same as before. [dynamic vs. static]

ERROR The statement Error n simulates the occurrence of the run-time error identified by
the number n, where n may range from 1 to 32,767. It is a useful debugging tool.

ERROR The value of the function Error is the error message corresponding to the run-time
error that has most recently occurred. The value of the function Error(errNum) is the error
message corresponding to the run-time error designated by errNum.

EVENT A statement of the form Public Event UserDefinedEvent(arg1, arg2, . . .), appear-
ing in the general declarations section of a code module, declares a user-defined event and
passes the arguments to the event procedure. After this declaration is made, the RaiseEvent
statement can be used to fire the event.

EXIT The Exit statement may be used in any of five forms: Exit For, Exit Sub, Exit Func-
tion, Exit Property, Exit Def, and Exit Do. The Exit statement causes program execution to
jump out of the specified structure prematurely: Exit For jumps out of a For/Next loop to the
statement following Next, Exit Sub jumps out of a Sub procedure to the statement following
the Call statement, and so on.

EXP The value of the function Exp(x) is ex, where e (about 2.71828) is the base of the nat-
ural logarithm function.

FALSE A keyword of Boolean type. False is used when setting the value of properties that
are either True or False. For example, Picture1.Font.Italic = False.

FIELDS The Fields property of a recordset is used to read or set the Value property of the
Recordset. For instance, a statement of the form Print Data1.RecordSet.Fields(field-
Name).Value displays the value in the specified field of the current record of the database
table associated with the data control. The preceding Print statement can be abbreviated to
Print Data1.RecordSet(fieldName).

FILEATTR After a file has been opened with reference number n, the value of the function
FileAttr (n, 1) is 1, 2, 4, 8, or 32 depending on whether the file was opened for Input, Out-
put, Append, Random, or Binary, respectively. The value of the function FileAttr (n, 2) is the

A p p e n d i x C 431

http://www.pearsoncustom.com/link/visualbasic/userdefinedevents.html
http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/fornextloop.html
http://www.pearsoncustom.com/link/visualbasic/debugging.html
http://www.pearsoncustom.com/link/visualbasic/database.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html

file’s DOS file handle, a number that uniquely identifies the file and is used in assembly lan-
guage programming.

FILECOPY The statement FileCopy source, destination creates the file specified by desti-
nation by making a copy of the file specified by source. Both source and destination may
specify drive and path information. If the file specified by destination already exists, it will
be overwritten without a warning being issued.

FILEDATETIME The value of the function FileDateTime(filename) is a string giving the
date and time that the file specified by the filename was created or last modified.

FILELEN The value of the function FileLen(filename) is the length in characters (bytes) of
the file specified by filename.

FILENAME The FileName property of a file list box is the contents of the currently select-
ed item.

FILLCOLOR When the FillStyle property of a form or picture box is set to a value other
than the default of 1, the property FillColor determines what color is used to paint the inte-
rior of ellipses and rectangles drawn with the Circle and Line graphics methods. The Fill-
Color property may be assigned any valid RGB color number. The default value for FillColor
is black (0). [color]

FILLSTYLE The property FillStyle determines what pattern is used to paint the interior of
ellipses and rectangles drawn on forms or picture boxes with the Circle and Line methods.
The default value for FillStyle is transparent (1), which means that interiors are not painted.
Other values available for FillStyle are solid (0), horizontal lines (2), vertical lines (3), diag-
onals running upward to the right (4), diagonals running downward to the right (5), vertical
and horizontal lines [crosshatched] (6), and diagonal crosshatched (7). Note: Using BF in a
Line method has the same effect as setting the FillStyle to 0 and the FillColor to the color of
the bordering line.

FINDFIRST, FINDLAST, FINDNEXT, FINDPREVIOUS A statement of the form
Data1.RecordSet.FindWhat criteria selects a new current record in the table of the database asso-
ciated with the data control in the expected way, based on the specifications of the string criteria.

FIX The value of the function Fix(x) is the whole number obtained by discarding the deci-
mal part of the number x.

FIXEDALIGNMENT The statement MSFlexGrid1.FixedAlignment(m) = n, where n = 0
(left-align (default)), 1 (right-align), or 2 (centered), aligns the text in the fixed cells of the
mth column of the grid.

FIXEDCOLS and FIXEDROWS The FixedCols and FixedRows properties of a grid specify
the number of fixed rows and fixed columns of a grid. Fixed rows and columns are used for
headings and never disappear due to scrolling.

FLAGSThe Flags property of a common dialog box sets a variety of options.

FONT.BOLD or FONTBOLD These properties determine whether the characters Printed on
a form, picture box, or printer, or assigned to a text box, command button, or label appear in
bold or normal type. If the property is set to True (the default), then for a form, picture box,
or printer, subsequent Printed characters appear bold. For a text box, command button, or
label, the text or caption is immediately changed to bold. If the property is set to False, sub-
sequent characters are Printed in normal type and characters assigned to the text or caption
property change immediately to normal type.

FONTCOUNT The value of the property Screen.FontCount is the number of fonts avail-
able for use on the screen. Similarly, the value of the property Printer. FontCount is the
number of fonts available on the printer. The FontCount property is set according to your
Windows environment and is generally used to determine the limit on the index for the Fonts
property.

432 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/listbox.html
http://www.pearsoncustom.com/link/visualbasic/database.html
http://www.pearsoncustom.com/link/visualbasic/byte.html

FONT.ITALIC or FONTITALIC These properties determine whether or not the characters
Printed on a form, picture box, or printer, or assigned to a text box, command button, or label
appear in italic or upright type. If the property is set to True, then for a form, picture box, or
printer, subsequent characters appear in italic. For a text box, command button, or label, the
text or caption is immediately changed to italic. If the property is set to False (the default),
subsequent characters are Printed in upright type and characters assigned to the text or cap-
tion property change immediately to upright type.

FONT.NAME or FONTNAME These properties determine what type face is used when
characters are Printed on a form, picture box, or printer, or assigned to a text box, command
button, or label. If the property of a form, picture box, or printer is set to a font obtained from
the Fonts property, all subsequently Printed characters will appear in the new type face.
When the property of a text box, command button, or label is set to a new font, characters
assigned to the text or caption property change immediately to the new type face.

FONTS The value of the property Screen.Fonts(fontNum) is the name of a screen font avail-
able in the current Windows environment. The index fontNum can range from 0 to
Screen.FontCount–1. Similarly, the value of the property Printer.Fonts(fontNum) is the name
of an available printer font. The values in the Fonts property are set by your Windows envi-
ronment and are generally used to determine which fonts are available for setting the Font-
Name property.

FONT.SIZE or FONTSIZE These properties determine the size, in points, of characters
Printed on forms, picture boxes, and the printer or displayed in text boxes and on command
buttons and labels. Available font sizes depend on your Windows environment, but will
always be between 1 and 2048. Default font sizes are usually between 8 and 12 point. Note:
One point equals 1/72nd of an inch.

FONT.STRIKETHROUGH or FONTSTRIKETHRU These properties determine whether or
not the characters Printed on a form, picture box, or printer, or assigned to a text box, com-
mand button, or label appear in a strikethru or standard font. If the property is set to True,
then for a form, picture box, or printer, subsequent Printed characters appear with a hori-
zontal line through the middle of each character. For a text box, command button, or label,
the text or caption is immediately changed so that a horizontal line goes through the middle
of each character. If the property is set to False (the default), subsequent characters are Print-
ed in standard type and characters assigned to text or caption property change immediately
to standard type.

FONTTRANSPARENT The property FontTransparent determines the degree to which char-
acters Printed to forms and picture boxes obscure existing text and graphics. If the Font-
Transparent property is set to True (the default), the existing text and graphics are obscured
only by the dots (pixels) needed to actually form the new character. If the FontTransparent
property is set to False, then all text and graphics are obscured within the character box
(small rectangle surrounding a character) associated with the new character. Those dots (pix-
els) not needed to form the character are changed to the background color.

FONT.UNDERLINE or FONTUNDERLINE These properties determine whether or not the
characters printed on a form, picture box, or printer, or assigned to a text box, command but-
ton, or label appear with an underline. If the property is set to True, then for a form, picture
box, or printer, subsequent characters Printed appear underlined. For a text box, command
button, or label, the text or caption is immediately changed to underlined. If the property is
set to False (the default), subsequent characters are Printed without underlines characters
assigned to the text or caption property change immediately to nonunderlined.

FOR EACH/NEXT A multistatement block beginning with For Each var In arrayName and
ending with Next var, where arrayName is an array of type variant and var is a variant vari-
able, executes the statements inside the block for each element of the array.

A p p e n d i x C 433

FOR/NEXT The statement For index = a To b Step s sets the value of the variable index to
a and repeatedly executes the statements between itself and the statement Next index. Each
time the Next statement is reached, s is added to the value of index. This process continues
until the value of index passes b. Although the numbers a, b, and s may have any numeric
type, the lower the precision of the type, the faster the loop executes. The statement For index
= a To b is equivalent to the statement For index = a To b Step 1. The index following the
word Next is optional.

FORECOLOR The property ForeColor determines the color used to display text, captions,
graphics, and Printed characters. If the ForeColor property of a form or picture box is
changed, subsequent characters will appear in the new color. For a text box, command but-
ton, or label, text or caption is immediately changed to the new color. [color]

FORMAT The value of the function Format(expression, str) is a string representing expres-
sion (a number, date, time, or string) formatted according to the rules given by str. Format is
useful when assigning values to the Text property and when Printing to a form, picture box,
or the printer.

Numeric output can be formatted with commas, leading and trailing zeros, preceding or
trailing signs (+ or –), and exponential notation. This is accomplished either by using for str
the name of one of several predefined numeric formats or by combining in str one or more
of the following special numeric formatting characters: #, 0, decimal point (period), comma,
%, E–, and E+. The expression to be formatted can evaluate to one of the numeric types or a
string representing a number.

Predefined numeric formats include “General Number,”which displays a number as is;
“Currency,”which displays a number with a leading dollar sign and with commas every three
digits to the left of the decimal, displays two decimal places, and encloses negative numbers
in parentheses; “Fixed,” which displays two digits to the right and at least one digit to the left
of the decimal point; “Standard,”which displays a number with commas and two decimal
places but does not use parentheses for negative numbers; “Percent,” which multiplies the
value by 100 and displays a percent sign after two decimal places; and “Scientific,”which
displays numbers in standard scientific notation. For example, Format(–5432.352, “Curren-
cy”) gives the string “($5,432.35)”.

The symbol # designates a place for a digit. If the number being formatted does not need
all the places provided by the #’s given in str, the extra #’s are ignored. The symbol 0, like #,
designates a place for a digit. However, if the number being formatted does not need all the
places provided by the 0’s given in str, the character 0 is displayed in the extra places. If the
number being converted has more whole part digits than there is space reserved by #’s and
0’s, additional space is used as if the format string had more #’s at its beginning. For exam-
ple, Format(56, “####”) yields “56”, Format(56, “#”) yields “56”, Format(0, “#”) yields “”,
Format(56, “0000”) yields “0056”, Format(56, “0”) yields “56”, and Format(0, “0”) yields
“0”.

The decimal point symbol (.) marks the location of the decimal place. It separates the
format rules into two sections, one applying to the whole part of the number and the other to
the decimal part. When included in the format string, a decimal point will always appear in
the resulting string. For example, Format(56.246, “#.##”) yields “56.25”, Format(.246,
“#.##”) yields “.25”, Format(.246, “0.##”) yields “0.25”, and Format(56.2, “0.00”) yields
“52.20”.

The comma symbol (,) placed to the left of the decimal point between #’s and/or 0’s caus-
es commas to be displayed to the left of every third digit to the left of the decimal point, as
appropriate. If commas are placed to the immediate left of the decimal point (or to the right
of all #’s and 0’s when the decimal-point symbol is not used), then before the number is for-
matted, it is divided by 1000 for each comma, but commas will not appear in the result. In
order to divide by201000’s and display commas in the result, use format strings like
“#,#,.00”, which displays the number with commas in units of thousands, and “#,#,,.00”,
which displays the number with commas in units of millions. For example, Format(1234000,
“#,#”) yields “1,234,000”, Format(1234000, “#,”) yields “1234”, Format(1234000, “#,.”)

434 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html

yields “1234.”, Format(1234000, “#,,.0”) yields “1.2”, and Format(1234000, “#,0,.0”) yields
“1,234.0”.

The percent symbol (%) placed to the right of all #’s, 0’s, and any decimal point causes
the number to be converted to a percentage (multiplied by 100) before formatting and the
symbol % to be displayed. For example, Format(.05624, “#.##%”) yields “5.62%”, and For-
mat(1.23, “#%”) yields “123%”.

The symbols E+ and E– placed to the right of all #’s, 0’s, and any decimal point cause
the number to be displayed in scientific notation. Places for the digits in the exponent must
be reserved to the right of E+ or E– with #’s or 0’s. When E+ is used and the exponent is pos-
itive, a plus sign appears in front of the exponent in the result. When E– is used and the expo-
nent is positive, no sign or space precedes the exponent. When scientific notation is used,
each position reserved by #’s to the left of the decimal point is used whenever possible. For
example, Format(1234.56, “#.##E+##”) yields “1.23E+3”, Format(1234.56, “##.##E–##”)
yields “12.34E2”, Format(1234, “###.00E+##”) yields “123.40E+1”, and Format(123,
“###E+00”) yields “123E+00”.

Date and time output can be formatted using numbers or names for months, putting the
day, month, and year in any order desired, using 12-hour or 24-hour notation, and so on. This
is accomplished either by letting str be the name of one of several predefined date/time for-
mats or by combining in str one or more special date/time formatting characters. The expres-
sion to be formatted can evaluate to a number that falls within the range of valid serial dates
or to a string representing a date/time.

Predefined date/time formats include “General Date,” which displays a date in
mm/dd/yyyy format and, if appropriate, a time in hh:mm:ss PM format; “Long Date,”which
displays the day of week, the full name of month, the day, and a four-digit year; “Medium
Date,”which displays the day, abbreviated month name, and two-digit year; “Short
Date,”which displays “mm/dd/yy”; “Long Time,”which displays the time in hh:mm:ss PM
format; “Medium Time,”which displays time in hh:mm PM format; and “Short Time,”which
display time in 24-hour format as hh:mm. For example, let dt = DateSerial(55,2,10) +
Time~Serial(21,45,30). Then Format(dt, “General Date”) yields “2/10/55 9:45:30 PM”, For-
mat(dt, “Medium Date”) yields “10-Feb-55”, and Format(dt, “Short Time”) yields “21:45”.

Format symbols for the day, month, and year include d (day as number but no leading
zero), dd (day as number with leading zero), ddd (day as three-letter name), dddd (day as full
name), m (month as number but no leading zero), mm (month as number with leading zero),
mmm (month as three-letter name), mmmm (month as full name), yy (year as two-digit num-
ber), and yyyy (year as four-digit number). Separators such as slash, dash, and period may
be used as desired to connect day, month, and year symbols into a final format. For example,
Format(“August 13, 1958”, “dddd, d.mmm.yy”) yields “Wednesday, 13.Aug.58” and For-
mat(“July 4, 1776”, “ddd: mmmm dd, yyyy”) yields “Thu: July 04, 1776”. Additional format
symbols for dates include w (day-of-week as number 1–7), ww (week-of-year as number
1–53), q (quarter-of-year as number 1–4), y (day-of-year as number 1–366), ddddd (same as
short date), and dddddd (same as long date).

Format symbols for the second, minute, and hour include s (seconds with no leading
zero), ss (seconds as two-digit number), n (minutes with no leading zero), nn (minutes as
two-digit number), h (hours with no leading zero), hh (hours as two-digit number), AM/PM
(use 12-hour clock and uppercase), am/pm (use 12-hour clock and lowercase), A/P (use 12-
hour clock and single uppercase letter), a/p (use 12-hour clock and single lowercase letter),
and ttttt (same as general date). Separators such as colons and periods may be used as desired
to connect hour, minute, and second symbols into a final format. For example, For-
mat(“14:04:01”, “h:nn AM/PM”) yields “2:04 PM”, Format(“14:04:01”, “h.n.s”) yields
“14.4.1”, and Format(0.75, “h:nna/p”) yields “6:00p”.

String output can be formatted as all uppercase, all lowercase, left-justified or right-jus-
tified. Symbols used to format strings are @ (define a field for at least as many characters
as there are @ symbols; if less characters than @ symbols, fill remainder of field with
spaces; if more characters than @ symbols, display the extra characters—don’t clip), &
(reserve space for entire output string), < (convert all characters to lowercase before dis-

A p p e n d i x C 435

http://www.pearsoncustom.com/link/visualbasic/strings.html

playing), > (convert all characters to uppercase before displaying), ! (left justify within field
defined by @ symbols; default is to right justify). For example, Format(“Red”, “@”) yields
“Red”, Format(“Red”, “@@@@@@”) yields “Red”(3 leading spaces), Format(“Red”,
“!>@@@@@@”) yields “RED”(3 trailing spaces), and Format(“Red”, “<&”) yields “red”.

FORMATCURRENCY The value of the function FormatCurrency(exp) is the string repre-
sentation of the expression as dollars and cents. Fractional values are preceded by a leading
zero, and negative values are surrounded by parentheses instead of beginning with a minus
sign. FormatCurrency(exp, r) displays a value rounded to r decimal places. The function has
additional optional parameters. FormatCurrency(exp, , vbFalse) suppresses leading zeros for
fractional values. FormatCurrency(exp, , , vbFalse) uses minus signs for negative numbers.

FORMATNUMBER The value of the function FormatNumber(exp, r) is the string repre-
sentation of the expression as a number with r decimal places. Fractional values are preced-
ed by a leading zero. FormatNumber(exp) displays a value rounded to 2 decimal places. The
function has additional optional parameters. FormatNumber(exp, , vbFalse) suppresses lead-
ing zeros for fractional values. FormatNumber(exp, , vbTrue) surrounds a negative value
with parentheses instead of a leading minus sign. FormatNumber(exp, , , , vbFalse) sup-
presses commas.

FORMATPERCENT The value of the function FormatPercent(exp, r) is the string represen-
tation of the expression as a percentage (multiplied by 100) with r decimal places. Fraction-
al values are preceded by a leading zero. Format~Percent(exp) displays the percentage
rounded to 2 decimal places. The function has additional optional parameters. FormatPer-
cent(exp, , vbFalse) suppresses leading zeros for fractional values. FormatPercent(exp, , ,
vbTrue) surrounds a negative value with parentheses instead of a leading minus sign.

FREEFILE When files are opened, they are assigned a reference number from 1 to 255. At
any time, the value of the function FreeFile is the next available reference number.

FROMPAGE and TOPAGE The FromPage and ToPage properties of a Print common dialog
box identify the values selected for the From and To text boxes.

FUNCTION A function is a multistatement block usually beginning with a statement of the
form Private Function FunctionName(parList) As returnType, followed on subsequent lines
by one or more statements for carrying out the task of the function, and ending with the state-
ment End Function. The parameter list, parList, is a list of variables through which values
will be passed to the function when the function is called. Parameter types may be numeric,
(variable-length) string, variant, object, user-defined record type, or array. The types of the
parameters may be specified with type-declaration tags, DefType statements, or As clauses.
Array names appearing in the parameter list should be followed by an empty pair of paren-
theses. Functions are named with the same conventions as variables. The value of a variable
argument used in calling a function may be altered by the function unless the variable is sur-
rounded by parentheses. The value returned can be of any type (declared in returnType). Vari-
ables appearing in a function are local to the function unless they have been declared in the
(Declarations) section of (General) and are not redeclared in Dim or Static statements with-
in the function. A statement of the form Function FunctionName(parList) Static specifies
that all variables local to the function be treated as static by default, that is, they are invisi-
ble outside of the function but retain their values between function calls. Functions may
invoke themselves (called recursion) or other procedures. However, no procedure may be
defined inside a function.

GET User-defined record types provide an efficient means of working with random-access
files. After a user-defined record type is defined and a variable of that type, call it recVar, is
declared, the file is opened with a length equal to Len (recVar). The rth record of the ran-
dom-access file is retrieved and assigned to recVar with the statement Get #n, r, recVar.

The Get statement is also used to retrieve data from a binary file and assign it to any type
of variable. Suppose var is a variable that holds a value consisting of b bytes. (For instance,
if var is an integer variable, then b is 2. If var is an ordinary string variable, then b will equal

436 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/stringvariable.html
http://www.pearsoncustom.com/link/visualbasic/randomaccessfile.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/byte.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/randomaccessfile.html

the length of the string currently assigned to it.) The statement Get #n, p, var assigns to the
variable var, the b consecutive bytes beginning with the byte in position p of the binary file
having reference number n. (Note: The positions are numbered 1, 2, 3,) If p is omitted,
then the current file position is used as the beginning position. [binary file]

GETATTR The value of the function GetAttr(filename) is a number indicating the file attrib-
utes associated with the file specified by filename. Let attrib be a variable holding the value
returned by GetAttr. Then the file specified by filename is a read-only file if attrib And 1 =
1, is a hidden file if attrib And 2 = 2, is a system file if attrib And 4 = 4, is a volume label
if attrib And 8 = 8, is a directory name if attrib And 16 = 16, or has been modified since the
last backup if attrib And 32 = 32. See SetAttr.

GETOBJECT If filespec specifies a file for an application that supports OLE Automation,
then the value of the function GetObject(filespec) is an OLE Automation object.

GETTEXT The value of the method ClipBoard.GetText is a string containing a copy of the
data currently stored in the clipboard.

GLOBAL The Global statement is used to create variables, including arrays, that are avail-
able to all procedures in all forms and BAS modules associated with a project. The Global
statement must be placed in the (Declarations) section of a BAS module, and has the same
structure as a Dim statement. For example, the statement Global classList (1 to 30) As
String, numStudents As Integer creates an array and a variable for use in all procedures
of the project.

GOSUB A statement of the form GoSub lineLabel causes a jump to the first statement fol-
lowing the specified line label. When the statement Return is reached, the program jumps
back to the statement following the GoSub statement. The GoSub statement and its target
must be in the same procedure. [line label] [subroutine]

GOTFOCUS A GotFocus event occurs when an object receives the focus, either through a
user action or through code, via the SetFocus method.

GOTO The statement GoTo lineLabel causes an unconditional jump to the first statement
after the specified line label. The GoTo statement and its target must be in the same proce-
dure. [line label]

GRIDLINES Grid lines are the light gray lines in a grid that separate columns and rows. The
GridLines property determines whether the grid lines are visible (GridLines = True) or not
(GridLines = False.)

HEIGHT The property Height determines the vertical size of an object. Height is measured
in units of twips. For the Printer object, Height may be read (ph = Printer.Height is OK) but
not assigned (Printer.Height = 100 causes an error).

HEX If n is a whole number from 0 to 2,147,483,647, then the value of the function Hex(n)
is the string consisting of the hexadecimal representation of n.

HIDE The Hide method removes a form from the screen.

HOUR The function Hour extracts the hours from a serial date. If d is any valid serial date,
then the value of Hour(d) is a whole number from 0 to 23 indicating the hours recorded as
part of the date and time store in d. [date]

IF (block) A block of statements beginning with a statement of the form If condition Then
and ending with the statement End If indicates that the group of statements between If and
End If are to be executed only when condition is true. If the group of statements is separat-
ed into two parts by an Else statement, then the first part will be executed when condition is
true and the second part when condition is false. Statements of the form ElseIf condition may
also appear and define groups of statements to be executed when alternate conditions are
true.

A p p e n d i x C 437

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/objectlinkingandembedding.html
http://www.pearsoncustom.com/link/visualbasic/clipboard.html
http://www.pearsoncustom.com/link/visualbasic/byte.html

IF (single line) A statement of the form If condition Then action causes the program to take
the specified action if condition is true. Otherwise, execution continues at the next line. A
statement of the form If condition Then action1 Else action2 causes the program to take
action1 if condition is true and action2 if condition is false.

IF TYPEOF To test for the type of a control when the control name is passed to a procedure,
use If TypeOf controlName Is controlType Then action1 Else action2 in either the single line
or block form of the If statement. ElseIf TypeOf is also permitted. For controlType, use one
of the control names that appear in the Form Design ToolBox (CommandButton, Label,
TextBox, etc.)—for example, If TypeOf objectPassed Is Label Then. . . .

IMP The logical expression condition1 Imp condition2 is true except when condition1 is
true and condition2 is false. For example, (3<7) Imp (“abc”>”a”) is true because both 3<7
and “abc”>”a”are true, and (“apple”>”ape”) Imp (“earth”> “moon”) is false because
“apple”>”ape”is true but “earth”>”moon”is false. Imp is an abbreviation for “logically
implies.”

INDEX When a control is part of a Control array, it is identified by the number specified
by its Index property.

INPUT The statement strVar = Input(n, m) assigns the next n characters from the file with
reference number m (opened in Input or Binary mode) to strVar.

INPUT # The statement Input #n, var reads the next item of data from a sequential file that
has been opened for Input with reference number n and assigns the item to the variable var.
The statement Input #n, var1, var2, . . . reads a sequence of values and assigns them to the
variables.

INPUTBOX The value of the function InputBox(prompt) is the string entered by the user in
response to the prompt given by prompt. The InputBox function automatically displays the
prompt, a text box for user input, an OK button, and a Cancel button in a dialog box in the
center of the screen. If the user selects Cancel, the value of the function is the null string (“”).
For greater control, use the function InputBox(prompt, title, defaultStr, xpos, ypos), which
places the caption title in the title bar of the dialog box, displays defaultStr as the default
value in the text box, and positions the upper-left corner of the dialog box at coordinates
(xpos, ypos) on the screen. [coordinate systems]

INSTR The value of the function InStr(str1, str2) is the position of the string str2 in the
string str1. The value of InStr(n, str1, str2) is the first position at or after the nth character
of str1 that the string str2 occurs. If str2 does not appear as a substring of str1, the value is
0.

INT The value of the function Int(x) is the greatest whole number that is less than or equal
to x.

INTEGER A variable of type Integer requires 2 bytes of memory and can hold the whole
numbers from –32,768 to 32,767. Integer values and variables may be indicated by the type
tag %: 345%, Count%.

INTERVAL The Interval property of a Timer control is set to the number of milliseconds (1
to 65535) required to trigger a Timer event.

ISDATE The value of the function IsDate(str) is True if the string str represents a date
between January 1, 100 and December 31, 9999. Otherwise, the value is False. [date]

ISEMPTY The value of the function IsEmpty(v) is True if v is a variable of unspecified type
(that is, is a variant) that has not yet been assigned a value. In all other cases the value of
IsEmpty is False. [variant]

ISNULLThe value of the function IsNull(v) is True if v is a variant variable that has been
assigned the special value Null. In all other cases the value of IsNull is False. [variant]

438 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/sequentialfile.html
http://www.pearsoncustom.com/link/visualbasic/controlarray.html
http://www.pearsoncustom.com/link/visualbasic/byte.html

ISNUMERIC The value of the function IsNumeric(v) is True if v is a number, numeric vari-
able, or a variant variable that has been assigned a number or a string that could be obtained
by Formatting a number. In all other cases the value of IsNumeric is False. [variant]

ITEM The value of collectionName.Item(n) is the nth object in the named collection. The
value of collectionName.Item(keyString) is the nth object in the named collection, where
keyString is the key given to the object when it was added to the collection. If the value of n
or keyString doesn’t match an existing object of the collection, an error occurs.

ITEMDATA When you create a list or combo box, Visual Basic automatically creates a long
integer array referred to as ItemData. The statement List1. ItemData(m) = n assigns the value
n to the mth subscripted variable of the array. It is commonly used with the NewIndex prop-
erty to associate a number with each item in a list, and thereby create a minidatabase. The
ItemData property is especially useful for lists in which Sorted = True.

KEYPRESS The KeyPress event applies to command buttons, text boxes, and picture boxes.
A KeyPress event occurs whenever the user presses a key while one of the preceding con-
trols has the focus. A code identifying which key was pressed will be passed to the event pro-
cedure in the KeyAscii parameter. This information can then be used to determine what
action should be taken when a given key is pressed.

KILL The statement Kill “filespec”deletes the specified disk file. [filespec]

LARGECHANGE When a scroll bar is clicked between the thumb and one of the arrow but-
tons, the Value property of the scroll bar changes by the value of the LargeChange property
and the thumb moves accordingly.

LBOUND For a one-dimensional array arrayName, the value of the function LBound(array-
Name) is the smallest subscript value that may be used. For any array arrayName, the value
of the function LBound(arrayName, n) is the smallest subscript value that may be used for
the nth subscript of the array. For example, after the statement Dim example(1 To 31, 1 To
12, 1990 To 1999) is executed, the value of LBound(example, 3) is the smallest value allowed
for the third subscript of example(), which is 1990.

LCASE The value of the string function LCase(str) is a string identical to str except that all
uppercase letters are changed to lowercase.

LEFT The property Left determines the position of the left edge of a form or control. The
units of measure are twips for forms. The units of measure for a control are determined by
the ScaleMode property of the container (form, picture box, etc.) upon which the control has
been placed, with the position of the control measured from the edge of its container using
the coordinate system established by the various Scale. . . properties for the container. By
default, the unit of measure for a container is twips, with a value of 0 for the Left property
placing the control against the left edge of the container.

LEFT The value of the function Left(str, n) is the string consisting of the leftmost n char-
acters of str. If n is greater than the number of characters in str, the value of the function is
str.

LEN The value of Len(str) is the number of characters in the string str. If var is not a vari-
able-length string variable, the value of Len(var) is the number of bytes needed to hold the
value of the variable in memory. That is, Len(var) is 1, 2, 2, 4, 4, 8, or 8 for byte, Boolean,
integer, long integer, single-precision, double-precision, and currency variables. Len(var),
when var is a variable with a user-defined record type, is the number of bytes of memory
needed to store the value of the variable. If var is a variant variable, Len(var) is the number
of bytes needed to store var as a string. [variant]

LET The statement Let var = expr assigns the value of the expression to the variable. If var
is a fixed-length string variable with length n and Len(expr) is greater than n, then just the
first n characters of expr are assigned to var. If Len(expr) < n, then expr is padded on the

A p p e n d i x C 439

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/stringvariable.html
http://www.pearsoncustom.com/link/visualbasic/stringfunctions.html
http://www.pearsoncustom.com/link/visualbasic/scrollbar.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/combobox.html
http://www.pearsoncustom.com/link/visualbasic/byte.html
http://www.pearsoncustom.com/link/visualbasic/keypressevent.html

right with spaces and assigned to var. If var has a user-defined type, then expr must be of
the same type. The statement var = expr is equivalent to Let var = expr.

LINE The graphics method objectName.Line (x1, y1)–(x2, y2) draws a line connecting the
two points. The graphics method objectName.Line –(x2, y2) draws a line from the point
(objectName.CurrentX, objectName.CurrentY) to the specified point. The object object-
Name can be a form, picture box, or the Printer. The line is in color c if objectName.Line (x1,
y1)–(x2, y2), c is executed. The statement objectName.Line (x1, y1)–(x2, y2), ,B draws a rec-
tangle with the two points as opposite vertices. (If B is replaced by BF, a solid rectangle is
drawn.) After a Line method is executed, the value of objectName.CurrentX becomes x2 and
the value of objectName.CurrentY becomes y2. [color] [coordinate systems]

LINE INPUT # After a file has been opened as a sequential file for Input with reference
number n, the statement Line Input #n, str assigns to the string variable str the string of char-
acters from the current location in the file up to the next pair of carriage return/line feed
characters.

LIST The List property of a combo box, directory list box, drive list box, file list box, or list
box is used to access items in the list. When one of these controls is created, Visual Basic
automatically creates the string array List to hold the list of items stored in the control. The
value of List1.List(n) is the item of List1 having index n. The value of List1.List
(List1.ListIndex) is the item (string) currently highlighted in list box List1.

LISTCOUNT For a list or combo box, the value of List1.ListCount or Combo1.ListCount is
the number of items currently in the list. For a directory list box, drive list box, or file list
box, the value of control.ListCount is the number of subdirectories in the current directory,
the number of drives on the computer, or the number of files in the current directory that
match the Pattern property, respectively.

LISTINDEX The ListIndex property gives the index of the currently selected item is a
combo box, directory list box, drive list box, file list box, or list box.

LOAD The Load event applies only to forms and usually occurs only once, immediately
when a program starts. This is the appropriate place to put code that should be executed every
time a program is run, regardless of the user’s actions.

LOAD If controlName is the name of a control in a control array whose Index property was
assigned a value during form design and num is a whole number that has not yet been used
as an index for the controlName() array, then the statement Load controlName(num) copies
properties of controlName(0) and creates the element controlName(num) of the control-
Name() array.

LOADPICTURE The statement objectName.Picture = LoadPicture(pictureFile), where
objectName is a form or picture box, places the picture defined in the file specified by pic-
tureFile on objectName.

LOC This function gives the current location in a sequential, random-access, or binary file.
For a sequential file with reference number n, Loc(n) is the number of blocks of 128 char-
acters read from or written to the file since it was opened. For a random-access file, Loc(n)
is the current record (either the last record read or written, or the record identified in a Seek
statement). For a binary file, Loc(n) is the number of bytes from the beginning of the file to
the last byte read or written. For communications, the value of Loc(n) is the number of bytes
waiting in the communications buffer with reference number n. [binary file]

LOCK The Lock command is intended for use in programs that operate on a network. After
a file has been opened with reference number n, the statement Lock #n denies access to the
file by any other process. For a random-access file, the statement Lock #n, r1 To r2 denies
access to records r1 through r2 by any other process. For a binary file, this statement denies
access to bytes r1 through r2. The statement Lock #n, r1 locks only record (or byte) r1. For
a sequential file, all forms of the Lock statement have the same effect as Lock #n. The

440 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/stringvariable.html
http://www.pearsoncustom.com/link/visualbasic/sequentialfile.html
http://www.pearsoncustom.com/link/visualbasic/randomaccessfile.html
http://www.pearsoncustom.com/link/visualbasic/listbox.html
http://www.pearsoncustom.com/link/visualbasic/controlarray.html
http://www.pearsoncustom.com/link/visualbasic/checkbox.html
http://www.pearsoncustom.com/link/visualbasic/byte.html

Unlock statement is used to remove locks from files. All locks should be removed before a
file is closed or the program is terminated. [binary file]

LOF After a file has been opened with reference number n, the number of characters in the
file (that is, the length of the file) is given by LOF(n). For communications, the value of
LOF(n) equals the number of bytes waiting in the communications buffer with reference
number n.

LOG If x is a positive number, the value of Log(x) is the natural logarithm (base e) of x.

LONG A variable of type Long requires 4 bytes of memory and can hold the whole num-
bers from –2,147,483,648 to 2,147,483,647. Long values and variables may be indicated by
the type tag &: 12345678&, Population&.

LOSTFOCUS A LostFocus event occurs when an object loses the focus, either through a
user action or through code, via the SetFocus method.

LSET If strVar is a string variable, then the statement LSet strVar = str replaces the value of
strVar with a string of the same length consisting of str truncated or padded on the right with
spaces. LSet also can be used to assign a record of one user-defined type to a record of a dif-
ferent user-defined type.

LTRIM The value of the function LTrim(str) is the string obtained by removing all the
spaces from the beginning of the string str. The string str may be either of fixed or variable
length.

MAX and MIN The Max and Min properties of scroll bars give the values of horizontal (ver-
tical) scroll bars when the thumb is at the right (bottom) and left (top) arrows, respectively.

MAXBUTTON The MaxButton property determines whether or not a form has a Maximize
button in the upper-right corner. If the value of the MaxButton property is set to True (the
default), a Maximize button is displayed when the program is run. The user then has the
option to click on the Maximize button to cause the form to enlarge and fill the entire screen.
If the value of the MaxButton property is set to False, the maximize button is not displayed
when the program is run, and the user is thus unable to “maximize” the form.

MAXLENGTH The property MaxLength determines the maximum number of characters
that a text box will accept. If the MaxLength property for a text box is set to 0 (the default),
an unlimited number of characters may be entered in the text box.

MID The value of the function Mid(str, m, n) is the substring of str beginning with the mth
character of str and containing up to n characters. If the parameter n is omitted, Mid(str, m)
is all the characters of str from the mth character on. The statement Mid(str, m, n) = str2
replaces the characters of str, beginning with the mth character, by the first n characters of
the string str2.

MINBUTTON The MinButton property determines whether or not a form has a Minimize
button in the upper-right corner. If the value of the MinButton property is set to True (the
default), a Minimize button is displayed when the program is run. The user then has the
option to click on the Minimize button to cause the form to be replaced by a small icon in
the Taskbar at the bottom of the screen. If the value of the MinButton property is set to False,
the Minimize button is not displayed when the program is run, and the user is thus unable to
“minimize”the form.

MINUTE The function Minute extracts the minutes from a serial date. If d is any valid ser-
ial date, the value of Minute(d) is a whole number from 0 to 59 giving the minutes recorded
as part of the date and time stored in d. [date]

MKDIR The statement MkDir path\dirName creates a subdirectory named dirName~ in the
directory specified by path. [directories]

A p p e n d i x C 441

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/stringvariable.html
http://www.pearsoncustom.com/link/visualbasic/scrollbar.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/byte.html

MOD The value of the expression num1 Mod num2 is the whole number remainder when
num1 is divided by num2. If either num1 or num2 is not a whole number, it is rounded to a
whole number before the Mod operation is performed. If one or both of num1 and num2 are
negative, the result of the Mod operation will have the same sign as num1. For example, 25
Mod 7 is 4, 18.7 Mod 3.2 is 1, –35 Mod –4 is –3, and 27 Mod –6 is 3.

MONTH The function Month extracts the month from a serial date. If d is any valid serial
date, the value of Month(d) is a whole number from 1 to 12 giving the month recorded as
part of the date and time stored in d. [date]

MOUSEPOINTER The property MousePointer determines what shape the mouse pointer
takes when the mouse is over a particular form or control. Valid values for the MousePoint-
er property are whole numbers from 0 to 12. A value of 0 (the default) indicates that the
mouse pointer should take on the normal shape for the control it is over. (The normal shape
over text boxes is an I-beam, and for a form, picture box, label, or command button it is an
arrow.) Use a MousePointer value of 1 for an arrow, 2 for crosshairs, 3 for an I-beam, 4 for
a small square within a square, 5 for a four-pointed arrow, 6 for a double arrow pointing up
to the right and down to the left, 7 for a double arrow pointing up and down, 8 for a double
arrow pointing up to the left and down to the right, 9 for a double arrow pointing left and
right, 10 for an up arrow, 11 for an hourglass, and 12 for a “do not” symbol (circle with diag-
onal line).

MOVE The method objectName.Move xpos, ypos moves the named form or control so that
its upper left corner has coordinates (xpos, ypos). For forms, positioning is relative to the
upper left corner of the screen. For controls, positioning is relative to the upper left corner of
the form, frame, or picture box to which the control is attached. The method
objectName.Move xpos, ypos, width, height also resizes the named form or control to be
width units wide and height units high. The Move method may be used whether or not a form
or control is visible. If you wish to specify just a new width for an object, you CANNOT use
objectName.Move , , width. Instead, use objectName.Move objectName.Left,
objectName.Top, width. Similar considerations apply for changing just ypos, height, width
and height, and so on.

MOVEFIRST, MOVELAST, MOVENEXT, MOVEPREVIOUS The data control methods
MoveNext, MovePrevious, MoveLast, and MoveFirst select new current records in the
expected way.

MSGBOX (Statement and Function) The statement MsgBox prompt displays prompt in a
dialog box with an OK button. The more general statement MsgBox prompt, buttons, title
displays prompt in a dialog box with title in the Title bar and containing from one to three
buttons as determined by the value of buttons. The value of buttons also determines which
button is the default (has the focus) and which, if any, of four icons is displayed. The value
to use for buttons can be computed as follows:

buttons = set number + default number + icon number

where set number, default number, and icon number are determined from the following
tables:

Buttons Set Set Number

OK 0

OK, Cancel 1

Abort, Retry, Ignore 2

Yes, No, Cancel 3

Yes, No 4

Retry, Cancel 5

442 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

Focus Default Default Number

First Button 0

Second Button 256

Third Button 512

Icon Icon Number

Stop sign 16

Question mark 32

Exclamation mark 48

Information 64

The value of the function MsgBox(prompt, buttons, title) indicates which of the displayed
buttons the user pushed; in all other aspects the MsgBox statement and function act in the
same manner. The values returned for each of the possible buttons pressed are 1 for OK, 2
for Cancel (or Esc), 3 for Abort, 4 for Retry, 5 for Ignore, 6 for Yes, and 7 for No.

MULTILINE The property MultiLine determines whether or not a text box can accept and
display multiple lines. If the MultiLine property of a text box is set to True, then text entered
in the text box will wrap to a new line when the right side of the text box is reached. Press-
ing the Enter key will also start a new line. If the MultiLine property of a text box is set to
False (the default), input is restricted to a single line that scrolls if more input is entered than
can be displayed within the width of the text box.

NAME (Property) The property Name is used at design time to give a meaningful name to
a form or control. This new name will then be used by Visual Basic in naming all event pro-
cedures for the form or control.

NAME (Statement) The statement Name “filespec1”As “filespec2”is used to change the
name and/or the directory of filespec1 to the name and/or directory specified by filespec2.
The two filespecs must refer to the same drive. [filespec]

NEW The keyword New is used with Set, to create an instance of a class. A typical state-
ment is Set objectVariable As New className.

NEWINDEX The NewIndex property of a combo box or list box gives the index number of
the item most recently added to the list.

NEWPAGE The method Printer.NewPage indicates that the current page of output is com-
plete and should be sent to the printer.

NOT (Bitwise Operator) The expression Not byte1 is evaluated by expressing the byte as an
8-tuple binary number and then Notting each individual digit, where Not 1 is equal to 0,
while Not 0 is equal to 1. For example, the expression Not 37 translated to binary 8-tuples
becomes Not 00100101. Notting each digit gives the binary 8-tuple 11011010 or decimal
218; thus Not 37 is 218.

NOT (Logical Operator) The logical expression Not condition1 is true if condition1 is false
and false if condition1 is true. For example, Not (3<7) is false because 3<7 is true, and Not
(“earth”>”moon”) is true because “earth”>”moon”is false.

NOTHING The keyword Nothing is used with Set to discontinue the association of an object
variable with a specific object. A typical statement is Set objectVariable = Nothing. Assign-
ing Nothing to an object variable releases all the system and memory resources associated
with the previously referenced object when no other variable refers to it.

NOW The value of the function Now() is the serial date for the current date and time as
recorded on the computer’s internal clock. [date]

A p p e n d i x C 443

http://www.pearsoncustom.com/link/visualbasic/logicaloperators.html
http://www.pearsoncustom.com/link/visualbasic/listbox.html
http://www.pearsoncustom.com/link/visualbasic/combobox.html
http://www.pearsoncustom.com/link/visualbasic/byte.html

OCT If n is a whole number between 0 and 2,147,483,647, Oct(n) is the octal (that is, base
8) representation of n.

ON ERROR The statement On Error GoTo lineLabel sets up error-trapping. An error then
causes a jump to the error-handling routine beginning with the first statement following the
specified line label. The On Error statement and its target must be in the same procedure.
[line label]

ON . . . GOSUB and ON . . . GOTO The statement On expression GoSub lineLabel1, lineLa-
bel2, . . . causes a GoSub to lineLabel1, lineLabel2, . . . depending on whether the value of
the expression is 1, 2, .20.20.20. Similarly, the GoTo variation causes an unconditional jump
to the appropriate line label. The GoSub or GoTo statement and its target must be in the same
procedure. [line label]

OPEN The statement Open “filespec”For mode As #n allows access to the file filespec in
one of the following modes: Input (information can be read sequentially from the file), Out-
put (a new file is created and information can be written sequentially to it), Append (infor-
mation can be added sequentially to the end of a file), or Binary (information can be read or
written in an arbitrary fashion). The statement Open “filespec”For Random As #n Len = g
allows random-access to the file filespec in which each record has length g. Throughout the
program, the file is referred to by the reference number n (from 1 through 255). Another vari-
ation of the Open statement is Open “LPT1”For Output As #n, which allows access to the
printer as if it were a sequential file.

In a network environment, two enhancements to the Open statement are available. Visu-
al Basic accesses data files in two ways: it reads from them or writes to them. When several
processes may utilize a file at the same time, accurate file handling requires that certain
types of access be denied to anyone but the person who has opened the file. The statement
Open “filespec”For mode Lock Read As #n or Open “filespec”For Random Lock Read As #n
Len = g opens the specified file and forbids any other process from reading the file as long
as the file is open. Lock Write forbids any other process from writing to the file as long as
the file is open. Lock Read Write forbids any other process from reading or writing to the
file as long as the file is open. Lock Shared grants full access to any other process, except
when a file is currently opened and locked by a process for a certain access mode, then
another process attempting to open the file for the same mode will receive the message “Per-
mission denied”and be denied access. [filespec] [binary file]

OPTION BASE After the statement Option Base m is executed, where m is 0 or 1, a state-
ment of the form Dim arrayName(n) defines an array with subscripts ranging from m to n.
Visual Basic’s extended Dim statement, which permits both lower and upper subscript
bounds to be specified for each array, achieves a wider range of results, making its use
preferable to Option Base.

OPTION COMPARE The statement Option Compare Text, placed in the (Declarations) sec-
tion of (General), causes string comparisons to be case-insensitive. Thus, if Option Compare
Text is in effect, the comparison “make”= “MaKe”will be true. The statement Option Com-
pare Binary placed in the (Declarations) section produces the default comparison rules,
which are case-sensitive and use the character order given in the ANSI/ASCII character
tables.

OPTION EXPLICIT If the statement Option Explicit appears in the (Declarations) section
of (General), each variable must be declared before it is used. A variable is declared by
appearing in a Const, Dim, Global, ReDim, or Static statement, or by appearing as a para-
meter in a Sub or Function definition.

OR (Bitwise Operator) The expression byte1 Or byte2 is evaluated by expressing each byte
as an 8-tuple binary number and then Oring together corresponding digits, where 1 Or 1, 1
Or 0, and 0 Or 1 are all equal to 1, while 0 And 0 is equal to 0. For example, the expression
37 Or 157 translated to binary 8-tuples becomes 00100101 Or 10011101. Oring together cor-
responding digits gives the binary 8-tuple 10111101 or decimal 189. Thus, 37 Or 157 is 189.

444 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/sequentialfile.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/byte.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/errortrapping.html

OR (Logical Operator) The logical expression condition1 Or condition2 is true except when
both condition1 and condition2 are false. For example, (“apple”>“ape”) Or
(“earth”>“moon”) is true because “apple”>“ape”is true, and (1>2) Or (“moon”<“earth”) is
false because both (1>2) and (“moon”<“earth”) are false.

PATH The Path property for a directory list box is the contents of the currently selected
item, and for a files list box is the path identifying the directory whose files are displayed.

PATHCHANGE For a files list box, the PathChange event is triggered by a change in the
value of the Path property.

PATTERN The Pattern property of a files list box uses wildcard characters to determine
which file names are displayed. A typical statement is File1.Pattern = “*.TXT.”

PATTERNCHANGE For a files list box, the PatternChange event is triggered by a change
in the value of the Pattern property.

PICTURE The property Picture allows a form, command button, option button, check box,
or picture box to be assigned a picture or icon for display. If iconOrPicture is a file defining
an icon or bitmapped picture, then objectName.Picture = LoadPicture(iconOrPicture) places
the icon or picture on the object identified by objectName.

POINT The value of the method objectName.Point(x, y) is the RGB number of the color of
the point with coordinates (x, y) on the form or picture box identified by objectName. Thus,
if the point with coordinates (x, y) has been painted using color RGB(r, g, b), then the value
of Point(x, y) will be r+256*g+65536*b. If the coordinates (x, y) identify a point that is not
on objectName, the value of Point(x, y) will be –1. [color] [coordinate systems]

PRINT The print method is used to display data on the screen or printer. The statement
objectName.Print expression displays the value of the expression at the current position of
the cursor in the named object (form, picture box, or Printer) and moves the cursor to the
beginning of the next line. (Numbers are displayed with a trailing space and positive num-
bers with a leading space.) If the statement is followed by a semicolon or comma, the cursor
will not move to the next line after the display, but will move to the next position or print
zone, respectively. Several expressions may be placed in the same Print method if separated
by semicolons (to display them adjacent to one another) or by commas (to display them in
successive zones).

PRINT # After a file has been opened as a sequential file for output or append with refer-
ence number n, the statement Print #n, expression places the value of the expression into the
file in the same way the Print method displays it in a picture box.

PRINTER The Printer object provides access to the printer. Methods available are Print to
send text to the printer, NewPage to execute a form feed to begin a new page, EndDoc to
complete the printing process, and the graphics methods. Many properties available for
forms and picture boxes, such as fonts and scaling, are also available for the printer.

PRINTFORM The method formName.PrintForm prints on the printer an image of the named
form and all its contents.

PROPERTY GET/END PROPERTYA Property Get procedure is a multistatement block in
a class module beginning with a statement of the form Public Property Get name(parList),
followed on subsequent lines by one or more statements for carrying out the task of the pro-
cedure, and ending with the statement End Property. The parameter list parList is a list of
variables through which values will be passed to the procedure when the property value of
an associated object is retrieved. The name and data type of each parameter in a Property Get
procedure must be the same as the corresponding parameter in a Property Let procedure (if
one exists).

PROPERTY LET/END PROPERTY A Property Let procedure is a multistatement block in
a class module beginning with a statement of the form Public Property Let name(parList),

A p p e n d i x C 445

http://www.pearsoncustom.com/link/visualbasic/sequentialfile.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/logicaloperators.html
http://www.pearsoncustom.com/link/visualbasic/listbox.html
http://www.pearsoncustom.com/link/visualbasic/checkbox.html

followed on subsequent lines by one or more statements for carrying out the task of the pro-
cedure, and ending with the statement End Property. The parameter list parList is a list of
variables through which values will be passed to the procedure when an assignment is made
to the property of an associated object. The name and data type of each parameter in a Prop-
erty Let procedure must be the same as the corresponding parameter in a Property Get pro-
cedure (if one exists).

PSET The graphics method objectName.PSet(x, y) displays the point with coordinates (x, y)
in the foreground color. The method objectName.PSet(x, y), c causes the point (x, y) to be
displayed in the RGB color specified by c. The size of the point is determined by the value
of the DrawWidth property. The actual color(s) displayed depend on the values of the Draw-
Mode and DrawStyle properties. After a PSet method is executed, the value of object-
Name.CurrentX becomes x and the value of objectName.CurrentY becomes y. [color]
[coordinate systems]

PUT The Put statement is used to place data into a random-access file. Suppose recVar is a
variable of a user-defined record type and that a file has been opened with a statement of the
form Open fileName For Random As #n Len = Len(recVar). The statement Put #n, r, recVar
places the value of recVar in the rth record of the file.

The Put statement is also used to place data into a file opened as a binary file. Suppose
var is a variable that holds a value consisting of b bytes. (For instance, if var is an integer
variable, then b is 2. If var is an ordinary string variable, then b will equal the length of the
string currently assigned to it.) The statement Put #n, p, var writes the successive bytes of
var into the b consecutive locations beginning with position p in the binary file with refer-
ence number n. (Note: The positions are numbered 1, 2, 3,) If p is omitted, the current
file position is used as the beginning position. [binary file]

QBCOLOR The function QBColor provides easy access to 16 standard colors. If colorAt-
trib is a whole number from 0 to 15, the value of the functions QBColor (colorAttrib) is the
RGB color number associated with colorAttrib. The following table names the colors pro-
duced by each of the possible values of colorAttrib.

0 Black 4 Red 8 Gray 12 Light Red

1 Blue 5 Magenta 9 Light Blue 13 Light Magenta

2 Green 6 Brown 10 Light Green 14 Yellow

3 Cyan 7 White 11 Light Cyan 15 Intense White

RAISEEVENT After an event has been declared in the general declarations section of a
class module, the statement RaiseEvent EventName(arg1, arg2, . . .) generates the event.

RANDOMIZE The statement Randomize automatically uses the computer’s clock to seed
the random-number generator. If a program includes a Randomize statement in the
Form_Load event procedure, the list of numbers generated by Rnd will vary each time the
program is executed. Randomize n seeds the generator with a number determined by n. If a
program does not seed the random-number generator or seeds it with a set number, the list
of numbers generated by Rnd will be the same each time the program is executed.

RECORDCOUNT The value of Data1.Recordset.RecordCount is the number of records in
the database table associated with the data control.

RECORDSOURCE The value of the RecordSource property of a data control is the table of
the database determined by the DatabaseName property. The value can also be an SQL state-
ment used to specify a virtual table.

REDIM The statement ReDim arrayName(...) erases the array from memory and recreates
it. The information inside the parentheses has the same form and produces the same results
as that in a Dim statement. After the ReDimensioning, all elements have their default values.
Although the ranges of the subscripts may be changed, the number of dimensions must be

446 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/stringvariable.html
http://www.pearsoncustom.com/link/visualbasic/sql.html
http://www.pearsoncustom.com/link/visualbasic/randomaccessfile.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/database.html
http://www.pearsoncustom.com/link/visualbasic/byte.html

the same as in the original Dimensioning of the array. ReDim may be used only within pro-
cedures; it may not be used in the (Declarations) section of (General). To establish an array
that is available to all procedures and also can be resized, Dim it with empty parentheses in
the (Declarations) section of (General) and then ReDim it as needed within appropriate pro-
cedures.

REFRESH The method objectName.Refresh causes the named form or control to be
refreshed, that is, redrawn reflecting any changes made to its properties. Generally, refresh-
ing occurs automatically, but if not, it may be forced with the Refresh method.

REM The statement Rem allows documentation to be placed in a program. A line of the
form Rem comment is ignored during execution. The Rem statement may be abbreviated as
an apostrophe.

REMOVE A statement of the form collectionName.Remove n deletes the nth object from the
collection and automatically reduces the object numbers from n on by 1 so that there is no
gap in the numbers. A statement of the form collectionName.Remove keyString deletes the
object identified by the key keyString. If the value of n or keyString doesn’t match an exist-
ing object of the collection, an error occurs.

REMOVEITEM The RemoveItem method deletes items from list and combo boxes and
deletes rows from grids. The statement List1.RemoveItem n (where n is 0, 1, . . .) deletes the
item with index n. For instance, List1.RemoveItem 0 deletes the top item and
List1.RemoveItem ListCount – 1 deletes the bottom item in the list. The statement MSFlex-
Grid1.RemoveItem n deletes row n from the grid.

RESET The statement Reset closes all open files. Using Reset is equivalent to using Close
with no file reference numbers.

RESUMEWhen the statement Resume is encountered at the end of an error-handling routine,
the program branches back to the statement in which the error was encountered. The varia-
tions Resume lineLabel and Resume Next cause the program to branch to the first statement
following the indicated line label or to the statement following the statement in which the
error occurred, respectively. (The combination of On Error and Resume Next is similar to the
combination GoSub and Return.) [line label]

RETURN When the statement Return is encountered at the end of a subroutine, the program
branches back to the statement following the one containing the most recently executed
GoSub. The variation Return lineLabel causes the program to branch back to the first state-
ment following the indicated line label. [line label] [subroutine]

RGB The value of the function RGB(red, green, blue) is the color number corresponding to
a mixture of red red, green green, and blue blue. This color number is assigned to color prop-
erties or used in graphics methods to produce text or graphics in a particular color. Each of
the three color components may have a value from 0 to 255. The color produced using
RGB(0, 0, 0) is black, RGB(255, 255, 255) is white, RGB(255, 0, 0) is bright red, RGB(10,
0, 0) is a dark red, and so on. (The value of the function RGB(r, g, b) is the long integer
r+256*g+65536*b.) [color]

RIGHT The value of the function Right(str, n) is the string consisting of the rightmost n
characters of str. If n is greater than the number of characters of str, then the value of the
function is str.

RMDIR If path specifies a directory containing no files or subdirectories, then the statement
RmDir path removes the directory. [directories]

RND The value of the function Rnd is a randomly selected number from 0 to 1, not includ-
ing 1. The value of Int(n*Rnd)+1 is a random whole number from 1 to n.

ROUND The value of the function Round(n, r) is the number n rounded to r decimal places.
If r is omitted, n is rounded to a whole number.

A p p e n d i x C 447

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/combobox.html

ROWHEIGHT The statement MSFlexGrid1.RowHeight(m) = n specifies that row m of the
grid be n twips high. (There are about 1440 twips in an inch.)

RSET If str1 is a string variable, the statement RSet str1 = str2 replaces the value of str1
with a string of the same length consisting of str2 truncated or padded on the left with spaces.

RTRIM The value of the function RTrim(str) is the string obtained by removing all the
spaces from the end of the string str. The string str may be either fixed-length or variable-
length.

SCALE The method objectName.Scale (x1, y1)–(x2, y2) defines a coordinate system for the
form, picture box, or printer identified by objectName. This coordinate system has horizon-
tal values ranging from x1 at the left edge of objectName to x2 at the right edge and vertical
values ranging from y1 at the top edge of objectName to y2 at the bottom edge. Subsequent
graphics methods and control positioning place figures and controls in accordance with this
new coordinate system. As a result of using the Scale method, the ScaleMode property of
objectName is set to 0, the ScaleLeft property to x1, the ScaleTop property to y1, the Scale-
Height property to y2–y1, and the ScaleWidth property to x2–x1. The method object-
Name.Scale without arguments resets the coordinate system of objectName to the default
coordinate system where the unit of measure is twips and the upper-left corner of object-
Name has coordinates (0, 0).

SCALEHEIGHT The property ScaleHeight determines the vertical scale on a form or pic-
ture box. After the statement objectName.ScaleHeight = hght is executed, the vertical coor-
dinates range from objectName.ScaleTop at the top edge of objectName to
objectName.ScaleTop + hght at the bottom edge. The default value of the ScaleHeight prop-
erty is the height of objectName when measured in the units specified by objectName’s
ScaleMode property.

SCALELEFT The property ScaleLeft determines the horizontal coordinate of the left edge
of a form or picture box. After the statement objectName.ScaleLeft = left is executed, the hor-
izontal coordinates will range from left at the left edge of objectName to left + object-
Name.ScaleWidth at the right edge. The default value of the ScaleLeft property is 0.

SCALEMODE The property ScaleMode determines the horizontal and vertical unit of mea-
sure for the coordinate system on a form or picture box. If the ScaleMode property of a form
or picture box is set to 1 (the default), the unit of measure becomes twips. Other possible val-
ues for ScaleMode are 2 for points (72 points = 1 inch), 3 for pixels, 4 for characters (1 hor-
izontal unit = 120 twips; 1 vertical unit = 240 twips), 5 for inches, 6 for millimeters, and 7
for centimeters. A value of 0 for the ScaleMode property indicates that units of measure are
to be determined from the current settings of the ScaleHeight and ScaleWidth properties.
Visual Basic automatically sets the ScaleMode property of an object to 0 when any of the
object’s Scale... properties are assigned values.

SCALETOP The property ScaleTop determines the vertical coordinate of the top edge of a
form or picture box. After the statement objectName.ScaleTop = top is executed, the vertical
coordinates range from top at the top edge of objectName to top + objectName.ScaleHeight
at the bottom edge. The default value for the ScaleTop property is 0.

SCALEWIDTH The property ScaleWidth determines the horizontal scale on a form or pic-
ture box. After the statement objectName.ScaleWidth = wdth is executed, the horizontal coor-
dinates range from objectName.ScaleLeft at the left edge of objectName to
objectName.ScaleLeft + wdth at the right edge. The default value of the ScaleWidth proper-
ty is the width of objectName when measured in the units specified by objectName’s Scale-
Mode property.

SCROLLBARS The ScrollBars property of a grid or text box specifies whether the control
has horizontal (setting = 1), vertical (setting = 2), both (setting = 3), or no (setting = 0) scroll
bars. In order for a text box to have scroll bars, the MultiLine property must be set to True.

448 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/stringvariable.html
http://www.pearsoncustom.com/link/visualbasic/scrollbar.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/scrollbar.html

SECOND The function Second extracts the seconds from a serial date. If d is any valid ser-
ial date, the value of Second(d) is a whole number from 0 to 59 giving the seconds recorded
as part of the date and time stored in d. [date]

SEEK The statement Seek #n, p sets the current file position in the binary or random-access
file referenced by n to the pth byte or record of the file, respectively. After the statement is
executed, the next Get or Put statement will read or write bytes, respectively, beginning with
the pth byte or record. The value of the function Seek(n) is the current file position either in
bytes or by record number. After a Put or Get statement is executed, the value of Seek(n) is
the number of the next byte or record. [binary file]

SELECT CASE The Select Case statement provides a compact method of selecting for exe-
cution one of several blocks of statements based on the value of an expression. The Select
Case block begins with a line of the form Select Case expression and ends with the statement
End Select. In between are clauses of the form Case valueList and perhaps the clause Case
Else. The items in the valueList may be individual values or ranges of values such as “a To
b”or “Is < a”. Each of these Case statements is followed by a block of zero or more state-
ments. The block of statements following the first Case valueList statement for which val-
ueList includes the value of expression is the only block of statements executed. If none of
the value lists includes the value of expression and a Case Else statement is present, then the
block of statements following the Case Else statement is executed.

SENDKEYS The statement SendKeys str places in the keyboard buffer the characters and
keystrokes specified by str. The effect is exactly the same as if the user had typed the series
of characters/keystrokes at the keyboard. The statement SendKeys str, True places keystrokes
in the keyboard buffer and waits until these keystrokes are processed (used) before allowing
program execution to continue with the next statement in the procedure containing the Send-
Keys statement. Keystrokes can be specified that do not have a displayable character or that
result from using the Shift, Ctrl, or Alt keys.

SET Essentially, Set is “Let for objects.” Whereas the Let statement is used to assign ordi-
nary values to variables or properties, the Set statement is used to assign objects to variables
or properties.

The statement Set controlVar = objectExpression associates the name controlVar with
the object identified by objectExpression. For example, if the statements Dim Scenery As
PictureBox and Set Scenery = Picture1 are executed, then Scenery becomes another name for
Picture1, and references like Scenery.Print message are equivalent to Picture1.Print message.
Also, the Set statement assigns an object to an object variable. When you want to release the
memory used for the object, execute Set objVar = Nothing.

SETATTR The statement SetAttr fileName, attribute sets the file attribute of the file speci-
fied by fileName. A file’s attribute can be 0 for “Normal”or a combination of 1, 2, or 4 for
“Read-only”, “Hidden”, and “System.” In addition, a file can be marked as “changed since
last backup”by adding 32 to its attribute. Thus, for example, if a file’s attribute is set to 35
(1 + 2 + 32), the file is classified as a Read-only Hidden file that has been changed since the
last backup.

SETFOCUS The method objectName.SetFocus moves the focus to the named form or con-
trol. Only the object with the focus can receive user input from the keyboard or the mouse.
If objectName is a form, the form’s default control, if any, receives the focus. Disabled and
invisible objects cannot receive the focus. If an attempt is made to set focus to a control that
cannot receive the focus, the next control in tab order receives the focus.

SETTEXT The method ClipBoard.SetText info replaces the contents of the clipboard with
the string info.

SGN The value of the function Sgn(x) is 1, 0, or –1, depending on whether x is positive,
zero, or negative, respectively.

A p p e n d i x C 449

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/selectcaseblocks.html
http://www.pearsoncustom.com/link/visualbasic/randomaccessfile.html
http://www.pearsoncustom.com/link/visualbasic/clipboard.html
http://www.pearsoncustom.com/link/visualbasic/byte.html
http://www.pearsoncustom.com/link/visualbasic/randomaccessfile.html
http://www.pearsoncustom.com/link/visualbasic/selectcaseblocks.html

SHELL If command is a DOS command, the function Shell(command) causes command to
be executed. If the DOS command requires user input, execution of the Visual Basic program
will be suspended until the user input is supplied. Using the function Shell with no arguments
suspends program execution and invokes a copy of DOS. Entering the command Exit
resumes execution of the Visual Basic program. The value returned by the Shell function is
a number used by Windows to identify the new task being performed.

SHOW The Show method makes an invisible form visible. The statement Form1.Show 1 also
makes a form modal. No user input to any other form will be accepted until the modal form
is hidden.

SIN For any number x, the value of the trigonometric function Sin(x) is the sine of the angle
of x radians. [radians]

SINGLE A variable of type Single requires 4 bytes of memory and can hold 0, the numbers
from 1.40129×10–45 to 3.40283×1038 with at most seven significant digits, and the negatives
of these numbers. Single values and variables may be indicated by the type tag !: 32.156!,
Meters!.

SMALLCHANGE When a scroll bar arrow button is clicked, the Value property of the scroll
bar changes by the value of the SmallChange property and the thumb moves accordingly.

SORTED When the Sorted property of a list or combo box is set to True, the items are auto-
matically presented in alphabetical order.

SPACE If n is an integer from 0 to 32767, the value of the function Space(n) is the string
consisting of n spaces.

SPC The function Spc is used in Print and Print# statements to generate spaces. For instance,
the statement Print str1; Spc(n); str2 skips n spaces between the displays of the two strings.

SQR For any nonnegative number x, the value of the square root function Sqr(x) is the non-
negative number whose square is x.

STATIC A statement of the form Static var1, var2, .20.20. can be used at the beginning of
the definition of a procedure to specify that the variables var1, var2, .20.20. are static local
variables in the procedure. Memory for static variables is permanently set aside by Visual
Basic, allowing static variables to retain their values between successive calls of the proce-
dure. The type of each variable is either determined by a DefType statement, a type-declara-
tion tag, or an As clause. Static variables have no connection to variables of the same name
outside the procedure, and so may be named without regard to “outside” variables. Arrays
created in a procedure by Dim or ReDim are lost when the procedure is exited. Arrays that
are local to a procedure yet retained from one invocation of the procedure to the next can be
created by dimensioning the array in the procedure with a Static statement rather than a Dim
or ReDim statement. Dimensions for static arrays must be numeric constants. A local static
array whose size is to be determined at run time is declared by listing its name followed by
empty parentheses in a Static statement, and then dimensioning the array in a subsequent
ReDim statement.

STOP The statement Stop suspends the execution of a program. Execution can be resumed
beginning with the first statement after the Stop statement by pressing F5.

STR The Str function converts numbers to strings. The value of the function Str(n) is the
string consisting of the number n in the form normally displayed by a print statement.

STRCOMP The value of the function StrComp(str1, str2, compMode) is –1, 0, 1, or Null,
depending on whether str1 < str2, str1 = str2, str1 > str2, or either of str1 and str2 is Null. The
comparison will be case-sensitive if compMode is 0 and case-insensitive if compMode is 1.

STRCONV The value of StrConv(str, 3) is the value of str with the first letter of every word
converted to uppercase. The value of StrConv(str, 1) is the same as UCase(str) and the value
of StrConv(str, 2) is the same as LCase(str).

450 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/scrollbar.html
http://www.pearsoncustom.com/link/visualbasic/combobox.html
http://www.pearsoncustom.com/link/visualbasic/byte.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html

STRETCH When the Stretch property of an image control is set to False (the default value),
the image control will hold the picture at its normal size. If the Stretch property is set to True,
the picture will be resized to fit the image control

STRING A variable of type String can hold a string of up to 32,767 characters. String val-
ues are enclosed in quotes: “January 1, 2001”. String variables can be indicated by the type
tag $: FirstName$. A variable of type String*n holds a string of n characters, where n is a
whole number from 1 to 32,767. Variables of this type have no type tag and must be declared
in a Dim, Global, or Static statement. Until assigned a value, these variables contain a string
of n Chr(0)’s.

STRING If n is a whole number from 0 to 32767, the value of String(n, str) is the string con-
sisting of the first character of str repeated n times. If m is a whole number from 0 to 255,
the value of the function String(n, m) is the string consisting of the character with ANSI
value m repeated n times.

STYLE The Style property of a combo box determine whether the list is always visible
(Style = 1) or whether the list drops down when the user clicks on the arrow and then disap-
pears after a selection is made (Style = 0).

SUB/END SUB A Sub procedure is a multistatement block beginning with a statement of
the form Sub ProcedureName(parList), followed on subsequent lines by one or more state-
ments for carrying out the task of the Sub procedure, and ending with the statement End Sub.
The parameter list parList is a list of variables through which values will be passed to the
Sub procedure whenever the function is called. (See the discussion of Call.) Parameters may
be numeric or (variable-length) string variables as well as arrays.

TAB The function Tab(n) is used in Print and Print# statements to move the cursor to posi-
tion n and place spaces in all skipped-over positions. If n is less than the cursor position, the
cursor is moved to the nth position of the next line.

TABINDEX The property TabIndex determines the order in which the tab key moves the
focus about the objects on a form. Visual Basic automatically assigns successive tab index-
es as new controls are created at design time. Visual Basic also automatically prevents two
controls on the same form from having the same tab index by renumbering controls with
higher tab indexes when the designer or program directly assigns a new tab index to a con-
trol.

TAN For any number x (except for x = p/2, –p/2, 3 * p/2, –3 * p/2, and so on), the value of
the trigonometric function Tan(x) is the tangent of the angle of x radians. [radians]

TEXT For a text box, the Text property holds the information assigned to a text box. A state-
ment of the form textBoxName.Text = str changes the contents of textBoxName to the string
specified by str. A statement of the form str = textBoxName.Text assigns the contents of
textBoxName to str. For a list or combo box, control.Text is the contents of the currently
highlighted item or the item in the text box, respectively. For a grid, MSFlexGrid1.Text is the
contents of the active cell.

TEXTHEIGHT This method applies to forms, picture boxes, and printer objects. The value
of the method objectName.TextHeight(str) is the amount of vertical space required to display
the contents of str using the font currently assigned for objectName. These contents may
include multiple lines of text resulting from the use of carriage-return/line-feed pairs
(Chr(13) + Chr(10)) in str. The units of height are those specified by the ScaleMode and
ScaleHeight properties of objectName. (The default is twips.)

TEXTWIDTH This method applies to forms, picture boxes, and printer objects. The value
of the method objectName.TextWidth(strVar) is the amount of horizontal space required to
display the contents of strVar using the font currently assigned for objectName. When car-
riage return/line feed pairs (Chr(13) + Chr(10)) create multiple lines in strVar, this will be
the space required for the longest line.

A p p e n d i x C 451

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/stringvariable.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/combobox.html

TIME The value of the function Time is the current time expressed as a string of the form
hh:mm:ss. (The hours range from 0 to 23, as in military time.) If timeStr is such a string, the
statement Time = timeStr sets the computer’s internal clock to the corresponding time.

TIMER The value of the function Timer is the number of seconds from midnight to the time
currently stored in the computer’s internal clock.

TIMER The Timer event is triggered by the passage of the amount of time specified by the
Interval property of a timer control whose Enabled property is set to True.

TIMESERIAL The value of the function TimeSerial(hour, minute, second) is the serial date
corresponding to the given hour, minute, and second. Values from 0 (midnight) to 23 (11
p.m.) for hour, and 0 to 59 for both minute and second are normal, but any Integer value may
be used. Often, numeric expressions are used for hour, minute, or second that evaluate to
numbers outside these ranges. For example, TimeSerial(15–5, 20–30, 0) is the serial time 5
hours and 30 minutes before 3:20 p.m.

TIMEVALUE The value of the function TimeValue(str) is the serial date corresponding to
the time given in str. TimeValue recognizes both the 24-hour and 12-hour time formats:
“13:45:24”or “1:45:24PM”.

TOP The property Top determines the position of the top edge of a form or control. The units
of measure are twips for forms. The units of measure for a control are determined by the
ScaleMode property of the container (form, picture box, etc.) on which the control has been
placed, with the position of the control measure from the edge of its container using the coor-
dinate system established by the various Scale... properties for the container. By default, the
unit of measure for a container is twips, with a value of 0 for the Top property placing the
control against the top edge of the container.

TRIM The value of the function Trim(str) is the string obtained by removing all the spaces
from the beginning and end of the string str. The string str may be either fixed-length or vari-
able-length.

TRUE A keyword of the Boolean type. True is used when setting the value of properties that
are either True or False. For example, Picture1.Font.Italic = True.

TYPE/END TYPE A multistatement block beginning the Type typeName and ending with
End Type creates a user-defined record type. Each statement inside the block has the form
elt As type, where elt is a variable and type is either Integer, Boolean, Byte, Date, Long, Sin-
gle, Double, Currency, Variant, String*n (that is, fixed-length string), or another user-defined
record type. After a statement of the form Dim var As typeName appears, the element cor-
responding to the statement elt As type is referred to as var.elt. Type declaration blocks must
be placed in the (Declarations) section of a BAS module. [variant]

TYPENAME If var is variable, then the value of the function TypeName(var) is a string
identifying the type of the variable. The possible values of the function are Byte, Integer,
Long, Single, Double, Currency, Date, String, Boolean, Error, Empty (uninitialized), Null
(no valid data), Object (an object that supports OLE Automation), Unknown (an OLE
Automation object whose type is unknown), and Nothing (an object variable that doesn’t
refer to an object).

UBOUND For a one-dimensional array arrayName, the value of the function
UBound(arrayName) is the largest subscript value that may be used. For any array array-
Name, the value of the function UBound(arrayName, n) is the largest subscript value that
may be used for the nth subscript of the array. For example, after the statement Dim exam-
ple(1 To 31, 1 To 12, 1990 To 1999) is executed, the value of UBound(example, 3) is the
largest value allowed for the third subscript of example(), which is 1999.

UCASE The value of the string function UCase(str) is a string identical to str except that all
lowercase letters are changed to uppercase.

452 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/stringfunctions.html
http://www.pearsoncustom.com/link/visualbasic/objectlinkingandembedding.html
http://www.pearsoncustom.com/link/visualbasic/byte.html

UNLOCK The Unlock command is intended for use in programs that operate on a network.
After a Lock statement has been used to deny access to all or part of a file (see the discus-
sion of Lock for details), a corresponding Unlock statement can be used to restore access.
Suppose a data file has been opened as reference number n. The locks established by the
statements Lock #n; Lock #n, r1; and Lock #n, r1 To r2 are undone by the statements Unlock
#n; Unlock #n, r1; and Unlock #n, r1 To r2, respectively. There must be an exact correspon-
dence between the locking and the unlocking statements used in a program, that is, each set
of paired statements must refer to the same range of record numbers or bytes.

UPDATE The Update method of a data control is used to save changes made to the database.

VAL The Val function is used to convert strings to numbers. If the leading characters of the
string str corresponds to a number, then Val(str) will be the number represented by these
characters. For any number n, Val(Str(n)) is n.

VALIDATE The Validate event procedure is activated whenever the current record of a data-
base table is about to be changed. The heading of the procedure has the form Private Sub
Data1_Validate(Action As Integer, Save As Integer), where the value of Action identifies the
specific operation that triggered the event and the value of Save specifies whether data bound
to the control has changed. You can change the value of the Action argument to convert one
operation into another.

VALUE The Value property of a scroll bar is a number between the values of the Min and
Max properties of the scroll bar that is related to the position of the thumb. The Value prop-
erty of an option button is True when the button is on and False when the button is off. The
Value property of a check box is 0 (unchecked), 1 (checked), or 2 (grayed). The Value prop-
erty of Fields(“fieldName”) reads the contents of a field of the current record.

VARIANT A variable of type variant can be assigned numbers, strings, and several other
types of data. Variant variables are written without type-declaration tags. [variant]

VARTYPE The value of the function VarType(var) is a number indicating the type of value
stored in var. This function is primarily used to check the type of data stored in a variant vari-
able. Some values returned by VarType are 0 for “Empty,” 1 for “Null,” 2 for Integer, 3 for
Long Integer, 4 for Single Precision, 5 for Double Precision, 6 for Currency, 7 for Date, 8 for
String, 9 for OLE Automation object, 10 for Error, 11 for Boolean, 13 for Non-OLE Automa-
tion object, and 17 for Byte. For nonvariant arrays, the number assigned is 8192 plus the
number assigned to the type of the array. [variant]

VISIBLE The property Visible determines whether or not a form or control is displayed. If
the Visible property of an object is True, the object will be displayed (if not covered by other
objects) and respond to events if its Enabled property is True. If the Visible property of an
object is set to False, the object will not be displayed and cannot respond to events.

WEEKDAY The value of the function WeekDay(d) is a number giving the day of the week
for the date store in d. These values will range from 1 for Sunday to 7 for Saturday.

WHILE/WEND A While ... Wend loop is a sequence of statements beginning with a state-
ment of the form While condition and ending with the statement Wend. After the While state-
ment is executed, the computer repeatedly executes the entire sequence of statements inside
the loop as long as the condition is true.

WIDTH (Property) The property Width determines the horizontal size of an object. Width
is measured in units of twips. For the Printer object, Width may be read (pw = Printer.Width
is OK) but not assigned (Printer.Width = 100 causes an error).

WIDTH (Statement) If s is an integer less than 255 and n is the reference number of a file
opened in sequential mode, the statement Width #n, s causes Visual Basic to permit at most
s characters to be printed on a single line in the file. Visual Basic will send a carriage-
return/line-feed pair to the file after s characters have been printed on a line, even if the Print
or Write # statement would not otherwise start a new line at that point. The statement Width

A p p e n d i x C 453

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/scrollbar.html
http://www.pearsoncustom.com/link/visualbasic/objectlinkingandembedding.html
http://www.pearsoncustom.com/link/visualbasic/database.html
http://www.pearsoncustom.com/link/visualbasic/checkbox.html
http://www.pearsoncustom.com/link/visualbasic/byte.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html

#n, 0 specifies infinite width, that is, a carriage return/line feed pair will be sent to the print-
er only when requested by Print # or Write #.

WITH/END WITH A multistatement block begun by With recName or With objName and
ended by End With is used to assign values to the fields of the named record variable or to
properties of the named object. The statements inside the block have the form .fieldName =
fieldValue or .propertyName = propertyValue. When you use this block, you only have to
refer to the record variable or object once instead of referring to it with each assignment.

WITHEVENTS If a class has events attached to it, and form code intends to make use of
these events, then the keyword WithEvents should be inserted into the statement declaring an
instance of the class. A typical declaration statement is Private WithEvents objectVariable As
className.

WORDWRAP The WordWrap property of a label with AutoSize property set to True deter-
mines whether or not long captions will wrap. (When a label’s AutoSize property is False,
word wrap always occurs, but the additional lines will not be visible if the label is not tall
enough.) Assume a label’s AutoSize property is True. If its WordWrap property is set to True,
long captions will wrap to multiple lines; if its WordWrap property is False (the default), the
caption will always occupy a single line. If a label has its WordWrap and AutoSize proper-
ties set to True, the label’s horizontal length is determined by the length of its longest word,
with long captions being accommodated by having the label expand vertically so that word
wrap can spread the caption over several lines. If a label’s WordWrap property is set to False
while its AutoSize property is True, the label will be one line high and will expand or shrink
horizontally to exactly accommodate its caption.

WRITE # After a sequential file is opened for output or append with reference number n, the
statement Write #n, exp1, exp2, . . . records the values of the expressions one after the other
into the file. Strings appear surrounded by quotation marks, numbers do not have leading or
trailing spaces, all commas in the expressions are recorded, and the characters for carriage
return and line feed are placed following the data.

XOR (Logical Operator) The logical expression condition1 Xor condition2 is true if condi-
tion1 is true or condition2 is true, but not if both are true. For example, (3<7) Xor
(“abc”>“a”) is false because both 3<7 and “abc”>“a”are true, and (“apple”>“ape”) Xor
(“earth”>“moon”) is true because “apple”>“ape”is true and “earth”>“moon”is false.

XOR (Bitwise Operator) The expression byte1 Xor byte2 is evaluated by expressing each
byte as an 8-tuple binary number and then Xoring together corresponding digits, where 1 Xor
0 and 0 Xor 1 both equal 1, while 1 Xor 1 and 0 Xor 0 both equal 0. For example, the expres-
sion 37 Xor 157 translated to binary 8-tuples becomes 00100101 Xor 10011101. Xoring
together corresponding digits gives the binary 8-tuple 10111000 or decimal 184. Thus, 37
Xor 157 is 184.

YEAR The function Year extracts the year from a serial date. If d is any valid serial date, then
the value of Year(d) is a whole number from 100 to 9999 giving the year recorded as part of
the date and time stored in d. [date]

SUPPORTING TOPICS

[BINARY FILE]: A file that has been opened with a statement of the form Open “file-
spec”For Binary As #n is regarded simply as a sequence of characters occupying positions 1,
2, 3, At any time, a specific location in the file is designated as the “current position.”
The Seek statement can be used to set the current position. Collections of consecutive char-
acters are written to and read from the file beginning at the current position with Put and Get
statements, respectively. After a Put or Get statement is executed, the position following the
last position accessed becomes the new current position.

454 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/sequentialfile.html
http://www.pearsoncustom.com/link/visualbasic/logicaloperators.html
http://www.pearsoncustom.com/link/visualbasic/byte.html

[COLOR]: Numbers written in base 16 are referred to as hexadecimal numbers. They are
written with the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A (=10), B (=11), C (=12), D (=13), E (=14),
and F (=15). A hexadecimal number such as rst corresponds to the decimal integer t + 16 *
s + 16 * r. Each color in Visual Basic is identified by a long integer (usually expressed as a
hexadecimal number of the form &H...&) and referred to as an RGB color number. This
number specifies the amounts of red, green, and blue combined to produce the color. The
amount of any color is a relative quantity, with 0 representing none of the color and 255 rep-
resenting the maximum available. Thus, black corresponds to 0 units each of red, green, and
blue, and white corresponds to 255 units each of red, green, and blue. The RGB color num-
ber corresponding to r units of red, g units of green, and b units of blue is r + 256 * g + 65536
* b, which is the value returned by the function RGB(r, g, b). Hexadecimal notation provides
a fairly easy means of specifying RGB color numbers. If the amount of red desired is
expressed as a two-digit hexadecimal number, rr, the amount of green in hexadecimal as gg,
and the amount of blue in hexadecimal as bb, then the RGB color number for this color is
&H00bbggrr&. For example, the RGB color number for a bright green would come from 255
(FF in hexadecimal) units of green, so the RGB color number in hexadecimal is
&H0000FF00&.

[COORDINATE SYSTEMS]: The default coordinate system for a form, picture box, or the
printer defines the upper-left corner as the point (0, 0). In this coordinate system, the point
(x, y) lies x units to the right of and y units below the upper-left corner. The unit of measure
in the default coordinate system is a twip. A twip is defined as 1/1440 of an inch (though
varying screen sizes may result in 1440 twips not appearing as exactly an inch on the screen).
Custom coordinate systems can be created using the Scale method and ScaleMode property.

[DATE]: Functions dealing with dates and times use the type 7 variant data type. Dates and
times are stored as serial dates, double-precision numbers, with the whole part recording the
date and the decimal part recording the time. Valid whole parts range from –657434 to
2958465, which correspond to all days from January 1, 100 to December, 31, 9999. A whole
part of 0 corresponds to December 30, 1899. All decimal parts are valid, with .0 corre-
sponding to midnight, .25 corresponding to 6 a.m., .5 corresponding to noon, and so on. In
general, the decimal equivalent of sec/86400 corresponds to sec seconds past midnight. If a
given date corresponds to a negative whole part, then times on that day are obtained by
adding a negative decimal part to the negative whole part. For example, October, 24, 1898,
corresponds to a whole part of –432. A time of 6 p.m. corresponds to .75, so a time of 6 p.m.
on 10/24/1898 corresponds to –432 +–.75 = –432.75.

[DIRECTORIES]: Think of a disk as a master folder holding other folders, each of which
might hold yet other folders. Each folder, other than the master folder, has a name. Each
folder is identified by a path: a string beginning with a drive letter, a colon, and a backslash
character, ending with the name of the folder to be identified, and listing the names of the
intermediate folders (in order) separated by backslashes. For instance the path
“C:\DAVID\GAMES” identifies the folder GAMES, which is contained in the folder
DAVID, which in turn is contained in the master folder of drive C.

Each folder is called a directory and the master folder is called the root directory. When
a folder is opened, the revealed folders are referred to as its subdirectories. Think of a file as
a piece of paper inside one of the folders. Thus, each directory contains files and subdirec-
tories.

[DYNAMIC VS. STATIC ARRAYS]: Visual Basic uses two methods of storing arrays:
dynamic and static. The memory locations for a static array are set aside the instant the pro-
gram is executed and this portion of memory may not be freed for any other purpose. The
memory locations for a dynamic array are assigned when a particular procedure requests that
an array be created (a Dim or ReDim statement is encountered) and can be freed for other
purposes. Although dynamic arrays are more flexible, static arrays can be accessed faster.
Arrays Dimensioned in the (Declarations) section of (General) use static allocation, except

A p p e n d i x C 455

http://www.pearsoncustom.com/link/visualbasic/strings.html

for arrays declared using empty parentheses. Arrays created in procedures use dynamic allo-
cation.

[FILESPEC]: The filespec of a file on disk is a string consisting of the letter of the drive, a
colon, and the name of the file. If directories are being used, the file name is preceded by the
identifying path.

[LINE LABEL]: Program lines that are the destinations of statements such as GoTo and
GoSub are identified by placing a line label at the beginning of the program line or alone on
the line proceeding the program line. Line labels may be placed only at the beginning of a
line, are named using the same rules as variable, and are followed by a colon. Line numbers
may be used in place of line labels, but program readability is greatly improved by using
descriptive line labels.

[RADIANS]: The radian system of measurement measures angles in terms of a distance
around the circumference of the circle of radius 1. If the vertex of an angle between 0 and
360 degrees is placed at the center of the circle, the length of the arc of the circle contained
between the two sides of the angle is the radian measure of the angle. An angle of d degrees
has a radian measure of (pi/180) * d radians.

[SUBROUTINE]: A subroutine is a sequence of statements beginning with a line label and
ending with a Return statement. A subroutine is meant to be branched to by a GoSub state-
ment and is usually placed after an Exit Sub or Exit Function statement at the bottom of a
procedure so that it cannot be entered inadvertently.

[VARIANT]: Variant is a generic variable type. Any variable that is used without a type dec-
laration tag ($, %, &, !, #, @) or without being declared as a specific type using an As clause
or a DefType statement is treated as a variant variable. A variable of type Variant can hold
any type of data. When values are assigned to a variant variable, Visual Basic keeps track of
the “type”of data that has been stored. Visual Basic recognizes many types of data: type 0 for
“Empty” (nothing yet has been stored in the variable; the default), type 1 for “Null” (the spe-
cial value Null has been assigned to the variable), type 2 for Integer, type 3 for Long integer,
type 4 for Single precision, type 5 for Double precision, type 6 for Currency, type 7 for
Date/time, type 8 for String, type 10 for Error, type 11 for Boolean, and type 17 for Byte. A
single variant variable may be assigned different data types at different points in a program,
although this is usually not a good programming technique. The data assigned to a variant
array need not all be of the same type. As a result, a variant array can be used in much the
same way as a user-defined type to store related data.

456 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/strings.html
http://www.pearsoncustom.com/link/visualbasic/byte.html

A p p e n d i x D 457

http://www.pearsoncustom.com/link/visualbasic/debugging.html

APPENDIX D
VISUAL BASIC DEBUGGING TOOLS

Errors in programs are called bugs and the process of finding and correcting them is called
debugging. Since Visual Basic does not discover errors due to faulty logic, they present

the most difficulties in debugging. One method of discovering a logical error is by desk-
checking, that is, tracing the values of variables on paper by writing down their expected value
after “mentally executing” each line in the program. Desk checking is rudimentary and high-
ly impractical except for small programs.

Another method of debugging involves placing Print methods at strategic points in the
program and displaying the values of selected variables or expressions until the error is
detected. After correcting the error, the Print methods are removed. For many programming
environments, desk checking and Print methods are the only debugging methods available to
the programmer.

The Visual Basic debugger offers an alternative to desk checking and Print methods. It
allows you to pause during the execution of your program in order to view and alter values
of variables. These values can be accessed through the Immediate, Watch, and Locals win-
dows, known collectively as the three Debug windows.

THE THREE PROGRAM MODES

At any time, a program is in one of three modes[\m]design mode, run mode, or break mode.
The current mode is displayed in the Visual Basic title bar.

Title bar during design time.

Title bar during run time.

Title bar during break mode.

At design time you place controls on a form, set their initial properties, and write code.
Run time is initiated by pressing the Start button. Break mode is invoked automatically when
a run-time error occurs. While a program is running, you can manually invoke Break mode
by pressing Ctrl+Break, clicking on Break in the Run menu, or clicking on the Break icon

(located between the Start and Stop icons). While the program is in break mode, you can
use the Immediate window to examine and change values of variables and object settings.
When you enter Break mode, the Start button on the Toolbar changes to a Continue button.
You can click on it to proceed with the execution of the program.

A p p e n d i x D 457

http://www.pearsoncustom.com/link/visualbasic/debugging.html

THE IMMEDIATE WINDOW

You can set the focus to the Immediate window by clicking on it (if visible), by pressing
Ctrl+G, or by choosing “Immediate Window” from the View menu. Although the Immediate
window can be used during design time, it is primarily used in Break mode. When you type a
statement into the Immediate window and press the Enter key, the statement is executed at
once. A statement of the form

Print expression

displays the value of the expression on the next line of the Immediate window. In Figure D.1,
three statements have been executed. (When the program was interrupted, the variable numVar
had the value 10.) In addition to displaying values of expressions, the Immediate window also
is commonly used to change the value of a variable with an assignment statement before con-
tinuing to run the program. Note 1: Any statement in the Immediate window can be executed
again by placing the cursor anywhere on the statement and pressing the Enter key. Note 2: In
earlier versions of Visual Basic the Immediate window was called the Debug window.

FIGURE D.1 Three Print Statements Executed in the Immediate Window

THE WATCH WINDOW

You can designate an expression as a watch expression or a break expression. Break expres-
sions are of two varieties: those that cause a break when they become true and those that cause
a break when they change value. At any time, the Watch window shows the current values of
all watch and break expressions. In the Watch window of Figure D.2, the type of each ex-
pression is specified by an icon as shown in Table 1.

FIGURE D.2 The Watch Window

TABLE D.1
Watch Type Icons

Icon Type of expression

Watch expression

Break when expression is true

Break when expression has changed

The easiest way to add an expression to the Watch window is to right-click on a variable
in the code window and then click on “Add Watch” to call up an Add Watch dialog box. You

458 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

can then alter the expression in the Expression text box and select one of the three Watch
types. To delete an expression from the Watch window, right-click on the expression and then
click on “Delete Watch.” To alter an expression in the Watch window, right-click on the
expression and click on “Edit Watch.”

THE LOCALS WINDOW

The Locals window, invoked by clicking on “Locals Window” in the View menu, is a
feature that was new to Visual Basic in version 5.0. This window automatically displays the
names, values, and types of all variables in the current procedure. See Figure D.3. You can
alter the values of variables at any time. In addition, you can examine and change properties
of controls through the Locals window.

FIGURE D.3 The Locals Window

STEPPING THROUGH A PROGRAM

The program can be executed one statement at a time, with each press of an appropriate func-
tion key executing a statement. This process is called stepping (or stepping into). After each
step, values of variables, expressions, and conditions can be displayed from the debugging
windows, and the values of variables can be changed.

When a procedure is called, the lines of the procedure can be executed one at a time,
referred to as “stepping through the procedure,” or the entire procedure can be executed at
once, referred to as “stepping over a procedure.” A step over a procedure is called a proce-
dure step. In addition, you can execute the remainder of the current procedure at once,
referred to as “stepping out of the procedure.”

Stepping begins with the first line of the first event procedure invoked by the user. Pro-
gram execution normally proceeds in order through the statements in the event procedure.
However, at any time the programmer can specify the next statement to be executed.

As another debugging tool, Visual Basic allows the programmer to specify certain lines
as breakpoints. Then, when the program is run, execution will stop at the first breakpoint
reached. The programmer can then either step through the program or continue execution to
the next breakpoint.

The tasks discussed previously are summarized below, along with a means to carry out
each task. The tasks invoked with function keys can also be produced from the menu bar.

Step Into: Press F8
Step Over: Press Shift+F8
Step Out: Press Ctrl+Shift+F8
Set a breakpoint: Move cursor to line, press F9
Remove a breakpoint: Move cursor to line containing

breakpoint, press F9
Clear all breakpoints: Press Ctrl+Shift+F9
Set next statement: Press Ctrl+F9
Continue execution to next break-
point or the end of the program: Press F5
Run to cursor: Press Ctrl+F8

A p p e n d i x D 459

http://www.pearsoncustom.com/link/visualbasic/debugging.html

SIX WALKTHROUGHS

The following walkthroughs use the debugging tools with the programming structures covered
in Sections 2, 3, 4, and 5.

STEPPING THROUGH AN ELEMENTARY PROGRAM: SECTION 2
The following walkthrough demonstrates several capabilities of the debugger.

1. Create a form with a command button (cmdButton) and a picture box (picBox).
Set the AutoRedraw property of the picture box to True. (During the debugging
process, the entire form will be covered. The True setting for AutoRedraw pre-
vents the contents of the picture box from being erased.)

2. Double-click on the command button and enter the following event procedure:

Private Sub cmdButton_Click()
Dim num As Single
picBox.Cls
num = Val(InputBox(“Enter a number:”))
num = num + 1
num = num + 2
picBox.Print num

End Sub

3. Press F8, click the command button, and press F8 again. A yellow arrow points
to the picBox.Cls statement and the statement is highlighted in yellow. This
indicates that the picBox.Cls statement is the next statement to be executed.
(Pressing F8 is referred to as stepping. You can also step to the next statement
of a program with the Step Into option from the Debug menu.)

4. Press F8. The picBox.Cls statement is executed and the statement involving
InputBox is designated as the next statement to be executed.

5. Press F8 to execute the statement containing InputBox. Respond to the request
by typing 5 and clicking the OK button.

6. Press F8 again to execute the statement num = num + 1.

7. Let the mouse sit over any occurrence of the word “num” for a second or so.
The current value of the variable will be displayed in a small box. See Figure
D.4.

FIGURE D.4 Obtaining the Value of a Variable

8. Click on the End icon to end the program.

9. Move the cursor to the line

num = num + 2

and then press F9. A red dot appears to the left of the line and the line is dis-
played in white text on a red background. This indicates that the line is a break-

460 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/debugging.html

point. (Pressing F9 is referred to as toggling a breakpoint. You also can toggle
a breakpoint with the Toggle Breakpoint option from the Debug menu.)

10. Press F5 and click on the command button. Respond to the request by entering
5. The program executes the first three lines and stops at the breakpoint. The
breakpoint line is not executed.

11. Open the Immediate window by pressing Ctrl+G. If necessary, clear the con-
tents of the window. Type the statement

Print “num =”; num

into the Immediate window and then press Enter to execute the statement. The
appearance of “num = 6” on the next line of the Immediate window confirms
that the breakpoint line was not executed.

12. Press F7 to return to the Code window.

13. Move the cursor to the line num = num + 1 and then press Ctrl+F9 to specify
that line as the next line to be executed. (You can also use the Set Next State-
ment option from the Debug menu.)

14. Press F8 to execute the selected line.

15. Press Ctrl+G to return to the Immediate window. Move the cursor to the line
containing the Print method and press Enter to confirm that the value of num is
now 7, and then return to the Code window.

16. Move the cursor to the breakpoint line and press F9 to deselect the line as a
breakpoint.

17. Press F5 to execute the remaining lines of the program. Observe that the value
displayed in the picture box is 9.

General Comment: As you step through a program, the form will become hidden
from view. However, the form will be represented by a button on the Windows
taskbar at the bottom of the screen. The button will contain the name of the form.
You can see the form at any time by clicking on its button.

STEPPING THROUGH A PROGRAM CONTAINING A GENERAL
PROCEDURE: SECTION 3

The following walkthrough uses the single-stepping feature of the debugger to trace the flow
through a program and a Sub procedure

1. Create a form with a command button (cmdButton) and a picture box (picBox).
Set the AutoRedraw property of the picture box to True. Then enter the follow-
ing two Sub procedures:

Private Sub cmdButton_Click()
Dim p As Single, b As Single
picBox.Cls p = 1000 ‘Principal
Call GetBalance(p, b)
picBox.Print “The balance is”; b

End Sub

Private Sub GetBalance(prin As Single, bal As Single)
‘Calculate the balance at 5% interest rate
Dim interest As Single
interest = .05 * prin
bal = prin + interest

End Sub

2. Press F8, click the command button, and press F8 again. The picBox.Cls state-
ment is highlighted to indicate that it is the next statement to be executed.

A p p e n d i x D 461

3. Press F8 two more times. The Call statement is highlighted.

4. Press F8 once and observe that the heading of the Sub procedure GetBalance is
now highlighted in yellow.

5. Press F8 three times to execute the assignment statements and to highlight the
End Sub statement. (Notice that the Dim and Rem statements were skipped.)

6. Press F8 and notice that the yellow highlight has moved back to the cmdBut-
ton_Click event procedure and is on the statement immediately following the
Call statement.

7. Click on the End icon to end the program.

8. Repeat Steps 2 and 3, and then press Shift+F8 to step over the procedure Get-
Balance. The procedure has been executed in its entirety.

9. Click on the End icon to end the program.

COMMUNICATION BETWEEN ARGUMENTS AND PARAMETERS

The following walkthrough uses the Locals window to monitor the values of arguments and
parameters during the execution of a program.

1. If you have not already done so, type the preceding program into the Code win-
dow.

2. Press F8 and click on the command button.

3. Select “Locals Window” from the View window. Notice that the variables from
the cmdButton_Click event procedure appear in the Locals window.

4. Press F8 three more times to highlight the Call statement. Notice that the value
of the variable p has changed.

5. Press F8 to call the Sub procedure. Notice that the variables displayed in the
Locals window are now those of the procedure GetBalance.

6. Press F8 three times to execute the procedure.

7. Press F8 to return to cmdButton_Click event procedure. Notice that the value
of the variable b has inherited the value of the variable bal.

8. Click on the End icon to end the program.

STEPPING THROUGH PROGRAMS CONTAINING SELECTION
STRUCTURES: SECTION 4

If Blocks
The following walkthrough demonstrates how an If statement evaluates a condition to deter-
mine whether to take an action.

1. Create a form with a command button (cmdButton) and a picture box (picBox).
Set the AutoRedraw property of the picture box to True. Then open the Code
window and enter the following procedure:

Private Sub cmdButton_Click()

Dim wage As Single

picBox.Cls

wage = Val(InputBox(“wage:”))

If wage < 5.15 Then

picBox.Print “Below minimum wage.”

Else

picBox.Print “Wage Ok.”

End If

End Sub

462 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html
http://www.pearsoncustom.com/link/visualbasic/argumentsandparameters.html

2. Press F8, click the command button, and press F8 twice. The picBox.Cls state-
ment will be highlighted and executed, and then the statement containing Input-
Box will be highlighted.

3. Press F8 once to execute the statement containing InputBox. Type a wage of
3.25 and press the Enter key. The If statement is highlighted, but has not been
executed.

4. Press F8 once and notice that the highlight for the current statement has jumped
to the statement picBox.Print “Below minimum wage.” Because the condition
“wage < 5.15” is true, the action associated with Then was selected.

5. Press F8 to execute the picBox.Print statement. Notice that Else is skipped and
End If is highlighted.

6. Press F8 again. We are through with the If block and the statement following
the If block, End Sub, is highlighted.

7. Click on the End icon to end the program.

8. If desired, try stepping through the program again with 5.75 entered as the
wage. Since the condition “wage < 5.15” will be false, the Else action will be
executed instead of the Then action.

SELECT CASE BLOCKS

The following walkthrough illustrates how a Select Case block uses the selector to choose
from among several actions.

1. Create a form with a command button (cmdButton) and a picture box (picBox).
Set the AutoRedraw property of the picture box to True. Then open the Code
window and enter the following procedure:

Private Sub cmdButton_Click()
Dim age As Single, price As Single
picBox.Cls age = Val(InputBox(“age:”))
Select Case age

Case Is < 12
price = 0

Case Is < 18
price = 3.5

Case Is >= 65
price = 4

Case Else
price = 5.5

End Select
picBox.Print “Your ticket price is “;FormatCurrency(price)

End Sub

2. Press F8, click on the command button, and press F8 twice. The picBox.Cls
statement will be highlighted and executed, and then the statement containing
InputBox will be highlighted.

3. Press F8 once to execute the statement containing InputBox. Type an age of 8
and press the Enter key. The Select Case statement is highlighted, but has not
been executed.

4. Press F8 twice and observe that the action associated with Case Is < 12 is high-
lighted.

5. Press F8 once to execute the assignment statement. Notice that End Select is
highlighted. This demonstrates that when more than one Case clause is true,
only the first is acted upon.

A p p e n d i x D 463

http://www.pearsoncustom.com/link/visualbasic/selectcaseblocks.html
http://www.pearsoncustom.com/link/visualbasic/ifblocks.html

6. Click on the End icon to end the program.

7. If desired, step through the program again, entering a different age and predict-
ing which Case clause will be acted upon. (Some possible ages to try are 12, 14,
18, 33, and 67.)

STEPPING THROUGH A PROGRAM CONTAINING A DO LOOP: SECTION 5

Do Loops
The following walkthrough demonstrates use of the Immediate window to monitor the value
of a condition in a Do loop that searches for a name.

1. Access Windows’ Notepad, enter the following line of data, and save the file on
the A drive with the name DATA.TXT

Bert, Ernie, Grover, Oscar

2. Return to Visual Basic. Create a form with a command button (cmdButton) and
a picture box (picBox). Set the AutoRedraw property of the picture box to True.
Then double-click on the command button and enter the following procedure:

Private Sub cmdButton_Click()
‘Look for a specific name
Dim searchName As String, nom As String
picBox.Cls
searchName = InputBox(“Name:”) ‘Name to search for in list
Open “A:DATA.TXT”For Input As #1
nom = “”
Do While (nom [%6][lt>]20searchName) And Not EOF(1)

Input #1, nom
Loop
Close #1
If nom = searchName Then

picBox.Print nom
Else

picBox.Print “Name not found”
End If

End Sub

3. Press F8 and click on the command button. The heading of the event procedure
is highlighted in yellow.

4. Double-click on the variable searchName, click the right mouse button, click on
“Add Watch,” and click on OK. The variable searchName has been added to the
Watch window.

5. Repeat Step 4 for the variable nom.

6. Drag the mouse across the words

(nom <> searchName) And Not EOF(1)

to highlight them. Then click the right mouse button, click on “Add Watch,” and
click on OK. Widen the Watch window as much as possible in order to see the
entire expression.

7. Press F8 three more times to execute the picBox.Cls statement and the state-
ment containing InputBox. Enter the name “Ernie” at the prompt.

8. Press F8 repeatedly until the entire event procedure has been executed. Pause
after each keypress and notice how the values of the expressions in the Watch
window change.

9. Click on the End icon to end the program.

464 C o m p u t e r P r o g r a m m i n g C o n c e p t s a n d V i s u a l B a s i c

http://www.pearsoncustom.com/link/visualbasic/doloop.html

I N D E X

A
Access key, 24, 296-297, 303, 309, 418,

425-426
Accumulator, 138, 153
Action argument, 327, 453
Action property, 423
ActiveX Control Pad, 399-403
Add Index window, 344-345
Add method, 380
Algorithm, 4-5, 7, 9, 11-12, 174, 184-185,

188, 192, 195, 225
Align Controls to Grid option, 303
Alignment property, 24, 180, 423
Ampersand, 24, 43, 296-297, 418, 425
ANSI, 6, 45-47, 103-104, 116, 169, 171,

287, 331, 407, 413, 415, 444, 451
ANSI Table, 104, 169, 171, 413
Apostrophe, 56, 447
App.Path, 57, 329
Arc of a circle, 278
Argument, 52, 65, 78, 81-83, 176, 327, 365,

382, 424, 436, 453
Arithmetic operation, 105
Array, 161-165, 167-184, 186-187, 190-

191, 193-194, 196-205, 209-213, 223,
240-241, 250-251, 288, 296, 303, 316-
317, 323, 350, 356, 365, 373, 377,
381, 423-424, 429, 431, 433, 436-440,
444, 446-447, 450, 452-453, 455-456

ASCII, 45-46, 103, 415, 444
ASCII Table, 103
Assignment statement, 37-38, 40, 43, 107,

232, 427, 458, 463
AutoRedraw property, 87, 418, 421, 424,

460-464
AutoSize property, 417, 424, 454

B
BackColor property, 230, 424
BackStyle property, 26, 301, 424
Bar chart, 273-274, 276, 283, 389-390
BAS module, 247-250, 252-253, 255, 437,

452
Base, 41, 181, 217, 273, 330, 431, 444, 455
Begin tag, 397-398, 401

binary File, 436-437, 440-441, 444, 446,
449, 454

binary search, 178, 192-194, 196, 209
Body, 142, 145-146, 398, 400-401
Boolean data type, 139
BorderColor property, 424
BorderStyle property, 311, 362, 424
BorderWidth property, 424
Branching, 12, 95
Break, 4, 8, 41, 69, 73, 93, 107-108, 120,

134, 213, 227-228, 421, 457-458
Break mode, 41, 421, 457-458
Breakpoint, 420, 459-461
browser, 280, 282, 393-398, 402-403
Bubble sort, 184-190, 195, 209, 224
byte, 247, 423-429, 437, 439-440, 443-444,

449, 452-454, 456

C
Call statement, 74, 76-78, 80-83, 431, 462
Cancel a change, 412
Cancel property, 418, 425
Capitalization, 79
Caption property, 23-24, 26, 29, 294, 296-

297, 309, 324, 418, 425, 432-433
Carriage return, 39, 217-218, 397, 407,

440, 451, 454
Case study, 119, 121, 123, 125, 146-147,

149, 151, 200-201, 203, 205, 207,
228-229, 231, 233, 235

Change event, 31, 299, 425
Character Map, 27, 415
check box, 294, 296-297, 303, 313, 316,

330, 338-339, 345, 388, 390, 393,
413, 445, 453

Check box control, 294
Circle method, 266, 277, 282, 363, 372, 426
Circle shape, 301
Class, 3, 11-12, 317, 355-367, 371, 373-

382, 427, 443, 445-446, 454
Class module, 357-358, 361-365, 371, 374-

375, 377-378, 380-381, 445-446
Click event, 81-82, 164, 203, 228, 272, 288,

295-297, 302, 309-310, 390, 425-426,
428, 462

clipboard, 22, 303, 310-311, 316, 412, 414,
419, 426, 437, 449

Clipboard object, 310
Close method, 327, 426
Clustered Bar chart, 274
Code window, 27, 29, 33, 41, 48, 55, 73,

80, 85, 88, 162, 313, 357, 390, 412,
418-419, 458, 461-463

Coding, 4, 13, 96, 199, 202-203, 231
Col property, 304, 426
Collections, 64, 162, 365-367, 369, 371,

373, 380, 402, 413, 454
ColWidth property, 304
combo box, 287, 290-293, 311, 330, 340-

341, 344, 350, 362, 374, 381, 423,
425, 439-440, 443, 450-451

Combo box control, 290, 451
Comment statement, 80
Common dialog box, 303, 313-315, 317,

423, 426, 432, 436
Common dialog box control, 303, 313
Comparison, 6, 156, 185-186, 444, 450
concatenation, 42-43, 46, 48, 67
Condition, 10, 95, 103-108, 110, 112, 126,

131-137, 153, 171, 332, 338, 429,
431, 437-438, 453, 462-464

Confusing If block, 112
Connect property, 330, 427
Containment, 373-374, 381
control array, 179-184, 199, 201-205, 209,

296, 381, 438, 440
Coordinate systems, 426-427, 438, 440,

445-446, 455
Count property, 381
Counter variable, 173
CreateObject function, 385-386, 403
Creating a Database, 324, 342, 346
Creating a Database

with Visual Data Manager, 342
Criteria clause, 332
Ctrl+Break, 134, 457
Ctrl+Y, 411-412
Current cell, 304, 308, 316, 392, 426
Current Record, 325-326, 336-337, 346,

350, 424, 429, 431-432, 440, 453
CurrentY property, 264
Curving grades, 210

465

D
Data control, 324-327, 329-330, 332, 334,

336, 339-341, 344, 346, 350, 423-429,
431-432, 442, 446, 453

Data hiding, 355
Data normalization, 348
database, 321, 324, 326-328, 330-332, 334-

335, 337-339, 341-351, 426-428, 431-
432, 446, 453

Database management software, 324, 338
DatabaseName property, 324, 329, 427-428,

446
Data-bound combo box, 340-341, 350
Data-bound list box, 340, 350
DataField property, 325, 341, 428
DataSource property, 324-325, 428
DblClick event, 288, 293, 428
Debug window, 458
debugging, 4, 41, 92, 112, 119, 140, 431,

457, 459-460
Decision structures, 9, 112
Declarations, 85-86, 97, 162-165, 167, 173,

176, 190, 197, 247-248, 255, 267,
270, 290, 296, 306, 356, 358, 371,
380-381, 387, 429-431, 436-437, 444,
446-447, 452, 455

Declaring variables, 44, 48
Default property, 418, 428
Default value, 47, 83-84, 163, 171, 278,

287, 302, 304, 431-432, 438, 448, 451
Delete method, 327, 429
Depreciation, 157
Descending order, 171, 186-187, 192, 237,

332-333, 341
Design Time, 34, 180, 182-184, 202-203,

209, 230, 287, 289, 291, 299, 301-
304, 329, 339, 350, 413, 428, 443,
451, 457-458

Desk-checking, 457
Dim statement, 44, 48, 85, 97, 162, 165,

173, 247, 251, 386, 437, 444, 446
Directory, 50, 136-137, 238-239, 292-293,

308, 316-317, 349, 374, 391, 395,
425-427, 429, 437, 440-441, 443, 445,
447, 455

Directory list box, 292, 316, 425, 440, 445
Dividend, 60, 312
Division, 35, 40, 60, 65, 147, 222
Divisor, 60
Do loop, 131-133, 135-136, 140-141, 153,

429, 464
documentation, 5, 56-57, 402, 447
DrawStyle property, 282
Drive list box, 292-293, 425, 428, 430, 440
Drive property, 430
Driver, 96, 213
Dynamic array, 171, 431, 455

E
Editor, 30, 33-34, 40, 44, 48, 52, 79, 119,

254, 309-310, 411, 414
Element of an array, 171, 178-179
empty String, 47, 66, 83-84, 171, 219, 232
Enabled property, 300, 430, 452-453
End Function, 87-93, 97, 111, 118, 123-

125, 144, 150-151, 176, 179, 206,
224, 226, 233, 358, 360, 362, 367-
368, 374-375, 378-379, 419, 430, 436

End icon, 22, 33, 390, 460, 462-464
End Select, 113, 115-118, 125, 175, 181,

193, 195, 222, 226, 358, 360, 367,
378, 430, 449, 463

End Sub, 28-29, 33, 35-39, 42-47, 50-57,
59-63, 65, 73-86, 88-93, 97, 107-111,
113, 115-118, 123-124, 132, 134-136,
138-141, 143-145, 151-153, 161, 163-
170, 172-184, 186-188, 190-191, 193-
195, 198-200, 205-209, 218, 220-226,
228, 233-237, 245-246, 249-250, 252-
253, 261, 263-272, 274-276, 278-282,
289-293, 295-300, 305-308, 310, 312,
315, 327-329, 335, 337, 340-342, 360-
364, 369-370, 372-373, 375-377, 379-
380, 387-388, 394-396, 401, 419, 430,
451, 460-464

End tag, 397, 401
End Type, 247-250, 252-253, 430, 452
EOF Function, 135-136, 153, 237, 253
error trapping, 221
Esc key, 410, 413-414, 425
Event procedure, 28-33, 37-38, 41, 44, 46-

47, 67, 75, 77, 80-87, 97, 121, 164-
165, 167, 170, 180-181, 187, 190,
203-204, 228, 231-232, 261-266, 269,
272, 292-293, 315, 326-327, 329-330,
346, 362, 364, 370-371, 377, 390-391,
402, 421, 425, 429-431, 439, 446,
453, 459-460, 462, 464

Events, 27-29, 31, 33, 135, 181, 201, 203,
231, 288, 291-292, 310, 313, 316,
356, 365, 367, 369, 371, 373-374,
380-382, 396, 423, 429-430, 453-454

Excel, 276, 385-392, 427
Exit statement, 431
Exponent, 36, 41, 435
Exponentiation, 35

F
FICA tax, 110, 119-121, 123-125
Field, 62, 155, 196, 223, 227, 233, 236,

247-248, 250-251, 253, 323, 325-326,
330-333, 338-341, 344-347, 349-351,
428, 431, 435-436, 453

Field of a record, 251
Fields property, 431
File list box, 292-293, 428, 432, 440
File name, 22-23, 53, 217, 219, 238, 365,

410, 456
File not found error, 219
FileName property, 428, 432

Filespec, 41, 49, 217-219, 223, 251, 302,
308, 324, 365, 386, 392, 397, 400-401,
428-429, 437, 439, 443-444, 454, 456

FillColor property, 277, 279, 282, 432
FillStyle property, 277-278, 282, 432
Filter property, 315
FilterIndex property, 315
Find methods, 336
FixedCols property, 339
Fixed-length string, 245-246, 251, 255, 439,

452
Flag, 139, 153, 190, 192, 195, 227
Flags property, 315, 432
FlexGrid, 303-304, 315-316, 330, 332, 338-

339, 342, 350
FlexGrid control, 303-304, 315-316, 332,

338-339
flowchart, 5-12, 95, 106, 114, 131, 133,

136-137, 142, 172-173, 192
Flowline, 6
Focus, 7, 23, 26, 30, 32-33, 46-47, 67, 74,

80, 86, 96, 181, 203-204, 208, 234,
238, 260, 288, 294, 296, 302-303,
311, 332, 343, 418, 426, 428, 437,
439, 441-443, 449, 451, 458

Font common dialog box, 314-315
Font dialog box, 21
For...Next loop, 141-146, 153, 165, 180,

202, 402, 431
ForeColor property, 21, 434
Foreign key, 331-333, 346-347, 350
Form Layout window, 18
Form_Load event, 87, 97, 164, 180, 187,

228, 231, 329-330, 391, 402, 446
Format Function, 66, 401
Form-level variable, 85, 97
Frame control, 294, 415
Function procedure, 92-93, 98, 127, 176,

361, 365

G
General procedure, 97, 164-165, 204, 419,

421, 461
Get statement, 254-255, 436, 449, 454
GoSub statement, 437, 456
GotFocus event, 31, 181, 201, 204, 437
GoTo, 12, 95, 222, 402, 437, 444, 456
GridLines property, 304, 315, 437

H
Height property, 183, 362
Help, 4, 27, 41, 49, 66, 80, 97, 165, 290,

313, 324, 336, 402, 412-413
Hide method, 317, 437
Hierarchy chart, 8-10, 12-13, 94-95, 121,

148, 204, 231
Horizontal radius line, 277-278, 280, 425
HTML, 394, 397-403
Hypertext, 392, 396-397

466 T e c h n o l o g y o f t h e I n t e r n e t

I
If block, 106-112, 114, 119, 126, 246, 327,

437, 463
Image control, 302-303, 316, 362, 374, 451
Immediate window, 457-458, 461, 464
Income tax, 99, 119-121, 123-125, 127
Indenting, 111, 118, 135, 146
Index property, 179-181, 183-184, 209,

418, 438, 440
Inequality, 114, 119
infinite Loop, 10, 135, 204, 330
Inheritance, 373-374
initial Value, 142, 144, 153, 199
Initialize event, 362, 364, 377
Input # statement, 49-51, 57-58, 162
Input box, 49, 52-53, 57-58, 288, 306, 317,

370
InputBox function, 132, 438
Insert Object dialog box, 388-389
Integer division, 65
Integer variable, 46, 436, 446
interface, 4, 21, 27-29, 122, 148, 201, 229,

365, 414
internet, 280-281, 392-397, 399-402, 409
Interval property, 300, 438, 452
ItemData property, 289, 316, 439

K
KeyPress event, 46-48, 439
Keyword, 33-34, 40, 56, 153, 313, 365,

371, 373, 381, 402, 412, 424, 431,
443, 452, 454

L
Leading space, 39, 445
Least-squares approximation, 155
Left property, 203, 439
Library, 86, 92, 346, 351
Like Operator, 338, 350
Line chart, 267, 269, 273-274, 276
Line feed, 39, 217-218, 397, 407, 440, 451,

454
Line method, 261-262, 266, 273, 276, 282,

432, 440
List box, 85, 287-290, 292-293, 316-319,

326, 330, 340-341, 344, 350-351, 356,
381-382, 423, 425, 428, 430, 432,
440, 443, 445

List Properties/Methods, 30, 34
List property, 287, 289, 440
Load statement, 179, 182-184, 209
LoadPicture function, 302
Local Array, 165, 176-177
Locals window, 459, 462
Logical error, 41, 457
Logical operator, 104-105, 108, 423, 443,

445, 454
Long division, 60, 65

M
Member Variable, 357-358, 361, 374
Memory, 37-38, 44, 81, 83, 162-163, 165,

247, 310, 355, 364, 373, 424, 427-
429, 431, 438-439, 441, 443, 446,
449-450, 455

Menu bar, 18, 309, 389, 414, 459
Menu control, 303, 308
Message box, 33, 55, 93, 213, 232, 238,

327, 381, 390, 401
Modular design, 93, 95-97
Module, 8, 94, 96, 247-250, 252-253, 255,

313, 355, 357-358, 361-365, 371, 374-
375, 377-378, 380-381, 431, 437, 445-
446, 452

Mouse, 18-21, 27, 29, 31, 33, 48, 288, 294,
304, 309, 311, 316, 343-346, 389,
411, 415-417, 420, 426, 428, 442,
449, 460, 464

MsgBox statement, 67, 442-443
MultiLine property, 22, 417, 443, 448
Multiple forms, 303, 311

N
Name property, 26, 309, 324, 357, 361,

370, 400, 443
Navigation arrows, 325, 331
New program, 23-24, 357, 410
NewIndex property, 316, 439, 443
Notepad, 49-50, 58, 217-218, 397, 399,

414, 464
null String, 47, 204, 426, 429, 438
Number property, 221
Numeric Expression, 38, 55, 62
Numeric function, 87
numeric Variable, 42, 44-45, 47, 50, 53, 57,

64, 104, 115, 138, 141-142, 439

O
Object box, 19, 26, 29, 31, 48, 80, 418
Object-oriented programming, 353, 355,

357
OLE, 385-392, 403, 423, 426-428, 437,

452-453
OLE automation, 385-386, 390-391, 403,

427, 437, 452-453
OLE automation object, 385-386, 390-391,

427, 437, 452-453
OLE container control, 388-389, 392, 403
On Error, 222, 393-394, 402, 431, 444, 447
On Error GoTo statement, 402
Open common dialog box, 313
Open statement, 50, 57, 228, 402, 444
Opening a file for append, 218
Opening a file for input, 49
Opening a file for output, 217
Option button, 294, 296-298, 316, 388, 390,

413, 445, 453
Option button control, 296
Option Explicit, 48, 444
Ordered array, 171-173, 177
Output, 3-7, 9, 11-12, 18, 39, 45, 49-51, 53,

55-58, 65, 68-69, 83, 87, 94, 97-99,
119, 148, 154, 157, 163, 210, 217-
220, 224-227, 232, 234-235, 237-238,
240, 245-246, 266, 274, 278-280, 292,
362, 370, 388, 420-421, 431, 434-435,
443-445, 454

P
Parameter, 58, 76-77, 80-81, 83, 92, 97,

176, 181, 249, 251, 269, 346, 365,
427, 436, 439, 441, 444-446, 451

Parenthesis, 52, 80
Pascal, 135, 177
passed by reference, 81, 92
passed by value, 83, 92-93
Passing an array, 176
Passing by reference, 81, 365
Passing by value, 83, 365
Path property, 316, 428, 445
Pattern property, 293, 440, 445
Pie chart, 280-281
Poker, 212, 377
Polymorphism, 365
Positioning text, 263
Primary key, 330-331, 333, 338, 344-346,

350
Print common dialog box, 314, 436
Print method, 38-39, 42-43, 49, 53, 67, 87,

96, 264, 445, 461
Print zone, 53, 58, 445
Printer object, 67, 437, 445, 453
Procedure box, 29-30, 80, 419
Program development cycle, 3-5
Program documentation, 5, 56
Program modes, 41, 457
Programming style, 111, 118, 135, 146
Project Container window, 26-27, 416
Project Explorer window, 18, 311, 411, 418
Properties window, 18-20, 22-27, 179, 184,

315, 324, 329-330, 356-357, 400, 402,
416-417

PSet method, 282, 446
pseudocode, 4-5, 7-10, 12-13, 93, 106, 114,

121, 131, 133, 135-137, 142, 150
Public keyword, 313
Put statement, 254, 446, 449

Q
Quadratic formula, 127
Question mark, 333, 443
Quick Info, 48, 52
Quotient, 5, 60, 65

R
Radian measure, 456
RaiseEvent statement, 381, 431
Random number, 64, 379
Random-access file, 223, 251-255, 436,

440, 446, 449
Range chart, 283
Range of an array, 169
record Variable, 248-251, 253, 454
RecordCount property, 326, 340
RecordSet, 325-326, 328-329, 334, 336-

338, 340-342, 344, 346-348, 350, 431-
432, 446

RecordSource property, 324, 332, 339, 350,
446

Rectangle shape, 301
ReDim statement, 167, 170-171, 429, 450,

455
Referential integrity, 331, 350
Refresh method, 350, 447

I n d e x 467

Relational database, 324, 331, 334, 348
Remainder, 35, 60, 65, 393, 435, 442
Remove method, 381
RemoveItem method, 447
Reserved word, 35, 40
Reusable, 96
Right arrow, 309-310, 414
Rnd Function, 64, 351
Row property, 304, 426
RowHeight property, 304
Rule of entity integrity, 338, 350
Rule of referential integrity, 331, 350
Run time, 18, 27, 34, 179-180, 182-184,

209, 288, 294, 296, 300, 302-304,
350, 391, 420-421, 423-424, 450, 457

S
Save As common dialog box, 314
Save File As dialog box, 22
Save Project icon, 22, 410
Scale method, 261, 264-266, 273, 282, 448,

455
scientific Notation, 36, 434-435
scroll bar, 293, 298, 304, 417, 425, 439,

450, 453
Scroll bar controls, 298
Scroll event, 299
ScrollBars property, 304, 448
Sector of a circle, 278
Segmented bar chart, 283
Select Case block, 112-114, 117-119, 126,

449, 463
Select statement, 118
Selected object, 19, 23, 26
Selected text, 19
Selector, 112-119, 126, 463
SelText property, 311
Semicolon, 39, 445
Sequence structure, 8
sequential file, 217-218, 223, 227, 237-240,

254, 304, 317-318, 382, 438, 440,
444-445, 454

sequential Search, 178, 191
Set statement, 385-386, 403, 449
SetFocus method, 437, 441
Settings box, 20-21, 289, 325, 416-417
Shape control, 301, 318, 424
Shell Sort, 184, 188-191, 195, 209
shortcut Key, 309
Shortcut keys, 413
Show method, 315, 317, 362, 450
Simple variable, 161
Sizing handles, 19, 27, 416
SmallChange property, 450
Smart editor, 40, 119, 254

Social Security tax, 124
Sorted property, 287-289, 316, 450
SQL, 330-340, 343, 350, 446
Start button, 17, 27, 58, 300, 400, 410, 414,

457
Start icon, 22, 410
Static Array, 450, 455
Step keyword, 153
step Value, 143-144
Stepwise refinement, 93, 121, 148
Str function, 427, 450
Stretch property, 302, 451
String constant, 42, 47, 76
String expression, 43, 116, 428
String function, 439, 452
String Variable, 42, 45, 50, 52, 77, 104,

115, 117, 178, 310, 336-337, 436,
439-441, 446, 448

strings, 26, 42-48, 55, 57, 60-62, 65, 67-68,
103-104, 163-164, 172, 196, 212, 218,
245-247, 251, 287, 308, 315-316, 332,
334, 344, 426-428, 434-435, 450, 453-
454

Structure, 8-10, 28, 47, 96, 112, 162, 247,
343-346, 431, 437

structured programming, 12, 93, 95-97
structured query language, 331, 350
Stub programming, 96
Sub procedure, 73-84, 86, 93, 98, 121, 127,

150, 176, 190, 231, 253, 269, 361,
365, 419, 424, 431, 451, 461-462

Subdirectory, 50, 425, 441
Subroutine, 437, 447, 456
Subscript, 166-167, 169, 171-172, 175, 187,

192, 194, 196, 209, 222, 439, 444,
452

Subscripted variable, 162, 197, 439
substring, 60-61, 65, 438, 441
Subtraction, 35

T
Tab function, 49, 54, 58
Tab key, 26-27, 32-33, 47, 58, 413, 415,

418, 451
Tab order, 449
TabIndex property, 418
Tag, 397-401, 427, 429, 438, 441, 450-451,

456
Terminate event, 364, 380
Terminating value, 142, 144, 153
Testing, 4, 131, 135
Text box control, 201-202
Text property, 20, 29, 180, 204, 288, 291,

308, 316, 341, 423, 434, 451
TextWidth method, 264-265

Thumb, 5, 49, 298-300, 355, 365, 425, 439,
441, 450, 453

Tic-tac-toe, 318, 381
Timer control, 300, 313, 316, 438, 452
Timer event, 438, 452
Toolbar, 18-19, 22, 33-34, 182, 338, 344,

356-357, 393-394, 402, 410, 457
Toolbox, 18-19, 23-25, 287, 292, 294, 303,

313, 355-356, 385, 389-390, 393, 415,
438

Top property, 203, 452
Top-down design, 80, 86, 93-94
Trailing space, 39, 445
Truth value, 112, 127, 131, 133, 429
Twip, 182, 455
Two-dimensional Array, 196-198, 202, 209,

211-212, 429

U
URL, 393-396
User-defined event, 371, 431
User-defined function, 89, 91, 156

V
Validate event procedure, 327, 330, 453
validation event, 326
Value property, 294, 296-297, 316, 350,

431, 439, 450, 453
VBScript, 66, 397, 399, 401-403
View, 18-19, 27, 33, 41, 117, 334, 342, 346,

351, 365, 397, 402, 411-412, 418-419,
457-459, 461-462

Virtual table, 334, 350, 446
Visible property, 26, 183, 310, 453
Visual Basic controls, 17, 385
Visual Basic Notation, 35
Visual Basic objects, 17, 19, 21, 23, 25, 27
Visual Basic statements, 106, 145, 423
Visual Data Manager, 324, 330, 338, 342-

343, 349-350

W
Watch type icons, 458
Watch window, 458-459, 464
Web browser control, 393-396
Web page, 393-394, 397-402
Wildcard characters, 293, 315, 332, 445
Windows environment, 414, 432-433
WithEvents keyword, 373
Word Basic, 385, 388, 427
WordWrap property, 417, 454
World Wide Web, 302, 392, 403
Write # statement, 217-218, 453

468 T e c h n o l o g y o f t h e I n t e r n e t

END-USER LICENSE AGREEMENT FOR
MICROSOFT SOFTWARE

IMPORTANT—READ CAREFULLY: This Microsoft
End-User License Agreement (“EULA”) is a legal agree-
ment between you (either an individual or a single entity)
and Microsoft Corporation for the Microsoft software prod-
uct identified above, which includes computer software
and may include associated media, printed materials, and
“online” or electronic documentation (“SOFTWARE
PRODUCT”). The SOFTWARE PRODUCT also includes
any updates and supplements to the original SOFTWARE
PRODUCT provided to you by Microsoft. Any software
provided along with the SOFTWARE PRODUCT that is
associated with a separate end-user license agreement is
licensed to you under the terms of that license agreement.
By installing, copying, downloading, accessing or other-
wise using the SOFTWARE PRODUCT, you agree to be
bound by the terms of this EULA. If you do not agree to the
terms of this EULA, do not install, copy, or otherwise use
the SOFTWARE PRODUCT

Software PRODUCT LICENSE

The SOFTWARE PRODUCT is protected by copyright
laws and international copyright treaties, as well as other
intellectual property laws and treaties. The SOFTWARE
PRODUCT is licensed, not sold.

1. GRANT OF LICENSE. This EULA grants you the
following rights:

1.1 License Grant. You may install and use one copy
of the SOFTWARE PRODUCT on a single com-
puter. You may also store or install a copy of the
SOFTWARE PRODUCT on a storage device,
such as a network server, used only to install or
run the SOFTWARE PRODUCT over an internal
network; however, you must acquire and dedicate
a license for each separate computer on or from
which the SOFTWARE PRODUCT is installed,
used, accessed, displayed or run.

1.2 Academic Use. You must be a “Qualified Educa-
tional User” to use the SOFTWARE PRODUCT in
the manner described in this section. To determine

whether you are a Qualified Educational User,
please contact the Microsoft Sales Information
Center/One Microsoft Way/Redmond, WA
98052-6399 or the Microsoft subsidiary serving
your country. If you are a Qualified Educational
User, you may either:

(i) exercise the rights granted in Section 1. 1, OR

(ii) if you intend to use the SOFTWARE PRODUCT
solely for instructional purposes in connection
with a class or other educational program, this
EULA grants you the following alternative license
models:

(A) Per Computer Model. For every valid license
you have acquired for the SOFTWARE
PRODUCT, you may install a single copy of
the SOFTWARE PRODUCT on a single com-
puter for access and use by an unlimited num-
ber of student end users at your educational
institution, provided that all such end users
comply with all other terms of this EULA, OR

(B) Per License Model. If you have multiple licens-
es for the SOFTWARE PRODUCT, then at any
time you may have as many copies of the
SOFTWARE PRODUCT in use as you have
licenses, provided that such use is limited to
student or faculty end users at your education-
al institution and provided that all such end
users comply with all other terms of this EULA.
For purposes of this subsection, the SOFT-
WARE PRODUCT is “in use” on a computer
when it is loaded into the temporary memory
(i.e., RAM) or installed into the permanent
memory (e.g., hard disk, CD ROM, or other
storage device) of that computer, except that a
copy installed on a network server for the sole
purpose of distribution to other computers is
not “in use”. If the anticipated number of users
of the SOFTWARE PRODUCT will exceed the
number of applicable licenses, then you must
have a reasonable mechanism or process in
place to ensure that the number of persons
using the SOFTWARE PRODUCT concurrent-
ly does not exceed the number of licenses.

E N D - U S E R L I C E N S E A G R E E M E N T F O R M I C R O S O F T S O F T W A R E 4 6 9

Accompanying CD for Microsoft Visual Basic 6.0, Working Edition

The CD in this book contains the files needed to install the Working Model Edition of Visual Basic 6.0.To install the software,
follow the steps in the first part of Appendix B.
In addition, the CD contains all the programs from the examples and case studies of this textbook, most of the TXT files
needed for the exercises, and several BMP (picture) files. The programs (and TXT files) are contained in the folder
PROGRAMS, in subfolders called CH3, CH4, CH5, and so on. The picture files are contained in the folder PICTURES.
We recommend that you copy the entire contents of the folder PROGRAMS onto your hard drive or a diskette.
Each program has a name of the form chapter-section-number. VBP. For instance, the program in Chapter 3, Section 2,
Example 4 has the name 3-2-4.VBP. Many of the programs make use of TXT files that are also in the subfolder. When
one of these programs access a text file, the filespec for the text file is preceded with App.Path. This tells Visual Basic
to look for the program in the folder from which the program has been opened.

2. DESCRIPTION OF OTHER RIGHTS AND
LIMITATIONS.

• Limitations on Reverse Engineering, Decompilation,
and Disassembly. You may not reverse engineer,
decompile, or disassemble the SOFTWARE PROD-
UCT, except and only to the extent that such activity is
expressly permitted by applicable law notwithstanding
this limitation.

• Separation of Components. The SOFTWARE PROD-
UCT is licensed as a single product. Its component
parts may not be separated for use on more than one
computer.

• Rental. You may not rent, lease or lend the SOFT-
WARE PRODUCT

• Trademarks. This EULA does not grant you any rights
in connection with any trademarks or service marks of
Microsoft

• Software Transfer. The initial user of the SOFTWARE
PRODUCT may make a one-time permanent transfer
of this EULA and SOFTWARE PRODUCT only directly
to an end user. This transfer must include all of the
SOFTWARE PRODUCT (including all component
parts, the media and printed materials, any upgrades,
this EULA, and, if applicable, the Certificate of Authen-
ticity). Such transfer may not be by way of consignment
or any other indirect transfer. The transferee of such
one-time transfer must agree to comply with the terms
of this EULA, including the obligation not to further
transfer this EULA and SOFTWARE PRODUCT.

• Termination. Without prejudice to any other rights,
Microsoft may terminate this EULA if you fail to comply
with the terms and conditions of this EULA. In such
event, you must destroy all copies of the SOFTWARE
PRODUCT and all of its component parts.

3. COPYRIGHT. All title and intellectual property rights in
and to the SOFTWARE PRODUCT (including but not limit-
ed to any images, photographs, animations, video, audio,
music, text, and “applets” incorporated into the SOFTWARE
PRODUCT), the accompanying printed materials, and any
copies of the SOFTWARE PRODUCT are owned by
Microsoft or its suppliers. All title and intellectual property
rights in and to the content which may be accessed through
use of the SOFTWARE PRODUCT is the property of the
respective content owner and may be protected by applica-
ble copyright or other intellectual property laws and treaties.
This EULA grants you no rights to use such content. All
rights not expressly granted are reserved by Microsoft.

4. BACKUP COPY. After installation of one copy of the
SOFTWARE PRODUCT pursuant to this EULA, you may
keep the original media on which the SOFTWARE PROD-
UCT was provided by Microsoft solely for backup or

archival purposes. If the original media is required to use
the SOFTWARE PRODUCT on the COMPUTER, you
may make one copy of the SOFTWARE PRODUCT sole-
ly for backup or archival purposes. Except as expressly
provided in this EULA, you may not otherwise make
copies of the SOFTWARE PRODUCT or the printed mate-
rials accompanying the SOFTWARE PRODUCT

5. U.S. GOVERNMENT RESTRICTED RIGHTS. The
SOFTWARE PRODUCT and documentation are provided
with RESTRICTED RIGHTS. Use, duplication, or disclo-
sure by the Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in Technical
Data and Computer Software clause at DFARS
252.227-7013 or subparagraphs (c)(1) and (2) of the Com-
mercial Computer Software-Restricted Rights at 48 CFR
52.227-19, as applicable. Manufacturer is Microsoft Corpo-
ration/One Microsoft Way/Redmond, WA 98052-6399.

6. EXPORT RESTRICTIONS. You agree that you will not
export or re-export the SOFTWARE PRODUCT, any part
thereof, or any process or service that is the direct product
of the SOFTWARE PRODUCT (the foregoing collectively
referred to as the “Restricted Components”), to any coun-
try, person, entity or end user subject to U.S. export restric-
tions. You specifically agree not to export or re-export any
of the Restricted Components (i) to any country to which
the U.S. has embargoed or restricted the export of goods
or services, which currently include, but are not necessari-
ly limited to Cuba, Iran, Iraq, Libya, North Korea, Sudan
and Syria, or to any national of any such country, wherev-
er located, who intends to transmit or transport the
Restricted Components back to such country; (ii) to any
end-user who you know or have reason to know will utilize
the Restricted Components in the design, development or
production of nuclear, chemical or biological weapons; or
(iii) to any end-user who has been prohibited from partici-
pating in U.S. export transactions by any federal agency of
the U.S. government. You warrant and represent that nei-
ther the BXA nor any other U.S. federal agency has sus-
pended, revoked, or denied your export privileges.

7. NOTE ON JAVA SUPPORT. THE SOFTWARE PROD-
UCT MAY CONTAIN SUPPORT FOR PROGRAMS WRIT-
TEN IN JAVA. JAVA TECHNOLOGY IS NOT FAULT
TOLERANT AND IS NOT DESIGNED, MANUFAC-
TURED, OR INTENDED FOR USE OR RESALE AS ON-
LINE CONTROL EQUIPMENT IN HAZARDOUS ENVI-
RONMENTS REQUIRING FAIL-SAFE PERFORMANCE,
SUCH AS IN THE OPERATION OF NUCLEAR FACILI-
TIES, AIRCRAFT NAVIGATION OR COMMUNICATION
SYSTEMS, AIR TRAFFIC CONTROL, DIRECT LIFE
SUPPORT MACHINES, OR WEAPONS SYSTEMS, IN
WHICH THE FAILURE OF JAVA TECHNOLOGY COULD
LEAD DIRECTLY TO DEATH, PERSONAL INJURY, OR
SEVERE PHYSICAL OR ENVIRONMENTAL DAMAGE.

470 T e c h n o l o g y o f t h e I n t e r n e t

MISCELLANEOUS

If you acquired this product in the United States, this
EULA is governed by the laws of the State of Washington.

If you acquired this product in Canada, this EULA is gov-
erned by the laws of the Province of Ontario, Canada.
Each of the parties hereto irrevocably attorns to the juris-
diction of the courts of the Province of Ontario and further
agrees to commence any litigation which may arise here-
under in the courts located in the Judicial District of York,
Province of Ontario.

If this product was acquired outside the United States,
then local law may apply.

Should you have any questions concerning this EULA, or
if you desire to contact Microsoft for any reason, please
contact Microsoft, or write: Microsoft Sales Information
Center/One Microsoft Way/ Redmond, WA 98052-6399.

LIMITED WARRANTY

LIMITED WARRANTY. Microsoft warrants that (a) the
SOFTWARE PRODUCT will perform substantially in
accordance with the accompanying written materials for a
period of ninety (90) days from the date of receipt, and (b)
any Support Services provided by Microsoft shall be sub-
stantially as described in applicable written materials pro-
vided to you by Microsoft, and Microsoft support
engineers will make commercially reasonable efforts to
solve any problem. To the extent allowed by applicable
law, implied warranties on the SOFTWARE PRODUCT, if
any, are limited to ninety (90) days. Some states/jurisdic-
tions do not allow limitations on duration of an implied war-
ranty, so the above limitation may not apply to you.

CUSTOMER REMEDIES. Microsoft’s and its suppliers’
entire liability and your exclusive remedy shall be, at
Microsoft’s option, either (a) return of the price paid, if any,
or (b) repair or replacement of the SOFTWARE PRODUCT
that does not meet Microsoft’s Limited Warranty and that is
returned to Microsoft with a copy of your receipt. This Lim-
ited Warranty is void if failure of the SOFTWARE PROD-
UCT has resulted from accident, abuse, or misapplication.

Any replacement SOFTWARE PRODUCT will be warrant-
ed for the remainder of the original warranty period or thir-
ty (30) days, whichever is longer. Outside the United
States, neither these remedies nor any product support
services offered by Microsoft are available without proof of
purchase from an authorized international source.

NO OTHER WARRANTIES. To the maximum extent per-
mitted by applicable law, Microsoft and its suppliers dis-
claim all other warranties and conditions, either express or
implied, including, but not limited to, implied warranties
OR CONDITIONS of merchantability, fitness for a particu-
lar purpose, title and non-infringement, with regard to the
SOFTWARE PRODUCT, and the provision of or failure to
provide Support Services. This limited warranty gives you
specific legal rights.You may have others, which vary from
state/jurisdiction to state/jurisdiction.

LIMITATION OF LIABILITY. TO THE MAXIMUM EXTENT
PERMITTED BY APPLICABLE LAW, IN NO EVENT
SHALL MICROSOFT OR ITS SUPPLIERS BE LIABLE
FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CON-
SEQUENTIAL DAMAGES WHATSOEVER (INCLUDING,
WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSI-
NESS PROFITS, BUSINESS INTERRUPTION, LOSS OF
BUSINESS INFORMATION, OR ANY OTHER PECU-
NIARY LOSS) ARISING OUT OF THE USE OF OR
INABILITY TO USE THE SOFTWARE PRODUCT OR
THE FAILURE TO PROVIDE SUPPORT SERVICES,
EVEN IF MICROSOFT HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. IN ANY CASE,
MICROSOFT’S ENTIRE LIABILITY UNDER ANY PROVI-
SION OF THIS EULA SHALL BE LIMITED TO THE
GREATER OF THE AMOUNT ACTUALLY PAID BY YOU
FOR THE SOFTWARE PRODUCT OR U.S.$5.00; PRO-
VIDED, HOWEVER, IF YOU HAVE ENTERED INTO A
MICROSOFT SUPPORT SERVICES AGREEMENT,
MICROSOFT’S ENTIRE LIABILITY REGARDING SUP-
PORT SERVICES SHALL BE GOVERNED BY THE
TERMS OF THAT AGREEMENT. BECAUSE SOME
STATES/JURISDICTIONS DO NOT ALLOW THE EXCLU-
SION OR LIMITATION OF LIABILITY, THE ABOVE LIMI-
TATION MAY NOT APPLY TO YOU.

L I M I T E D W A R R A N T Y 4 7 1

CD-ROM INSTRUCTIONS

SYSTEM REQUIREMENTS

Windows PC

— 386, 486, or Pentium processor-based personal computer

— Microsoft Windows 95, Windows 98, or Windows NT 3.51 or later

— Minimum RAM: 8 MB for Windows 95 and NT

— Available space on hard disk: 8 MB for Windows 95 and NT

— 2X speed CD-ROM drive or faster

— Browser: Netscape Navigator 3.0 or higher or Internet Explorer 3.0 or higher*

— Reader: Adobe Acrobat Reader 4.0* (on the enclosed CD-ROM)*

Macintosh

— Macintosh with a 68020 processor or higher, or Power Macintosh

— Apple OS version 7.0 or later

— Minimum RAM: 12 MB for Macintosh

— Available space on hard disk: 6 MB for Macintosh

— 2X speed CD-ROM drive or faster

— Browser: Netscape Navigator 3.0 or higher or Internet Explorer 3.0 or higher*

— Reader: Adobe Acrobat Reader 4.0*

* You can download any of these products using the URL below:

— NetscapeNavigator: http://www.netscape.com/download/index.html

— Internet Explorer: http://www.microsoft.com/ie/download

— Adobe Acrobat Reader: http://www.adobe.com/proindex/acrobat/readstep.html

GETTING STARTED

Insert the CD-ROM into your drive.

— Windows PC users should double click on My Computer, then on the CD-ROM drive. Find and
double-click on the Index.html file.

— Macintosh users should double click on the CD-ROM icon on the screen, then find and double-
click on the Index.html folder. (Index.html may come up automatically on the Macintosh.)

You will see an opening screen with the Welcome page and other navigation buttons. From this screen, you can
click on any button to begin navigating the CD-ROM contents.

MOVING AROUND

If you have installed one of the required browsers, you will see three frames on your screen. The frame on the left-
hand side contains a navigational toolbar with buttons. From this toolbar you can click on the buttons to navigate
through the CD-ROM, which will then appear in the frame on the right-hand side. Note: At any time, you can use
the Back button on your browser to return to the previous screen.

http://www.pearsoncustom.com/link/visualbasic/collections.html

Collections: Refers to an entity, similar to an array, that is
especially well-suited to working with sets of objects.

PUBLIC SITES:

Object Basics
A collection is a set of all objects of the same data type. Maintained by Technical
University "Gh. Asachi" Iasi, Romania.

Platinum Edition Using Visual Basic 5
A collection is a group of objects that is itself a type of object. Maintained by Technical
University "Gh. Asachi" Iasi, Romania.

Free VB Code
Links to free VB code on lists, collections and arrays. Site hosted by FreeVBCode.com.

Creating Stack and Queue Collections
Microsoft hosts this site on how to create stack and queue collections in VB, with links to
tutorial and sample.

VB CGI Scripts
Link to two collections of VB CGI scripts for use in web page creation. Site hosted by The
CGI Resource Index, an online listing of CGI-related resources.

Article for Programmers
Collections are essentially linked lists that are managed for you by Visual Basic.
Maintained by the Australian Visual Developers Forum.

Copyright © 1999 - 2001 by Pearson Custom Publishing. All rights reserved. This copyright material may not be
published, broadcast or redistributed in any manner.

Contact Us

http://www.pearsoncustom.com/link/visualbasic/collections.html [8/30/01 7:30:13 AM]

http://www.pearsoncustom.com/link/citationstyles.html
http://www.pearsoncustom.com/allpages/collections_bot.html
http://library.cs.tuiasi.ro/programming/visual%20basic/teachvb524/htm/ch22.htm
http://library.cs.tuiasi.ro/programming/visual%20basic/usingvb5/ch18.htm
http://msdn.microsoft.com/library/devprods/vs6/visualc/vccore/_core_collections.3a_.creating_stack_and_queue_collections.htm
http://cgi.resourceindex.com/Programs_and_Scripts/Visual_Basic/Collections/
mailto:Debbie.Coniglio@pearsoned.com

FreeVBCode.Com - Lists, Collections, and Arrays

Find Code: All of FreeVBCode
Only in Lists, Collections, and Arrays

Home New Hot Best Forum

News Jobs Links Newsletter Submit Code

LISTS, COLLECTIONS, AND ARRAYS (42)

Page 1 of 5

Collection Class Derived From VB's Collection Object*

Merge Sort and Bubble Sort For String Data*

String Sort Routines: Quick, Merge, Selection, and Insert Sort *

A Simple Pair Class
A To-Do Task Manager with Drag and Drop Capabilities
Binary Tree Class
Binclass: a simple array structure for collecting numeric data.
Bubble and Shell Sort Demo
Bubble Sort For Numeric Data
Calculate the Average of Items in a Numeric Array (generic function)

 Next Page >>

1 | 2 | 3 | 4 | 5

* Excellent Code

http://freevbcode.com/listcode.asp?Page=1&Category=12 (1 of 2) [8/30/01 7:30:32 AM]

http://freevbcode.com/new.asp
http://freevbcode.com/hot.asp
http://freevbcode.com/forum_home.asp
http://freevbcode.com/vbnews.asp
http://freevbcode.com/jobs.asp
http://freevbcode.com/links.asp
http://freevbcode.com/newsletter.asp
http://freevbcode.com/upload.asp
http://freevbcode.com/listcode.asp?Category=12
http://freevbcode.com/ShowCode.Asp?ID=1561
http://freevbcode.com/ShowCode.Asp?ID=847
http://freevbcode.com/ShowCode.Asp?ID=965
http://freevbcode.com/ShowCode.Asp?ID=1581
http://freevbcode.com/ShowCode.Asp?ID=3047
http://freevbcode.com/ShowCode.Asp?ID=1602
http://freevbcode.com/ShowCode.Asp?ID=113
http://freevbcode.com/ShowCode.Asp?ID=776
http://freevbcode.com/ShowCode.Asp?ID=580
http://freevbcode.com/ShowCode.Asp?ID=53
http://freevbcode.com/listcode.asp?Page=2&Category=12
http://freevbcode.com/listcode.asp?Page=2&Category=12
http://freevbcode.com/listcode.asp?Page=3&Category=12
http://freevbcode.com/listcode.asp?Page=4&Category=12
http://freevbcode.com/listcode.asp?Page=5&Category=12

FreeVBCode.Com - Lists, Collections, and Arrays

Recommended Book:

Microsoft Visual Basic 6.0 Programmer's Guide

Developers About Legal Awards Contact Privacy Advertise

http://freevbcode.com/listcode.asp?Page=1&Category=12 (2 of 2) [8/30/01 7:30:32 AM]

http://freevbcode.com/DOM.asp
http://freevbcode.com/about.asp
http://freevbcode.com/legal.asp
http://freevbcode.com/awards.asp
http://freevbcode.com/contact.asp
http://freevbcode.com/privacy.asp
http://freevbcode.com/Advertise.asp

Visual Basic Collections [AVDF Article]

Visual Basic Collections

by Jim Karabatsos - GUI Computing

With the release of version 4 of Visual Basic, Microsoft made some significant enhancements to the
language.

Many of these enhancements have received little coverage in the media because of the problems caused
by some of the more, umm, challenging changes made in the same version, changes such as
UniMess(TM) By Design, Evil Type Coercion and forced alignment of type elements. Just for a change,
I thought it would be good to write a positive article focusing on the good, forgetting (for a while at
least), the bad and the ugly.

One of the coolest new features of the language itself is the implementation of collections. Collections
are essentially linked lists that are managed for you by Visual Basic. They provide the VB programmer
with an easy mechanism for storing and accessing in-memory information in a convenient way, as well
as being the underlying mechanism for creating object hierarchies in Visual Basic.

Collections are created much like other objects, using the Dim statement inside a procedure or the Private
or Public statements at the module level:

 Public MyCollection As Collection
 Private MyCollection As Collection
 Dim MyCollection As Collection

Once you have a collection, you can add things to it. You can add any kind of thing to a collection - as
long as it is an object. This means that you cannot add fundamental data types like integers or strings, nor
can you add user-defined types. Instead, you need to add object instances that you have defined in class
modules, or that you have obtained a pointer to through OLE.

Objects typically contain some smarts. You can code property procedures to perform validation checks,
whenever a value is set or read from an object's data field, or to implement side-effects like storing data
to a database or updating an on-screen representation. However, there is no requirement that objects
contain code — it is quite possible to create a VB object that is nothing but a colletion of data. Let's do
just that.

The following class module would define an object type that could be used to store data about currency
conversion factors :

http://www.avdf.com/may96/art_vbcollect.html (1 of 5) [8/30/01 7:30:50 AM]

http://www.avdf.com/search.html
http://www.avdf.com/index.html

Visual Basic Collections [AVDF Article]

 Public Code As String
 Public Name As String
 Public NumDecimals As Integer
 Public ConversionFactor As Double

If we set the name of the class to TCurrencyInfo, then we could create an instance of a it using the
following code:

 Dim CurrencyInfo As TCurrencyInfo

 Set CurrencyInfo = New TCurrencyInfo

 CurrencyInfo.Code = "AUD"
 CurrencyInfo.Name = "Australian Dollar"
 CurrencyInfo.NumDecimals = 2
 CurrencyInfo.ConversionFactor = 1.25

O.K., we now have an instance of TCurrencyInfo and we need to store it somewhere. For this article, we
are discussing in-memory storage, not file system storage. Before version 4, we would have needed to
store the data in an array. This is quite acceptable (and indeed quite efficient) but there is just one, tiny
problem: how big do we want the array to be?

Sometimes we know ahead of time how large to make the array. Many times, however, it is not possible
to know ahead of time just how many elements you need - in which case you need to either create very
large arrays, which unnecessarily consume memory (and hope that you never exceed the limit), or handle
the dynamic growth of the array using the ReDim Preserve statement. The latter option is quite workable
but can also be quite slow if you try to grow the array by one element at a time. You really need to get a
bit smarter than that and grow by some reasonable increment; unfortunately this complicates the logic
somewhat - so much so that I have seen programmers resort to using a database rather than grapple with
the issues involved.

Collections are just the answer we are looking for. We can add an object to a collection using the Add
method of the collection object. The Add method typically looks like this (assuming we have a public
collection called "Currencies" somewhere):

 Currencies.Add Item := CurrencyInfo, Key := CurrencyInfo.Code

First things first. Notice how we are using the ":=" operator to assign values to parameters by name. This
is another of the neat new facilities in version 4, allowing us to specify parameters in any convenient
order, and to omit them altogether if we would like to accept defaults. Indeed there are two other
parameters, Before and After, that we have ommited because we want the object added to the default
position (the end of the list).

http://www.avdf.com/may96/art_vbcollect.html (2 of 5) [8/30/01 7:30:50 AM]

Visual Basic Collections [AVDF Article]

The two parameters you will almost always code are the:

Item which is the object that you want to store in the collection,
and the Key, which must be a string that can be used to identify an item.

In this example we have used the currency code as an index, allowing us to retrieve the item easily. You
do not need to specify a Key, if you don't want to, and indeed it is sometimes quite convenient not to.
Most times, however, you will find that the ability to refer to the items in a collection by their key is one
of the main advantages of collections over arrays.

Note that the collection itself now holds a reference to the object that has been stored in it. This object
continues to exist, even after the original reference to it goes out of scope. In our example above, the
CurrencyInfo object was DIMmed and instantiated inside some procedure, the values were set into the
fields of the object and then it was added to the collection. Behind the scenes, it is as if the collection was
an array of objects and you had used Set to bind one of the elements to the CurrencyInfo object. Even
when the CurrencyInfo object goes out of scope (when the procedure terminates) the object continues to
exist because its reference count is not yet zero — remember that the collection holds a reference to it. If
this sounds just a little bit mystical, then welcome to the brave new world of OLE (grin). It might be a
good idea to invest some time in reading a good OLE book, my current favourite being "Inside OLE"
from Microsoft Press.

To retrieve a particular reading from the collection, we use the Item property of the collection. Being the
default property, we do not need to actually code it and can use a syntax that makes it appear that the
collection is like an array:

 AustDollarRate = Currencies("AUD").ConversionFactor

We can also create another reference to that object, as in:

 Dim AUDInfo As TCurrencyInfo
 Set AUDInfo = Currencies("AUD")

The object now has two references, the Currencies collection holds one and AUDInfo holds the other.

You can determine how many objects are in a collection using the Count property, and you can index the
objects using an integer ranging from 1 to Count, as in:

 For I = 1 to Currencies.Count
 Print "One USD buys"; Currencies(I).ConversionFactor; _
 " "; Currencies(I).Description
 Next I

http://www.avdf.com/may96/art_vbcollect.html (3 of 5) [8/30/01 7:30:50 AM]

Visual Basic Collections [AVDF Article]

Notice how we are using an integer value as a pseudo-subscript which indicates that we are selecting the
object positionally rather than by its key (which is always a string).

Another way to iterate over all the objects in a collection is using the For Each statement:

 Dim C As TCurrencyInfo
 For Each C In Currencies
 Print "One USD buys"; T.ConversionFactor; _
 " "; T.Description
 Next C

This is basically a more convenient (and probably more readable) way to do exactly the same thing.

Finally, to delete an object from a collection you use the Remove method:

 Currencies.Remove "AUD"

You can also use a numeric index to specify the object to remove by its ordinal position, if that is more
convenient in your application.

That's pretty much all there is to collections; if you understand this, you have a solid framework to start
using collections in your own programs. There are, however, a few interesting things you might want to
consider.

First, it is possible to control the exact placement of objects when they are added to a collection using the
Before or After parameters. This can be useful if you need to maintain some sort of sequence
independent of the order in which the objects are being added to the collection; in most cases, however,
you will just add them with a suitable Index value as we have done here.

Collections are "single-dimensional" (although that is a stretch). The "subscript" is a single integer object
number or a single string key. It is, however, possible to simulate multi-dimensional collections. One
way is to create a concatenated string Index, where (say) the first three characters are the first "subscript",
the next three are the second, and so on. Another way (that I consider much more interesting) is to make
use of the fact that, being an object, a collection can itself be stored in a collection. You can create
collections of collections to any reasonable depth, opening up some very useful data structures.

Finally, you need to use the right tool for the job. Collections and arrays have a lot of overlap in the types
of situations that they cover. In general, array processing is faster than collection processing, can handle
multiple dimensions, and can be created for any type, whether simple, record or object. Collections, on
the other hand, can only store objects - but each element in a collection can be of any object type (ie.
collections are polymorphic). Collections dynamically resize themselves to make efficient use of

http://www.avdf.com/may96/art_vbcollect.html (4 of 5) [8/30/01 7:30:50 AM]

Visual Basic Collections [AVDF Article]

memory and are great for "sparse array" handling. Finally, collections are a type of associative array,
meaning that we can reference items using an associated key, rather than being restricted to a numeric
subscript.

Like most things, this is not an either/or issue. Collections add to the rather formidable array of
programmer tools in VB (pun absolutely intended).

Written by: Jim Karabatsos
April 96

[HOME] [TABLE OF CONTENTS] [SEARCH]

http://www.avdf.com/may96/art_vbcollect.html (5 of 5) [8/30/01 7:30:50 AM]

http://www.avdf.com/bio/bio_karabatsos.html
http://www.avdf.com/may96/art_parsing.html
http://www.avdf.com/may96/art_wise.html
http://www.avdf.com/index.html
http://www.avdf.com/search.html

Barnes & Noble.com - Microsoft Visual Basic 6.0: Programmer's Guide

Browse Subjects Kids New Releases Bestsellers Coming Soon

No items in cart.

Same low prices as
always!

Buy two or more
items to qualify.

Bibliography
 Books by Microsoft

Press
 Books by Microsoft

Corporation

About this Item
 Synopsis
 Annotation
 From the Publisher
 Customer Reviews

From the Book
 Excerpt
 Table of Contents

 Related Titles

Microsoft Visual Basic 6.0: Programmer's Guide
Microsoft Press Microsoft Corporation

Retail Price: $39.99
Our Price: $31.99
You Save: $8.00 (20%)
Readers' Advantage
Price: $30.39 Join Now

In Stock:Ships within 24 hours

Same Day Delivery In
Manhattan
Format: Paperback, 1st
ed., 960pp.
ISBN: 1572318635
Publisher: Microsoft Press
Pub. Date: June 1998
sales rank: 4,001

 Buy it Now!

As you order, each item will be listed
in Your Shopping Cart in the upper left

corner. You may make changes at
Checkout.

Safe Shopping Guarantee!

Write your own Review
7 other customers have reviewed this book. Average Rating:
Read what other customers have said

bn.com customers who bought this book also bought:
Microsoft Visual Basic 6.0 Professional Step by Step with CD-ROM, Michael Halvorson, Halvorson
Microsoft Visual Basic 6.0 Reference Library, Microsoft Press, MS Corp
Learn to Program with Visual Basic, John Smiley,Gordon Rogers (Editor),Dominic Shakeshaft (Editor)
Beginning Visual Basic 6 Database Programming, John L. Connell,John Connell
Dan Appleman's Visual Basic Programmer's Guide to the Win32 API, Dan Appleman

ABOUT THIS ITEM

Synopsis
Created by the Microsoft Visual Basic development team in convenient, easy-to-digest print form,
Microsoft Visual Basic 6.0 Programmer's Guide is a comprehensive resource for beginning to
intermediate users. It is designed to help you get the best possible results from one of Microsoft's most
popular programming systems for Windows. Microsoft Visual Basic 6.0 Programmer's Guide will help you
learn programming fundamentals, create your first Visual Basic program, and optimize and distribute

http://shop.barnesandnoble.com/bookSearch/isbnIn...92178&ISBN=1572318635&bfdate=08-30-2001+07:28:59 (1 of 4) [8/30/01 7:31:26 AM]

http://www.barnesandnoble.com/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://ad.doubleclick.net/jump/bn.web.dart/bks_product;kw=;sz=468x60;ord=368004546;tile=1;slinkprefix=userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001%2B07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp;sourceid=00176940494055492178?
http://shop.barnesandnoble.com/shop/cart.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://shop.barnesandnoble.com/account/youraccount.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://www.barnesandnoble.com/help/help.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
https://shop.barnesandnoble.com/Account/order_status.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://www.barnesandnoble.com/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://www.barnesandnoble.com/bookstore.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://shop.barnesandnoble.com/oopbooks/oopsearch.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://www.barnesandnoble.com/textbooks/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://www.barnesandnoble.com/bargain/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://ebooks.barnesandnoble.com/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://www.barnesandnoble.com/articles/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://music.barnesandnoble.com/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://video.barnesandnoble.com/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://www.barnesandnoble.com/vidgames/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://barnesandnoble.enews.com/bn6/main/0,3675,pageType=bnHome,00.html?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://www.barnesandnobleuniversity.com/bnu?nhid=bn&userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://www.barnesandnoble.com/subjects/subjects.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://www.barnesandnoble.com/subjects/children/children.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://www.barnesandnoble.com/newreleases/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://www.barnesandnoble.com/bestsellers/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://www.barnesandnoble.com/comingsoon/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://shop.barnesandnoble.com/booksearch/search.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://shop.barnesandnoble.com/shop/cart.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://www.barnesandnoble.com/promo/coupon/popups/free_shipping_details.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://shop.barnesandnoble.com/booksearch/results.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp&author_last=Microsoft+Press&match=exact&options=and
http://shop.barnesandnoble.com/booksearch/results.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp&author_last=Microsoft+Press&match=exact&options=and
http://shop.barnesandnoble.com/booksearch/results.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp&author_last=Microsoft+Corporation&match=exact&options=and
http://shop.barnesandnoble.com/booksearch/results.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp&author_last=Microsoft+Corporation&match=exact&options=and
http://shop.barnesandnoble.com/bookSearch/isbnInquiry.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp&isbn=1572318635&displayonly=excerpt
http://shop.barnesandnoble.com/booksearch/results.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp&author_last=Microsoft+Press&match=exact&options=and
http://shop.barnesandnoble.com/booksearch/results.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp&author_last=Microsoft+Corporation&match=exact&options=and
http://shop.barnesandnoble.com/shop/raproduct.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://www.barnesandnoble.com/help/nc_safe_shopping.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://shop.barnesandnoble.com/booksearch/isbninquiry.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp&isbn=1572318635&displayonly=excerpt
http://shop.barnesandnoble.com/booksearch/isbninquiry.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp&isbn=1572318635#toc
http://shop.barnesandnoble.com/reviews/reviews.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp&isbn=1572318635&userType=U
http://shop.barnesandnoble.com/bookSearch/isbnInquiry.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp&isbn=1572318090
http://shop.barnesandnoble.com/bookSearch/isbnInquiry.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp&isbn=1572318643
http://shop.barnesandnoble.com/bookSearch/isbnInquiry.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp&isbn=1902745000
http://shop.barnesandnoble.com/bookSearch/isbnInquiry.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp&isbn=1861001061
http://shop.barnesandnoble.com/bookSearch/isbnInquiry.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp&isbn=0672315904

Barnes & Noble.com - Microsoft Visual Basic 6.0: Programmer's Guide

applications. Taken from the Programmer's Guide content available in the online documentation, but
available in printed form only from Microsoft Press, the book provides vital insights into creating
applications for stand-alone desktops, networked PCs, the Internet and intranets, and the components
market.

Annotation
From a programmer's perspective, this definitive and essential Visual Basic 6.0 programmer's guide
covers the VB environment and language. It brings you from your first VB application to you applications
distribution. This comprehensive guide is written in a tutorial style and divided into two major parts. The
first part covers basic techniques, and the second part covers intermediate to advanced techniques. You
should have some familiarity with VB programming concepts, the environment and language structures.

From the Publisher
Microsoft Visual Basic 6.0 Programmer's Guide is a comprehensive resource for the beginning to
intermediate programmer using the latest version of one of the most popular programming systems for
Microsoft Windows. Learn programming fundamentals, create that first Visual Basic program, and optimize
and distribute applications.

● Introducing Visual Basic
● Developing Applications in Visual Basic
● Forms Controls and Menus
● Managing Projects
● Programming Fundamentals
● Creating a User Interface
● Using Visual Basic's Standard Controls
● More About Programming
● Programing with Objects
● Programming with Components
● Responding to Mouse and Keyboard Events
● Working with Text and Graphics
● Debugging your code and handling errors
● Processing Drives Folders and Files
● Designing for Performance and Compatibility
● International Issues
● Distributing Your Applications
● Visual Basic Specifications Limitations and File Formats
● Visual Basic Coding Conventions
● Native Code Compiler Switches
● Adding Help to your Applications

 CUSTOMER REVIEWS - An Open Forum
Number of Reviews: 7 Average Rating:

Charles Mendell, a self-taught programmer, July 23, 2001,
Tremendous Book-Complete-Advanced Though
I'm new to VB and I bought this book and the Reference Set. It's so complete that much of it is beyond the
average, but I recommend it. Sooner or later, you'll understand it and need it! Very detailed. Just what I
wanted although I didn't realize what I'd be getting in to. Makes you think - - and that's a good thing. Buy it!

Dee (epic47@yahoo.com), June 4, 2001,
Newbies stay clear of this book
This book is a guide....not a book designed to teach you...although if you have programming experience
you can learn from this, but the reading is diffcult for beginners.This book is a good reference book for

http://shop.barnesandnoble.com/bookSearch/isbnIn...92178&ISBN=1572318635&bfdate=08-30-2001+07:28:59 (2 of 4) [8/30/01 7:31:26 AM]

Barnes & Noble.com - Microsoft Visual Basic 6.0: Programmer's Guide

your personal knowledge.

A reviewer, new to VB, April 17, 2001,
Excellent
I have bought about 6 books on Visual basic and I think that this book by far is the best for explanation
and simplicity. It explains things well and it is simple. I don't think that this is a good first book but the best
for a second book. I would recommend Visual Basic Step by Step for a first. Highly recommend this one.

Also recommended: Learn to program with Visual Basic by John Smiley

Omar Medina (omedina@afevans.com), Assistant Manager and student, March 1, 2001,
Excellent guide
I am an intermediate for Visual Basics. I saw this book with one of my friends. Very explanatory and easy
to understand.

Omar Medina (omedina@afevans.com), Assistant Manager and student, March 1, 2001,
Excellent guide
I am an intermediate for Visual Basics. I saw this book with one of my friends. Very explanatory and easy
to understand.

Read all 7 customer reviews about this title

FROM THE BOOK

 Excerpt
Read an excerpt from the book

 Table of Contents

Document Conventions

Programmer's Guide

Pt. 1 Visual Basic Basics 1

Ch. 1 Introducing Visual Basic 3

Ch. 2 Developing an Application in Visual Basic 11

Ch. 3 Forms, Controls, and Menus 31

Ch. 4 Managing Projects 65

Ch. 5 Programming Fundamentals 79

Pt. 2 What You Can Do with Visual Basic 159

Ch. 6 Creating a User Interface 161

Ch. 7 Using Visual Basic's Standard Controls 219

Ch. 8 More About Programming 359

Ch. 9 Programming with Objects 385

Ch. 10 Programming with Components 499

Ch. 11 Responding to Mouse and Keyboard Events 543

Ch. 12 Working with Text and Graphics 595

Ch. 13 Debugging Your Code and Handling Errors 667

Ch. 14 Processing Drives, Folders, and Files 731

http://shop.barnesandnoble.com/bookSearch/isbnIn...92178&ISBN=1572318635&bfdate=08-30-2001+07:28:59 (3 of 4) [8/30/01 7:31:26 AM]

http://shop.barnesandnoble.com/booksearch/ISBNinquiry.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp&isbn=1572318635&displayOnly=creviews#Customer Reviews
http://shop.barnesandnoble.com/bookSearch/isbnInquiry.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp&isbn=1572318635&displayonly=excerpt

Barnes & Noble.com - Microsoft Visual Basic 6.0: Programmer's Guide

Ch. 15 Designing for Performance and Compatibility 751

Ch. 16 International Issues 781

Ch. 17 Distributing Your Applications 811

App. A Visual Basic Specifications, Limitations, and File Formats 847

App. B Visual Basic Coding Conventions 869

App. C Native Code Compiler Switches 881

App. D Adding Help to Your Application 887

RELATED TITLES

More on this subject
Computers

Find other books using these keywords:

BASIC (Computer program language)

Home | Bookstore | Out of Print | College Textbooks | Bargain Books | eBooks | Articles for Download | Music
DVD & Video | PC & Video Games | Prints & Posters | Magazine Subscriptions | Online Courses

 Back to Top

Terms of Use, Copyright, and Privacy Policy

Copyright 1997, 1998, 1999, 2000, 2001 barnesandnoble.com llc

http://shop.barnesandnoble.com/bookSearch/isbnIn...92178&ISBN=1572318635&bfdate=08-30-2001+07:28:59 (4 of 4) [8/30/01 7:31:26 AM]

http://www.barnesandnoble.com/subjects/computer/computer.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://www.barnesandnoble.com/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://www.barnesandnoble.com/bookstore.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://shop.barnesandnoble.com/oopbooks/oopsearch.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://www.barnesandnoble.com/textbooks/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://www.barnesandnoble.com/bargain/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://ebooks.barnesandnoble.com/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://www.barnesandnoble.com/articles/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://music.barnesandnoble.com/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://video.barnesandnoble.com/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://www.barnesandnoble.com/vidgames/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://posters.barnesandnoble.com/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://barnesandnoble.enews.com/bn6/main/0,3675,pageType=bnHome,00.html?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://www.barnesandnobleuniversity.com/bnu?nhid=bn&userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://www.barnesandnoble.com/include/terms_of_use.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://www.barnesandnoble.com/include/copyright.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp
http://www.barnesandnoble.com/help/nc_privacy_policy.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494055492178&bfdate=08%2D30%2D2001+07%3A28%3A59&salesurl=Ifreevbcode.com/listcode.asp

May/June 96 [AVDF Contents]

AVDF Table of Contents

May / June 1996

Commentary
.NewEvent()
The Heeler
ToyBox

Microsoft Visual Basic
A Classy Little Stack
A Sticky Situation
Generating and Handling Events from VB4 Classes
Knowledge of the Art
Parsing Expressions of Interest
Visual Basic Collections
WISE Tips
Product Reviews
AutoCoder
ErgoPack

Microsoft Access / the Jet Engine
Distributing MDBs on CDROM
The Executioner Is In
SetDataAccessOption

Delphi
OPUS DirectAccess for Delphi 2

http://www.avdf.com/may96/index.html (1 of 2) [8/30/01 7:31:52 AM]

http://www.avdf.com/search.html
http://www.avdf.com/index.html
http://www.avdf.com/may96/newevent.html
http://www.avdf.com/may96/heeler.html
http://www.avdf.com/may96/toybox.html
http://www.avdf.com/may96/art_stack.html
http://www.avdf.com/may96/art_sticky.html
http://www.avdf.com/may96/art_vb4class.html
http://www.avdf.com/may96/art_bookrev.html
http://www.avdf.com/may96/art_parsing.html
http://www.avdf.com/may96/art_wise.html
http://www.avdf.com/may96/art_autocoder.html
http://www.avdf.com/may96/art_ergopack.html
http://www.avdf.com/may96/acc_cdrom.html
http://www.avdf.com/may96/acc_execute.html
http://www.avdf.com/may96/acc_setdata.html
http://www.avdf.com/may96/delf_opus.html

May/June 96 [AVDF Contents]

Microsoft Excel
Baarns Excel to Web Table Converter

Java
Java and the Internet Scene
The Java Puzzle
Java Java Gui

SQL Server
Cool Things in SQL Server 6.0

ToolBook
Bringing VB Declares to ToolBook
ToolBook and Visual Basic DDE
Using VBXs in Toolbook 4.0

Technical Support
Product Support
Programming Support

AVDF Humour
The Darwin Awards
Deliverables
If God created the world on a Unix box
Lurking Computer Viruses

[SUGGESTION BOX]

[HOME] [TABLE OF CONTENTS] [SEARCH]

http://www.avdf.com/may96/index.html (2 of 2) [8/30/01 7:31:52 AM]

http://www.avdf.com/may96/xl_baarns.html
http://www.avdf.com/may96/java_internet.html
http://www.avdf.com/may96/java_puzzle.html
http://www.avdf.com/may96/java_javagui.html
http://www.avdf.com/may96/tb_declares.html
http://www.avdf.com/may96/tb_dde.html
http://www.avdf.com/may96/tb_usingvbx.html
http://www.avdf.com/may96/ts_index1.html
http://www.avdf.com/may96/ts_index2.html
http://www.avdf.com/may96/hum_kill.html
http://www.avdf.com/may96/hum_deliv.html
http://www.avdf.com/may96/hum_god.html
http://www.avdf.com/may96/hum_virus.html
http://www.avdf.com/suggest.html
http://www.avdf.com/
http://www.avdf.com/search.html

Cool Things in SQL Server 6.0 [AVDF Article]

Cool Things in SQL Server 6.0

by Lisa Hooper - GUI Computing

Microsoft SQL Server 6.0 is said to extend the performance, reliability and scalability of earlier versions.

The enhancements seen in the move to version 6.0 are certainly the most extensive made to the product so far. These include:

● enterprise-wide system administration
● built-in data replication
● scrollable server cursors
● task scheduling
● removable media support
● locking and concurrency enhancements
● enhanced error handling

With this amazing array of new and improved features there is no doubt that DBAs and developers alike will be jumping for
joy at the thought of getting their hands on this baby. But what I really want to know, as with any new version of a product, is
how will this product make life easier for me as a developer?

Auto Sequencing

We all know how useful it can be to use an automatic sequencing column for a primary key. MSAccess gave us the counter
data type, Oracle gave us the sequence object, and SQL Server pre 6.0 gave us nothing. Yes, we could manually implement a
sequence by creating triggers:

 CREATE TRIGGER SequenceTrigger ON Atable FOR INSERT ASDECLARE @maxc int, @newc int
 SELECT @maxc = (SELECT Max(SequencedField) FROM TableToSequence)
 SELECT @newc = (SELECT SequencedField FROM inserted)
 IF @newc = 0 OR @maxc <> @newc SELECT @maxc = @maxc + 1
 UPDATE TableTo Sequence SET SequencedField = @maxc WHERE SequencedField = @newc

but this entails remembering to write this code for every sequence field, not to mention the performance overhead of the MAX
operation.

SQL Server 6.0 introduces a new auto sequencing column called "identity", which has a seed and increment. An "identity" will
automatically generate unique values - abolishing the need for triggers for sequence generation. The good thing about this is
that the data structure is stored in memory so it is fast, not like select max. The identity column however does not enforce
uniqueness. Unlike the MSAccess counter field it can be disabled temporarily to insert specific values.

 SET identity_insert jobs ON Allows you to insert specific values

 insert into jobs (job_id, job_desc, min_lvl, max_lvl)
 values(21,"Lisa's description",45,76) Enter specific value for job_id

 SET identity_insert jobs OFF Turns the auto sequencing mechanism back on

http://www.avdf.com/may96/sql_server6.html (1 of 4) [8/30/01 7:32:38 AM]

http://www.avdf.com/search.html
http://www.avdf.com/index.html

Cool Things in SQL Server 6.0 [AVDF Article]

 insert into jobs (job_desc, min_lvl, max_lvl)
 values("Lisa's next description",45,76) Do not manually enter a value for job_id

The feature is excellent for reviving lost numbers.

The last identity value inserted into a table can be found using the global variable @@identity. There is also a new keyword
IDENTITYCOL which means you don't have to know the name of the identity column. ie., Select * from jobs where
IDENTITYCOL = 12.

Declarative Referential Integrity

New declarative referential integrity and constraints can provide an alternative mechanism to triggers for many types of data
integrity issues. The need for triggers will not be eliminated as they will always be required for particular business rules and
complex actions, although they may be greatly reduced.

Declarative referential integrity functionality is convenient and high performance, but is most of all self documenting. Since
declarative integrity is declared as part of the database definition it becomes more concise and less error prone, making life
easier for anyone who has to maintain databases developed by other people.

In previous versions of SQL Server the primary key was set using the stored procedure sp_primarykey. This was only used for
documentation purposes and did not physically enforce a primary key. Primary key constraints are now enforced by creating a
unique index on the specified columns which cannot be directly dropped. The Foreign key constraint provides single or multi
column referential integrity. This constraint does not create and index, but it is obviously advisable to do so for better joint
performance. A table that is referenced by a foreign key constraint cannot be dropped until the constraint is dropped.

Declarative referential integrity can be very useful for strict relational database implementation as it reduces the likelihood of
mistakes. Yet there are times where such a strict implementation may be inhibiting, such as in the early stages of development
when the database structure could be changing rapidly. It could be very annoying if you suddenly had to drop 30 tables from
your database - but before you could do it you had to either drop all your constraints, or work out which order you must drop
your tables.

CASE Expression

The CASE expression is a particularly nice new feature as it greatly simplifies conditional values within SQL. The CASE
expression is similar to decode() in Oracle, and nested immediate ifs in MSAccess. A simple example of this is when it is
necessary to transcribe values into meaningful text (assuming no transcription tables are available).

 SELECT Category =
 CASE type
 WHEN 'am_hist' THEN 'American History'
 WHEN 'hlth_fit' THEN 'Health and Fitness'
 WHEN 'food_nut' THEN 'Food and Nutrition'
 WHEN 'sft_dev' THEN 'Software Development'
 WHEN 'bus_mng' THEN 'Business Management'
 ELSE 'Miscellaneous'
 END
 FROM Titles

http://www.avdf.com/may96/sql_server6.html (2 of 4) [8/30/01 7:32:38 AM]

Cool Things in SQL Server 6.0 [AVDF Article]

The CASE expression is great because it may contain subqueries. This means you can perform operations that check a
numbers of tables for a value and print details depending on the result.

Execute @Text

This is by far my favourite language enhancement. Execute @text supports the execution of a character string. This means that
with the EXECUTE statement, a string can be created with variables that are resolved at execution time - getting around the
fact that you can't normally use variables as object names. This is fantastic for iterating through all tables in a database and
performing a particular function.

In previous versions of SQL Server this would require a separate statement for each table, which in turn meant that any tables
removed or added to the database would require a change to SQL scripts referencing those tables.

For example, the following code would have to be used pre SQL Server 6.0 to drop all tables in a database:

 drop table authors
 drop table discounts
 drop table employee
 drop table jobs
 drop table pub_info
 drop table publishers......................

Note that each time a new table is added to the database this procedure must be changed.

New code:

 DECLARE @next char(30)
 SELECT @next = ' '
 WHILE @next IS NOT NULL Loop through all the user tables in the
database
 BEGIN
 SELECT @next = MIN(name) FROM sysobjects WHERE type = 'U' and name > @next
 If @next IS NOT NULL
 BEGIN
 EXEC ('drop table ' + @next) Drop each table
 END
 END

This is great if your database requires large numbers of batch administration functions.

Temporary Tables and Procedures

There are now two types of temporary tables: private and global.

Private temporary tables are specified with a #, and only the connection in which the table was created has access to the table
(you cannot go and find out the name from sysobjects and have other connections access the table). Temporary tables with
global visibility are specified with ##. These tables are visible to all connections. Global temporary tables are dropped when
the creator is gone and the open count is 0.

http://www.avdf.com/may96/sql_server6.html (3 of 4) [8/30/01 7:32:38 AM]

Cool Things in SQL Server 6.0 [AVDF Article]

Temporary procedures are compiled and cached and can be reused like other stored procedures. Temporary procedures have a
similar syntax to temp tables, ie. local(#) and global (##) and are cleaned up in the same way.

Start Up Procedures

Procedures can now be marked as "startup" and will be executed whenever the SQL Server is started. Startup procedures can
be very useful for performing database administration and validation tasks. These procedures can be created by creating a
stored procedure as normal and then using the system stored procedure sp_makestartup. Multiple procedures can be marked as
startup, but each procedure consumes one user connection. It is advisable that if you do not need to run your startup procedures
in parallel, use one startup procedure to call others for serial execution and the use of only one connection.

With Check Option

The new WITH CHECK OPTION available to views assures that a row can never be added to a view that does not meet the
criteria for the view.

 CREATE VIEW ca_only AS
 SELECT * from authors WHERE state = 'CA'
 WITH CHECK OPTION

This will restrict users from entering any other state besides California. This options also cascades to views on views.

There's heaps more cool stuff to play with in SQL Server 6.0, and if you love the internet and hate SQL Server locking
strategies I suggest you get your hands on the recently released version 6.5.

SQL Server 6.5 will provide another impressive array of new features including:

● automatic deadlock detection and resolution
● replication to ODBC subscribers including DB2, Oracle, Sybase and MSAccess
● replication of text and image datatypes
● EXEC INTO statement to enable the results from remote or extended stored procedures to be stored in tables
● index rebuilding, without dropping and recreating the index

These features are definitely worth looking into, so if my wonderful boss would arrange for me to have a copy I might be able
to do so.

(Boss' Note : Just as soon as we can get hold of a real copy, rest assured Lisa will be playing with it.)

Written by: Lisa Hooper
April 96

[HOME] [TABLE OF CONTENTS] [SEARCH]

http://www.avdf.com/may96/sql_server6.html (4 of 4) [8/30/01 7:32:38 AM]

http://www.avdf.com/bio/bio_hooper.html
http://www.avdf.com/index.html
http://www.avdf.com/search.html

FreeVBCode.com -- Free, High-Quality Visual Basic Source Code: Best Code

Find Code: Advanced Search

Home New Hot Best Forum

News Jobs Links Newsletter Submit Code

Best Code: Page 1 of 29

As judged by the FreeVBCode.com editorial staff, the best code submitted last month was:

 Author

vbSendMail.dll Version 3.50-- Easy E-mail Sending in VB, with Attachments Dean Dusenbery**

More Excellent Code:

Code Example Author

Multithreading Using Active X .EXEs: Demo and Article Srideep Prasad

Professional VB.NET (Wrox Books): Sample Chapter Wrox Publishing

Error-handling Solution for Enterprise VB applications v 3.0 Anonymous

Adjust Brightness/Contrast Level of Images Kanhai Chhugani

Editable Grid Control With Support for Combo Boxes and Check Boxes
Version 2.0

John Conwell

SQL Server and Access Viewer/Editor Version 2.1 Kenneth Hedman

EPaint - Complete Photo/Image Editor Thomas Rabe

HTML Label - Displays Formatted HTML without the WebBrowser Control Anonymous

Resource Viewer for .DLLS/.EXES Arkadiy Olovyannikov*

 Next Page >>

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20

21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29

** Developer of the Month

* Featured Developer

http://freevbcode.com/best.asp (1 of 2) [8/30/01 7:34:49 AM]

http://freevbcode.com/AdvancedSearch.asp
http://freevbcode.com/new.asp
http://freevbcode.com/hot.asp
http://freevbcode.com/forum_home.asp
http://freevbcode.com/vbnews.asp
http://freevbcode.com/jobs.asp
http://freevbcode.com/links.asp
http://freevbcode.com/newsletter.asp
http://freevbcode.com/upload.asp
http://freevbcode.com/ShowCode.Asp?ID=109
http://freevbcode.com/AuthorInfo.asp?AuthorID=2365
http://freevbcode.com/ShowCode.Asp?ID=3155
http://freevbcode.com/AuthorInfo.asp?AuthorID=10396
http://freevbcode.com/ShowCode.Asp?ID=3151
http://freevbcode.com/AuthorInfo.asp?AuthorID=9384
http://freevbcode.com/ShowCode.Asp?ID=2821
http://freevbcode.com/AuthorInfo.asp?AuthorID=10295
http://freevbcode.com/AuthorInfo.asp?AuthorID=6289
http://freevbcode.com/ShowCode.Asp?ID=3088
http://freevbcode.com/AuthorInfo.asp?AuthorID=9976
http://freevbcode.com/ShowCode.Asp?ID=3111
http://freevbcode.com/AuthorInfo.asp?AuthorID=10103
http://freevbcode.com/ShowCode.Asp?ID=3010
http://freevbcode.com/ShowCode.Asp?ID=3091
http://freevbcode.com/AuthorInfo.asp?AuthorID=1149
http://freevbcode.com/best.asp?Page=2
http://freevbcode.com/best.asp?Page=2
http://freevbcode.com/best.asp?Page=3
http://freevbcode.com/best.asp?Page=4
http://freevbcode.com/best.asp?Page=5
http://freevbcode.com/best.asp?Page=6
http://freevbcode.com/best.asp?Page=7
http://freevbcode.com/best.asp?Page=8
http://freevbcode.com/best.asp?Page=9
http://freevbcode.com/best.asp?Page=10
http://freevbcode.com/best.asp?Page=11
http://freevbcode.com/best.asp?Page=12
http://freevbcode.com/best.asp?Page=13
http://freevbcode.com/best.asp?Page=14
http://freevbcode.com/best.asp?Page=15
http://freevbcode.com/best.asp?Page=16
http://freevbcode.com/best.asp?Page=17
http://freevbcode.com/best.asp?Page=18
http://freevbcode.com/best.asp?Page=19
http://freevbcode.com/best.asp?Page=20
http://freevbcode.com/best.asp?Page=21
http://freevbcode.com/best.asp?Page=22
http://freevbcode.com/best.asp?Page=23
http://freevbcode.com/best.asp?Page=24
http://freevbcode.com/best.asp?Page=25
http://freevbcode.com/best.asp?Page=26
http://freevbcode.com/best.asp?Page=27
http://freevbcode.com/best.asp?Page=28
http://freevbcode.com/best.asp?Page=29
http://freevbcode.com/DOM.asp
http://freevbcode.com/Featured.asp

FreeVBCode.com -- Free, High-Quality Visual Basic Source Code: Best Code

Developers About Legal Awards Contact Privacy Advertise

http://freevbcode.com/best.asp (2 of 2) [8/30/01 7:34:49 AM]

http://freevbcode.com/DOM.asp
http://freevbcode.com/about.asp
http://freevbcode.com/legal.asp
http://freevbcode.com/awards.asp
http://freevbcode.com/contact.asp
http://freevbcode.com/privacy.asp
http://freevbcode.com/Advertise.asp

Adjust Brightness/Contrast Level of Images

Find Code: Advanced Search

Home New Hot Best Forum

News Jobs Links Newsletter Submit Code

Adjust Brightness/Contrast Level of Images

Author: Kanhai Chhugani

Category: Screen/Graphics

Type: Modules

Difficulty: Advanced

Version Compatibility: Visual Basic 5 Visual Basic 6

More information: This module allows you to adjust the brightness and contrast level of images in a
picturebox. Includes a library of functions to deal with pixels and colors in VB (that library developed by
Mike D Sutton of EDais, E-Mail: Mike.Sutton@btclick.com, URL: Http://members.xoom.com/EDais/)

A demo application is included.

This code has been viewed 271 times.

Instructions: Click the link below to download the code.

source/briconst.zip

Recommended Book:

Visual Basic Graphics Programming

http://freevbcode.com/ShowCode.Asp?ID=3138 (1 of 2) [8/30/01 7:35:04 AM]

http://freevbcode.com/AdvancedSearch.asp
http://freevbcode.com/new.asp
http://freevbcode.com/hot.asp
http://freevbcode.com/forum_home.asp
http://freevbcode.com/vbnews.asp
http://freevbcode.com/jobs.asp
http://freevbcode.com/links.asp
http://freevbcode.com/newsletter.asp
http://freevbcode.com/upload.asp
http://freevbcode.com/AuthorInfo.asp?AuthorID=10295
http://freevbcode.com/listcode.asp?Category=10
http://freevbcode.com/listcode.asp?Type=5
http://freevbcode.com/listcode.asp?Level=3
http://freevbcode.com/source/briconst.zip

Adjust Brightness/Contrast Level of Images

Developers About Legal Awards Contact Privacy Advertise

http://freevbcode.com/ShowCode.Asp?ID=3138 (2 of 2) [8/30/01 7:35:04 AM]

http://freevbcode.com/DOM.asp
http://freevbcode.com/about.asp
http://freevbcode.com/legal.asp
http://freevbcode.com/awards.asp
http://freevbcode.com/contact.asp
http://freevbcode.com/privacy.asp
http://freevbcode.com/Advertise.asp

Barnes & Noble.com - Visual Basic Graphics Programming: Hands-on Applications and Advanced Color Development with Cdrom

Browse Subjects Kids New Releases Bestsellers Coming Soon

No items in cart.

Same low prices as
always!

Buy two or more
items to qualify.

Bibliography
 Books by Rod

Stephens
 Books by Stephens

About this Item
 Synopsis
 Annotation
 From the Publisher
 Reviews

From the Book
 Table of Contents

 Related Titles

Visual Basic Graphics Programming: Hands-on Applications and Advanced Color
Development with Cdrom
Rod Stephens Stephens

Visual Basic
Graphics
Programming:

Retail Price: $49.99
Our Price: $39.99
You Save: $10.00 (20%)
Readers' Advantage
Price: $37.99 Join Now

In Stock:Ships within 24 hours

Same Day Delivery In
Manhattan
Format: Paperback, 2nd
ed., 736pp.
ISBN: 0471355992
Publisher: Wiley, John & Sons,
Incorporated
Pub. Date: November 1999
Edition Desc: 2ND BK&CD
sales rank: 37,934

 Buy it Now!

As you order, each item will be listed
in Your Shopping Cart in the upper left

corner. You may make changes at
Checkout.

Safe Shopping Guarantee!

Write your own Review
Be the first to write a review

bn.com customers who bought this book also bought:
Sams Teach Yourself Game Programming with Visual Basics in 21 Days with Cdrom, Clayton Walnum
Ready-to-Run Visual Basic Code Library: Tips, Tricks, and Workarounds for Better Programming With
Cdrom, Rod Stephens
Ready-to-Run Visual Basic Code Library: Tips, Tricks, and Workarounds for Better Programming With
Cdrom, Rod Stephens
Ready to Run Visual Basic 5.0 Algorithms, Rod R. Stephens,Kenneth R. Stephens
Advanced Visual Basic 6: Power Techniques for Everyday Programs with Cdrom, Matthew J. Curland,Bill
Storage

ABOUT THIS ITEM

Synopsis

http://shop.barnesandnoble.com/bookSearch/isbnIn...99703&ISBN=0471355992&bfdate=08-30-2001+07:33:00 (1 of 4) [8/30/01 7:35:41 AM]

http://www.barnesandnoble.com/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://ad.doubleclick.net/jump/bn.web.dart/bks_product;kw=;sz=468x60;ord=368004787;tile=1;slinkprefix=userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001%2B07%3A33%3A00;sourceid=00176940494076199703?
http://shop.barnesandnoble.com/shop/cart.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://shop.barnesandnoble.com/account/youraccount.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://www.barnesandnoble.com/help/help.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
https://shop.barnesandnoble.com/Account/order_status.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://www.barnesandnoble.com/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://www.barnesandnoble.com/bookstore.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://shop.barnesandnoble.com/oopbooks/oopsearch.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://www.barnesandnoble.com/textbooks/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://www.barnesandnoble.com/bargain/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://ebooks.barnesandnoble.com/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://www.barnesandnoble.com/articles/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://music.barnesandnoble.com/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://video.barnesandnoble.com/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://www.barnesandnoble.com/vidgames/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://barnesandnoble.enews.com/bn6/main/0,3675,pageType=bnHome,00.html?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://www.barnesandnobleuniversity.com/bnu?nhid=bn&userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://www.barnesandnoble.com/subjects/subjects.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://www.barnesandnoble.com/subjects/children/children.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://www.barnesandnoble.com/newreleases/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://www.barnesandnoble.com/bestsellers/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://www.barnesandnoble.com/comingsoon/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://shop.barnesandnoble.com/booksearch/search.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://shop.barnesandnoble.com/shop/cart.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://www.barnesandnoble.com/promo/coupon/popups/free_shipping_details.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://shop.barnesandnoble.com/booksearch/results.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00&author_last=Stephens&author_first=Rod&match=exact&options=and
http://shop.barnesandnoble.com/booksearch/results.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00&author_last=Stephens&author_first=Rod&match=exact&options=and
http://shop.barnesandnoble.com/booksearch/results.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00&author_last=Stephens&match=exact&options=and
http://shop.barnesandnoble.com/booksearch/results.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00&author_last=Stephens&author_first=Rod&match=exact&options=and
http://shop.barnesandnoble.com/booksearch/results.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00&author_last=Stephens&match=exact&options=and
http://shop.barnesandnoble.com/shop/raproduct.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://www.barnesandnoble.com/help/nc_safe_shopping.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://shop.barnesandnoble.com/booksearch/isbninquiry.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00&isbn=0471355992#toc
http://shop.barnesandnoble.com/reviews/reviews.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00&isbn=0471355992&userType=U
http://shop.barnesandnoble.com/bookSearch/isbnInquiry.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00&isbn=067231987X
http://shop.barnesandnoble.com/bookSearch/isbnInquiry.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00&isbn=047133345X
http://shop.barnesandnoble.com/bookSearch/isbnInquiry.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00&isbn=047133345X
http://shop.barnesandnoble.com/bookSearch/isbnInquiry.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00&isbn=047133345X
http://shop.barnesandnoble.com/bookSearch/isbnInquiry.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00&isbn=047133345X
http://shop.barnesandnoble.com/bookSearch/isbnInquiry.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00&isbn=0471242683
http://shop.barnesandnoble.com/bookSearch/isbnInquiry.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00&isbn=0201707128

Barnes & Noble.com - Visual Basic Graphics Programming: Hands-on Applications and Advanced Color Development with Cdrom

This is the only hands-on guide to creating the full range of Visual Basic (VB) color graphics
applications—from those using as few as 16 color images to "true-color" applications that use more than
256 images. In addition to covering all of VB's new functionality and API services, this Second Edition
contains all new examples, along with advanced color models (on the CD-ROM) with which readers can
generate their own programs.

Annotation
"...this second edition contains new features on DirectDraw, print preview, image processing, controlling
animation using simulation, fractals & tilings, Gouraud & Phong shading, ray tracing for new kinds of
objects, analytic geometry & more.

From the Publisher
All the tools you need to create the full range of Visual Basic(r) color graphics applications
Expert Rod Stephens provides you with everything you need to add advanced graphics to your
applications in this in-depth introduction to graphic programming with Microsoft Visual Basic. From images
using as few as 16 colors to "true-color" applications that use more than 16 million, he shows you how to
create the full range of color graphics applications. You'll learn how to use Visual Basic controls to create
impressive graphic effects without having to buy expensive add-on products.
This book/CD-ROM package also explains how to integrate imaging, animation, and two- and three-
dimensional graphics into an application. And you'll find the tools to manipulate color images, overlay one
image on another, build scrolled windows, and much more.
The Second Edition covers:
*New API functions
*Bitmap image morphing
*New algorithms for hidden surface removal
*Print preview with multiple pages and scales
*Image processing, including high color and true color
*Examples of controlling animation using simulation
*New examples that demonstrate shape-distorting transformations
*New examples of fractals and tilings
*Gouraud shading, Phong shading, and texturing
*Ray tracing speed improvements
*Ray tracing for new kinds of objects
The CD-ROM includes:
*More than 400 complete, ready-to-run example programs
*Pictures to use with the example programs
*Images generated by the programs
*Color images of many of the figures from the book
*Source code for all example programs from the First Edition

 From the Critics
From Booknews
A book/CD-ROM introduction to graphic programming with Microsoft Visual Basic, for those with
background in fundamentals of Visual Basic. Contains sections on working with Windows, image
processing, animation, 2-D and 3-D graphics, and beyond three dimensions. The CD- ROM includes some
400 example programs, images, and source code. The author is a software engineer. This second edition
covers new API functions and new algorithms, and uses 24-bit color almost exclusively. Annotation c.
Book News, Inc., Portland, OR (booknews.com)

FROM THE BOOK

 Table of Contents

WORKING WITH WINDOWS.

http://shop.barnesandnoble.com/bookSearch/isbnIn...99703&ISBN=0471355992&bfdate=08-30-2001+07:33:00 (2 of 4) [8/30/01 7:35:41 AM]

Barnes & Noble.com - Visual Basic Graphics Programming: Hands-on Applications and Advanced Color Development with Cdrom

Visual Basics.

Using the API.

Advanced Color.

Advanced Text.

Printing.

IMAGE PROCESSING.

Point Processes.

Area Processes.

ANIMATION.

Bitmap Animation.

Advanced Animation.

TWO-DIMENSIONAL GRAPHICS.

Fractals and Tilings.

Drawing Curves.

Two-Dimensional Transformations.

THREE-DIMENSIONAL GRAPHICS.

Three-Dimensional Transformations.

Surfaces.

Hidden Surface Removal.

Shading Models.

Ray Tracing.

BEYOND THREE DIMENSIONS.

Higher-Dimensional Transformations.

Mathematical Tools.

Index.

RELATED TITLES

http://shop.barnesandnoble.com/bookSearch/isbnIn...99703&ISBN=0471355992&bfdate=08-30-2001+07:33:00 (3 of 4) [8/30/01 7:35:41 AM]

Barnes & Noble.com - Visual Basic Graphics Programming: Hands-on Applications and Advanced Color Development with Cdrom

More on this subject
Computers

Find other books using these keywords:

Computer graphics

Home | Bookstore | Out of Print | College Textbooks | Bargain Books | eBooks | Articles for Download | Music
DVD & Video | PC & Video Games | Prints & Posters | Magazine Subscriptions | Online Courses

 Back to Top

Terms of Use, Copyright, and Privacy Policy

Copyright 1997, 1998, 1999, 2000, 2001 barnesandnoble.com llc

http://shop.barnesandnoble.com/bookSearch/isbnIn...99703&ISBN=0471355992&bfdate=08-30-2001+07:33:00 (4 of 4) [8/30/01 7:35:41 AM]

http://www.barnesandnoble.com/subjects/computer/computer.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://www.barnesandnoble.com/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://www.barnesandnoble.com/bookstore.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://shop.barnesandnoble.com/oopbooks/oopsearch.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://www.barnesandnoble.com/textbooks/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://www.barnesandnoble.com/bargain/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://ebooks.barnesandnoble.com/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://www.barnesandnoble.com/articles/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://music.barnesandnoble.com/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://video.barnesandnoble.com/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://www.barnesandnoble.com/vidgames/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://posters.barnesandnoble.com/index.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://barnesandnoble.enews.com/bn6/main/0,3675,pageType=bnHome,00.html?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://www.barnesandnobleuniversity.com/bnu?nhid=bn&userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://www.barnesandnoble.com/include/terms_of_use.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://www.barnesandnoble.com/include/copyright.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00
http://www.barnesandnoble.com/help/nc_privacy_policy.asp?userid=0HYC1A0FGI&mscssid=&sourceid=00176940494076199703&bfdate=08%2D30%2D2001+07%3A33%3A00

Editable Grid Control With Support for Combo Boxes and Check Boxes Version 2.0

Find Code: Advanced Search

Home New Hot Best Forum

News Jobs Links Newsletter Submit Code

Editable Grid Control With Support for Combo Boxes and Check Boxes
Version 2.0

Author: John Conwell

Category: Forms and Controls

Type: Controls

Difficulty: Intermediate

Version Compatibility: Visual Basic 6

More information: This ocx is an extension of the EasyFlex.ocx that was originally developed by
Muhammad Jauhari Saealal and submitted to FreeVBCode. The original ocx used a textbox to enable
easy editing functionality of an empty FlexGrid control.

I needed a grid control that had more functionality so I've added the ability to define columns as combo
boxes instead of text boxes. I've also added the ability to define columns as checkboxes. I've also
exposed many more properties and methods of the underlying FlexGrid then the EasyGrid exposed.

Version 2.0 (08/17/01) adds a number of new properties, methods, and events.

This code has been viewed 2225 times.

Instructions: Click the link below to download the code.

source/CoolFlex.zip

http://freevbcode.com/ShowCode.Asp?ID=3071 (1 of 2) [8/30/01 5:43:23 PM]

http://freevbcode.com/AdvancedSearch.asp
http://freevbcode.com/new.asp
http://freevbcode.com/hot.asp
http://freevbcode.com/forum_home.asp
http://freevbcode.com/vbnews.asp
http://freevbcode.com/jobs.asp
http://freevbcode.com/links.asp
http://freevbcode.com/newsletter.asp
http://freevbcode.com/upload.asp
http://freevbcode.com/AuthorInfo.asp?AuthorID=6289
http://freevbcode.com/listcode.asp?Category=1
http://freevbcode.com/listcode.asp?Type=4
http://freevbcode.com/listcode.asp?Level=2
http://freevbcode.com/source/CoolFlex.zip

Editable Grid Control With Support for Combo Boxes and Check Boxes Version 2.0

Recommended Book:

Microsoft Visual Basic 6.0 Programmer's Guide

Developers About Legal Awards Contact Privacy Advertise

http://freevbcode.com/ShowCode.Asp?ID=3071 (2 of 2) [8/30/01 5:43:23 PM]

http://freevbcode.com/DOM.asp
http://freevbcode.com/about.asp
http://freevbcode.com/legal.asp
http://freevbcode.com/awards.asp
http://freevbcode.com/contact.asp
http://freevbcode.com/privacy.asp
http://freevbcode.com/Advertise.asp

FreeVBCode.com -- Free, High-Quality Visual Basic Samples and Code

Find Code: Advanced Search

Home New Hot Best Forum

News Jobs Links Newsletter Submit Code

Welcome to FreeVbCode.Com, the place on the Web for the highest quality, free
visual basic code. Currently, there are 1842 code examples and articles on this site.
New code is added every day.

Check out our new Book Chapters and Reviews section.

Every month, we award prizes for the Developer of the Month and Helper of the
Month. To be considered for Developer of the Month, submit a code example; to be
considered for Helper of the Month, answer questions on our forum. The current
developer of the month is Dean Dusenbery and Jim is the current Helper of the
Month.

ASP, HTML, and XML
Beginning, Intermediate, Advanced

Snippets, Applications, Classes, Controls, Modules

Database
Beginning, Intermediate, Advanced

Snippets, Applications, Classes, Controls, Modules

Dates and Math
Beginning, Intermediate, Advanced

Snippets, Applications, Classes, Controls, Modules

Files and Directories
Beginning, Intermediate, Advanced

Snippets, Applications, Classes, Controls, Modules

Forms and Controls
Beginning, Intermediate, Advanced

Snippets, Applications, Classes, Controls, Modules

Office/VBA
Beginning, Intermediate, Advanced

Snippets, Applications, Classes, Controls, Modules

Network/Internet
Beginning, Intermediate, Advanced

Snippets, Applications, Classes, Controls, Modules

Registry
Beginning, Intermediate, Advanced

Snippets, Applications, Classes, Controls, Modules

Screen/Graphics
Beginning, Intermediate, Advanced

Snippets, Applications, Classes, Controls, Modules

String Manipulation
Beginning, Intermediate, Advanced

Snippets, Applications, Classes, Controls, Modules

http://freevbcode.com/default.asp (1 of 2) [8/30/01 5:47:35 PM]

http://freevbcode.com/AdvancedSearch.asp
http://freevbcode.com/new.asp
http://freevbcode.com/hot.asp
http://freevbcode.com/forum_home.asp
http://freevbcode.com/vbnews.asp
http://freevbcode.com/jobs.asp
http://freevbcode.com/links.asp
http://freevbcode.com/newsletter.asp
http://freevbcode.com/upload.asp
http://freevbcode.com/prizes.asp
http://freevbcode.com/DOM.ASP
http://freevbcode.com/prizes.asp#helper
http://freevbcode.com/prizes.asp#helper
http://freevbcode.com/Upload.asp
http://freevbcode.com/forum_home.asp
http://freevbcode.com/listcode.asp?Category=5
http://freevbcode.com/listcode.asp?Category=5&Level=1
http://freevbcode.com/listcode.asp?Category=5&Level=2
http://freevbcode.com/listcode.asp?Category=5&Level=3
http://freevbcode.com/listcode.asp?Category=5&type=1
http://freevbcode.com/listcode.asp?Category=5&type=2
http://freevbcode.com/listcode.asp?Category=5&type=3
http://freevbcode.com/listcode.asp?Category=5&type=4
http://freevbcode.com/listcode.asp?Category=5&type=5
http://freevbcode.com/listcode.asp?Category=4
http://freevbcode.com/listcode.asp?Category=4&Level=1
http://freevbcode.com/listcode.asp?Category=4&Level=2
http://freevbcode.com/listcode.asp?Category=4&Level=3
http://freevbcode.com/listcode.asp?Category=4&type=1
http://freevbcode.com/listcode.asp?Category=4&type=2
http://freevbcode.com/listcode.asp?Category=4&type=3
http://freevbcode.com/listcode.asp?Category=4&type=4
http://freevbcode.com/listcode.asp?Category=4&type=5
http://freevbcode.com/listcode.asp?Category=8
http://freevbcode.com/listcode.asp?Category=8&Level=1
http://freevbcode.com/listcode.asp?Category=8&Level=2
http://freevbcode.com/listcode.asp?Category=8&Level=3
http://freevbcode.com/listcode.asp?Category=8&type=1
http://freevbcode.com/listcode.asp?Category=8&type=2
http://freevbcode.com/listcode.asp?Category=8&type=3
http://freevbcode.com/listcode.asp?Category=8&type=4
http://freevbcode.com/listcode.asp?Category=8&type=5
http://freevbcode.com/listcode.asp?Category=7
http://freevbcode.com/listcode.asp?Category=7&Level=1
http://freevbcode.com/listcode.asp?Category=7&Level=2
http://freevbcode.com/listcode.asp?Category=7&Level=3
http://freevbcode.com/listcode.asp?Category=7&type=1
http://freevbcode.com/listcode.asp?Category=7&type=2
http://freevbcode.com/listcode.asp?Category=7&type=3
http://freevbcode.com/listcode.asp?Category=7&type=4
http://freevbcode.com/listcode.asp?Category=7&type=5
http://freevbcode.com/listcode.asp?Category=1
http://freevbcode.com/listcode.asp?Category=1&Level=1
http://freevbcode.com/listcode.asp?Category=1&Level=2
http://freevbcode.com/listcode.asp?Category=1&Level=3
http://freevbcode.com/listcode.asp?Category=1&type=1
http://freevbcode.com/listcode.asp?Category=1&type=2
http://freevbcode.com/listcode.asp?Category=1&type=3
http://freevbcode.com/listcode.asp?Category=1&type=4
http://freevbcode.com/listcode.asp?Category=1&type=5
http://freevbcode.com/listcode.asp?Category=15
http://freevbcode.com/listcode.asp?Category=15&Level=1
http://freevbcode.com/listcode.asp?Category=15&Level=2
http://freevbcode.com/listcode.asp?Category=15&Level=3
http://freevbcode.com/listcode.asp?Category=15&type=1
http://freevbcode.com/listcode.asp?Category=15&type=2
http://freevbcode.com/listcode.asp?Category=15&type=3
http://freevbcode.com/listcode.asp?Category=15&type=4
http://freevbcode.com/listcode.asp?Category=15&type=5
http://freevbcode.com/listcode.asp?Category=2
http://freevbcode.com/listcode.asp?Category=2&Level=1
http://freevbcode.com/listcode.asp?Category=2&Level=2
http://freevbcode.com/listcode.asp?Category=2&Level=3
http://freevbcode.com/listcode.asp?Category=2&type=1
http://freevbcode.com/listcode.asp?Category=2&type=2
http://freevbcode.com/listcode.asp?Category=2&type=3
http://freevbcode.com/listcode.asp?Category=2&type=4
http://freevbcode.com/listcode.asp?Category=2&type=5
http://freevbcode.com/listcode.asp?Category=3
http://freevbcode.com/listcode.asp?Category=3&Level=1
http://freevbcode.com/listcode.asp?Category=3&Level=2
http://freevbcode.com/listcode.asp?Category=3&Level=3
http://freevbcode.com/listcode.asp?Category=3&type=1
http://freevbcode.com/listcode.asp?Category=3&type=2
http://freevbcode.com/listcode.asp?Category=3&type=3
http://freevbcode.com/listcode.asp?Category=3&type=4
http://freevbcode.com/listcode.asp?Category=3&type=5
http://freevbcode.com/listcode.asp?Category=10
http://freevbcode.com/listcode.asp?Category=10&Level=1
http://freevbcode.com/listcode.asp?Category=10&Level=2
http://freevbcode.com/listcode.asp?Category=10&Level=3
http://freevbcode.com/listcode.asp?Category=10&type=1
http://freevbcode.com/listcode.asp?Category=10&type=2
http://freevbcode.com/listcode.asp?Category=10&type=3
http://freevbcode.com/listcode.asp?Category=10&type=4
http://freevbcode.com/listcode.asp?Category=10&type=5
http://freevbcode.com/listcode.asp?Category=9
http://freevbcode.com/listcode.asp?Category=9&Level=1
http://freevbcode.com/listcode.asp?Category=9&Level=2
http://freevbcode.com/listcode.asp?Category=9&Level=3
http://freevbcode.com/listcode.asp?Category=9&type=1
http://freevbcode.com/listcode.asp?Category=9&type=2
http://freevbcode.com/listcode.asp?Category=9&type=3
http://freevbcode.com/listcode.asp?Category=9&type=4
http://freevbcode.com/listcode.asp?Category=9&type=5

FreeVBCode.com -- Free, High-Quality Visual Basic Samples and Code

Lists, Collections, and Arrays
Beginning, Intermediate, Advanced

Snippets, Applications, Classes, Controls, Modules

Miscellaneous
Beginning, Intermediate, Advanced

Snippets, Applications, Classes, Controls, Modules

Multimedia/Games
Beginning, Intermediate, Advanced

Snippets, Applications, Classes, Controls, Modules

Articles and Tutorials

System/API
Beginning, Intermediate, Advanced

Snippets, Applications, Classes, Controls, Modules

Windows 2000
Beginning, Intermediate, Advanced

Snippets, Applications, Classes, Controls, Modules

VB.NET/ASP.NET
Beginning, Intermediate, Advanced

Snippets, Applications, Classes, Controls, Modules

Book Chapters and Reviews

Developers
About
Store
Legal
Awards
Contact
Privacy
Advertise

All Snippets
All Applications

All Classes
All Controls
All Modules

All Beginning
All Intermediate

All Advanced

http://freevbcode.com/default.asp (2 of 2) [8/30/01 5:47:35 PM]

http://freevbcode.com/listcode.asp?Category=12
http://freevbcode.com/listcode.asp?Category=12&Level=1
http://freevbcode.com/listcode.asp?Category=12&Level=2
http://freevbcode.com/listcode.asp?Category=12&Level=3
http://freevbcode.com/listcode.asp?Category=12&type=1
http://freevbcode.com/listcode.asp?Category=12&type=2
http://freevbcode.com/listcode.asp?Category=12&type=3
http://freevbcode.com/listcode.asp?Category=12&type=4
http://freevbcode.com/listcode.asp?Category=12&type=5
http://freevbcode.com/listcode.asp?Category=13
http://freevbcode.com/listcode.asp?Category=13&Level=1
http://freevbcode.com/listcode.asp?Category=13&Level=2
http://freevbcode.com/listcode.asp?Category=13&Level=3
http://freevbcode.com/listcode.asp?Category=13&type=1
http://freevbcode.com/listcode.asp?Category=13&type=2
http://freevbcode.com/listcode.asp?Category=13&type=3
http://freevbcode.com/listcode.asp?Category=13&type=4
http://freevbcode.com/listcode.asp?Category=13&type=5
http://freevbcode.com/listcode.asp?Category=11
http://freevbcode.com/listcode.asp?Category=11&Level=1
http://freevbcode.com/listcode.asp?Category=11&Level=2
http://freevbcode.com/listcode.asp?Category=11&Level=3
http://freevbcode.com/listcode.asp?Category=11&type=1
http://freevbcode.com/listcode.asp?Category=11&type=2
http://freevbcode.com/listcode.asp?Category=11&type=3
http://freevbcode.com/listcode.asp?Category=11&type=4
http://freevbcode.com/listcode.asp?Category=11&type=5
http://freevbcode.com/listcode.asp?Articles=1
http://freevbcode.com/listcode.asp?Category=6
http://freevbcode.com/listcode.asp?Category=6&Level=1
http://freevbcode.com/listcode.asp?Category=6&Level=2
http://freevbcode.com/listcode.asp?Category=6&Level=3
http://freevbcode.com/listcode.asp?Category=6&type=1
http://freevbcode.com/listcode.asp?Category=6&type=2
http://freevbcode.com/listcode.asp?Category=6&type=3
http://freevbcode.com/listcode.asp?Category=6&type=4
http://freevbcode.com/listcode.asp?Category=6&type=5
http://freevbcode.com/listcode.asp?Category=14
http://freevbcode.com/listcode.asp?Category=14&Level=1
http://freevbcode.com/listcode.asp?Category=14&Level=2
http://freevbcode.com/listcode.asp?Category=14&Level=3
http://freevbcode.com/listcode.asp?Category=14&type=1
http://freevbcode.com/listcode.asp?Category=14&type=2
http://freevbcode.com/listcode.asp?Category=14&type=3
http://freevbcode.com/listcode.asp?Category=14&type=4
http://freevbcode.com/listcode.asp?Category=14&type=5
http://freevbcode.com/listcode.asp?Category=16
http://freevbcode.com/listcode.asp?Category=16&Level=1
http://freevbcode.com/listcode.asp?Category=16&Level=2
http://freevbcode.com/listcode.asp?Category=16&Level=3
http://freevbcode.com/listcode.asp?Category=16&type=1
http://freevbcode.com/listcode.asp?Category=16&type=2
http://freevbcode.com/listcode.asp?Category=16&type=3
http://freevbcode.com/listcode.asp?Category=16&type=4
http://freevbcode.com/listcode.asp?Category=16&type=5
http://freevbcode.com/DOM.asp
http://freevbcode.com/about.asp
http://freevbcode.com/store.asp
http://freevbcode.com/legal.asp
http://freevbcode.com/awards.asp
http://freevbcode.com/contact.asp
http://freevbcode.com/privacy.asp
http://freevbcode.com/Advertise.asp
http://vbwire.com/
http://aspwire.com/
http://freevbcode.com/listcode.asp?type=1
http://freevbcode.com/listcode.asp?type=2
http://freevbcode.com/listcode.asp?type=3
http://freevbcode.com/listcode.asp?type=4
http://freevbcode.com/listcode.asp?type=5
http://freevbcode.com/listcode.asp?Level=1
http://freevbcode.com/listcode.asp?Level=2
http://freevbcode.com/listcode.asp?Level=3

FreeVBCode.Com -

Find Code:

Home New Hot Best Forum

News Jobs Links Newsletter Submit Code

BOOK CHAPTERS AND REVIEWS (21)

Page 1 of 3

A Fast-Track Guide to ASP.NET (Sample Chapter, Professional ASP.NET)*

Developing XML Solutions From MS Press: Sample Chapter*

Inside SQL Server 2000 from MS Press: Sample Chapter*

Professional C# Sample Chapter: Graphics with GDI+*

Professional SQL Server 2000 Database Design: Sample Chapter*

Professional VB.NET (Wrox Books): Sample Chapter*

Programming Microsoft SQL Server 2000 with XML: Sample Chapter *

XML and SOAP Programming for BizTalk Servers: Sample Chapter*

Beginning ASP.NET (Wrox): Sample Chapter
Book Review: Inside SQL Server 2000 (MS Press)

 Next Page >>

1 | 2 | 3

* Excellent Code

http://freevbcode.com/listcode.asp?Chapter=1 (1 of 2) [8/30/01 5:48:05 PM]

http://freevbcode.com/new.asp
http://freevbcode.com/hot.asp
http://freevbcode.com/forum_home.asp
http://freevbcode.com/vbnews.asp
http://freevbcode.com/jobs.asp
http://freevbcode.com/links.asp
http://freevbcode.com/newsletter.asp
http://freevbcode.com/upload.asp
http://freevbcode.com/ShowCode.Asp?ID=2891
http://freevbcode.com/ShowCode.Asp?ID=3057
http://freevbcode.com/ShowCode.Asp?ID=3056
http://freevbcode.com/ShowCode.Asp?ID=2896
http://freevbcode.com/ShowCode.Asp?ID=2895
http://freevbcode.com/ShowCode.Asp?ID=3151
http://freevbcode.com/ShowCode.Asp?ID=3055
http://freevbcode.com/ShowCode.Asp?ID=3076
http://freevbcode.com/ShowCode.Asp?ID=3154
http://freevbcode.com/ShowCode.Asp?ID=3150
http://freevbcode.com/listcode.asp?Page=3&Chapter=1

FreeVBCode.Com -

Recommended Book:

Microsoft Visual Basic 6.0 Programmer's Guide

Developers About Legal Awards Contact Privacy Advertise

http://freevbcode.com/listcode.asp?Chapter=1 (2 of 2) [8/30/01 5:48:05 PM]

http://freevbcode.com/DOM.asp
http://freevbcode.com/about.asp
http://freevbcode.com/legal.asp
http://freevbcode.com/awards.asp
http://freevbcode.com/contact.asp
http://freevbcode.com/privacy.asp
http://freevbcode.com/Advertise.asp

FreeVBCode.Com -

Find Code:

Home New Hot Best Forum

News Jobs Links Newsletter Submit Code

BOOK CHAPTERS AND REVIEWS (21)

Page 2 of 3

Book Review: Murach's Visual Basic 6
Book Review: Professional ASP.NET
Book Review: Programming Microsoft SQL Server 2000 with XML
Microsoft BizTalk Server 2000 Documented: Sample Chapter
Microsoft SQL Server 2000 Analysis Services Step-by-Step: Sample Chapter
Murachs Visual Basic 6: Sample Chapter
Professional BizTalk: Sample Chapter
Professional SQL Server 2000 Programming: Sample Chapter
Professional XML, 2nd Edition: Sample Chapter
VB.NET Programming with the Public Beta: Sample Chapter

<< Previous Page Next Page >>

1 | 2 | 3

Recommended Book:

Microsoft Visual Basic 6.0 Programmer's Guide

http://freevbcode.com/listcode.asp?Page=2&Chapter=1 (1 of 2) [8/30/01 5:48:35 PM]

http://freevbcode.com/new.asp
http://freevbcode.com/hot.asp
http://freevbcode.com/forum_home.asp
http://freevbcode.com/vbnews.asp
http://freevbcode.com/jobs.asp
http://freevbcode.com/links.asp
http://freevbcode.com/newsletter.asp
http://freevbcode.com/upload.asp
http://freevbcode.com/ShowCode.Asp?ID=3100
http://freevbcode.com/ShowCode.Asp?ID=3048
http://freevbcode.com/ShowCode.Asp?ID=3117
http://freevbcode.com/ShowCode.Asp?ID=3078
http://freevbcode.com/ShowCode.Asp?ID=3077
http://freevbcode.com/ShowCode.Asp?ID=3018
http://freevbcode.com/ShowCode.Asp?ID=3084
http://freevbcode.com/ShowCode.Asp?ID=3065
http://freevbcode.com/ShowCode.Asp?ID=3066
http://freevbcode.com/ShowCode.Asp?ID=2894
http://freevbcode.com/listcode.asp?Page=1&Chapter=1
http://freevbcode.com/listcode.asp?Page=3&Chapter=1
http://freevbcode.com/listcode.asp?Page=1&Chapter=1
http://freevbcode.com/listcode.asp?Page=3&Chapter=1

FreeVBCode.Com -

Developers About Legal Awards Contact Privacy Advertise

http://freevbcode.com/listcode.asp?Page=2&Chapter=1 (2 of 2) [8/30/01 5:48:35 PM]

http://freevbcode.com/DOM.asp
http://freevbcode.com/about.asp
http://freevbcode.com/legal.asp
http://freevbcode.com/awards.asp
http://freevbcode.com/contact.asp
http://freevbcode.com/privacy.asp
http://freevbcode.com/Advertise.asp

http://www.pearsoncustom.com/link/visualbasic/pseudocode.html

Pseudocode: Instructions in language that is part programming
code, part English.

PUBLIC SITES:

Diagram
Some brief notes with a diagram on pseudocode. Site maintained by the University of
Texas.

Planning & Writing Visual Basic Programs
The creation of a computer program from start to finish, including a discussion of
pseudocode. Site maintained by Newman College.

Pseudocode Examples
Examples of pseudocode are presented. Site maintained by the University of North Florida.

Structured Programming
Pseudocode is discussed within the context of structured programming at this Brigham
Young University site.

Pseudocode Guidelines
Part of an introduction to engineering computation, this web page explains what
pseudocode is and provides an example. Site hsoted at Rice University.

Real Programming Statements
An outline of a program written in a form that can easily be converted into real
programming statements. Site maintained by Webopedia.

Copyright © 1999 - 2001 by Pearson Custom Publishing. All rights reserved. This copyright material may not be
published, broadcast or redistributed in any manner.

Contact Us

http://www.pearsoncustom.com/link/visualbasic/pseudocode.html [8/31/01 5:14:29 AM]

http://www.pearsoncustom.com/link/citationstyles.html
http://www.pearsoncustom.com/allpages/pseudocode_bot.html
http://www-cse.uta.edu/~holder/courses/cse2320/lectures/l10/node22.html
http://www.unf.edu/~broggio/cop2221/2221pseu.htm
http://soais.byu.edu/courses/ISYS440/Fall1999/Structured.htm
http://www.caam.rice.edu/~caam211/JZoss/pseudocode.html
http://www.zdwebopedia.com/TERM/p/pseudocode.html
mailto:Debbie.Coniglio@pearsoned.com

Visual Basic - Chapter 1

Chapter 1 Planning and Writing Visual Basic
Programs

The simplest computer programs are those which require only a number of separate sequenced steps. In
this section you will plan and write computer programs for problems requiring a solution of this kind.

Problem 1

Consider writing a computer program for the following problem.

Wanneroo Turf Farm sells instant lawn for $19 per square metre and charges $45 for delivery. A
program is required to compute the charge for customers purchasing lawn and having it delivered.

A Visual Basic solution is shown below. It is made up of a form onto which we can put controls. The
form and controls have properties that can be set.

Planning

In the planning stage it is important to determine many things:

1. the information the computer is going to give to the user (Output)

http://www.newman.wa.edu.au/technology/10CSD/html/ch01/ch01.htm (1 of 6) [8/31/01 5:15:13 AM]

Visual Basic - Chapter 1

2. the data that the computer needs to solve the problem (Input)
3. the calculations which are required to obtain the cost of lawn
4. the controls needed and the properties of the form and the controls

Output

The computer is going to show the final cost of buying the lawn.

Input

The computer needs to know the amount of lawn (in square meters) that is needed.

Processing

The computer needs to multiply the number of square meters of lawn by 19 and then add 45 to that
answer.

Forms and Controls

By setting the properties of the form and each control, the screen above can be duplicated.

Form

Property Setting

BackColor &H00008080& (Green)

Caption Wanneroo Turf Farm

Name FrmStart

http://www.newman.wa.edu.au/technology/10CSD/html/ch01/ch01.htm (2 of 6) [8/31/01 5:15:13 AM]

Visual Basic - Chapter 1

Controls

This applications needs six Label controls, one Image control, one TextBox
control and two CommandButton controls.

It is a good idea to give each control a meaningful and appropriate name.
The following naming convention applies where Xxxx is the part of the
name you give:

Control Name

Form FrmXxxx

Label LblXxxxx

Command CmdXxxxx

Image ImgXxxxx

Text TxtXxxxx

A complete guide to the naming convention can be found in books like Microsoft's Visual Basic 4 Step
by Step.

A guide to settings control properties for the Wanneroo Turf Farm program

Object/Control Property Setting

Image Name ImgLogo

 Picture Metafile (the name of the file is not shown)

Label Name LblHeading

 BackStyle 0-Transparent

 Caption Wanneroo Turf Farm

 Font Arial Black

 ForeColor (Blue)

TextBox Name TxtAmount

 Text (blank)

 Font Arial Black

http://www.newman.wa.edu.au/technology/10CSD/html/ch01/ch01.htm (3 of 6) [8/31/01 5:15:13 AM]

Visual Basic - Chapter 1

CommandButton Name CmdCalculate

 Caption &Calculate

Label Name LblAnswer

 Caption (blank)

Getting the computer to work it out.

Think carefully! To calculate the cost, it is necessary to know the number of square metres of lawn
purchased, lets call this TurfAmount. To calculate the cost (let us call this TurfCost), it is necessary to
multiply TurfAmount by Price and add DeliveryCost. The result can then be displayed in a Label
control.

Pseudocode

Get Amount of lawn (TurfAmount)
Set TurfCost To TurfAmount * Price + DeliveryCost
Write TurfCost

In the planning, it is important to decide on what constants and variables are needed to solve the
problem. In this instance, the constant values are Price and DeliveryCost, and the variable values are
TurfAmount and TurfCost. The names are descriptive and help to describe the process.

Code

The following BASIC code has been created from the plan and is activated when the calculate button is
clicked on by the mouse. The results are shown in a message box.

Private Sub CmdCalculate_Click()
 Const Price = 19
 Const DeliveryCost = 45

 Dim TurfAmount As Integer
 Dim TurfCost As Integer

 TurfAmount = TxtAmount.Text
 TurfCost = TurfAmount * Price + DeliveryCost
 LblAnswer.Caption = "$" & TurfCost
End Sub

http://www.newman.wa.edu.au/technology/10CSD/html/ch01/ch01.htm (4 of 6) [8/31/01 5:15:13 AM]

Visual Basic - Chapter 1

A BASIC Program

When you look carefully at a BASIC program, you should be able to understand the way the computer
will solve the problem. A program consists of a series of lines of code which contain the instructions that
the computer follows to return the required answer.

1. Some words that are in the program are special and are recognised by the computer. These are
Const and Dim.

2. The Const tells the computer that there are some values that do not change throughout the
program. It is not a good idea to just put the numbers in the main part of the program, especially if
they might change in the future..

3. The Dim tells the computer of the names of the variables and the type of data they represent.
Variables are names given to values used by the computer. We must decide the name of the
variable.

4. After the value for TurfAmount has been stored, the assignment statement (TurfCost =
TurfAmount * Price + DeliveryCost) causes the computer to perform the necessary calculation to
find TurfCost.

5. The "$" & TurfCost is put into a label. The $ symbol appears in the label because it is in quotes.
The value of TurfCost is shown in the label because LawnCost was not contained within quotes.
The & symbol instructs the computer to join the two parts of the message together.

6. To signal the end of the program, the End statement is used. This is put into the End command
button Mouse_Click event.

Exercise 1

1. Tony Rider's Curtains charge $28 per metre of material and a fixed charge of $105 when making
curtains for customers. A program is to be created to perform the calculations for Tony Rider.
First the number of metres of material is needed. The cost can then be calculated by multiplying
this by 28 and adding 105. Complete a plan for this program to assist Tony Rider in the
calculation of his customers' accounts. Use the Turf Program as a guide to create a Visual Basic
program to perform this task.

2. Metro Meat Works pays its employees a salary of $255 per week plus $25 per hour for every hour
worked during the week. Design and write a Visual Basic program that will calculate the amount
of pay owed to the employees of Metro Meat Works.

3. Churchland Fencing Contractors charges customers $74 per metre for Trim-Lock fencing and $49
per metre to erect it. Churchland Fencing has contracted you to write a computer program using
Visual Basic that will calculate the cost of supplying and installing a new fence. Design and write
the program that could be used for this purpose.

http://www.newman.wa.edu.au/technology/10CSD/html/ch01/ch01.htm (5 of 6) [8/31/01 5:15:13 AM]

Visual Basic - Chapter 1

Author: Mike Leishman

Last Updated 8 June 1998

http://www.newman.wa.edu.au/technology/10CSD/html/ch01/ch01.htm (6 of 6) [8/31/01 5:15:13 AM]

http://www.pearsoncustom.com/link/visualbasic/flowcharts.html

Flowchart: Tool for graphically depicting the logical steps to
carry out a task and show how the steps relate to each other.

PUBLIC SITES:

Introduction to Flowcharts
Contains a complete introduction to flow charts using graphs and symbols. Site managed
by Jean W. LeLoup & Robert Ponterio at Suny Cortland.

Deployment Flowchart
Guidelines and helpful hints for using this tool; site maintained at Arizona State
University.

Example
Contains an example of a flow chart using diagrams to show the flow of information in a
typical writing project, and the chart is broken down into the various processes in the
project. Site managed by About.com, Inc.

Flowcharts and Storyboards
Links to other academic sites offering information on building a flowchart, flowchart
symbols, and more. Site hosted by the University of Texas at Austin.

Flowcharting Guidelines
A bulleted list of guidelines from a System Audit Office manual at the University of
Texas.

Importance of Flowcharts
Contains an explanation of why we need to know flow charts. Site maintained at San
Francisco State University.

Copyright © 1999 - 2001 by Pearson Custom Publishing. All rights reserved. This copyright material may not be
published, broadcast or redistributed in any manner.

Contact Us

http://www.pearsoncustom.com/link/visualbasic/flowcharts.html (1 of 2) [8/31/01 5:48:41 AM]

http://www.pearsoncustom.com/link/citationstyles.html
http://www.pearsoncustom.com/allpages/flowcharts_bot.html
http://www.west.asu.edu/tqteam/tools/deploy.html
http://techwriting.about.com/arts/techwriting/library/weekly/aa092897.htm?terms=flowcharts&PM=112_300_T
http://uts.cc.utexas.edu/~best/html/steps/design.htm#flowcharts
http://www.utsystem.edu/AUD/manual/flowchrt.htm
http://userwww.sfsu.edu/~pfresina/700html/02whyflowcharts.html
mailto:Debbie.Coniglio@pearsoned.com

http://www.pearsoncustom.com/link/visualbasic/flowcharts.html

http://www.pearsoncustom.com/link/visualbasic/flowcharts.html (2 of 2) [8/31/01 5:48:41 AM]

Flowcharts and Storyboards

Integrating Technology in the Foreign Language
Classroom

Jean LeLoup & Bob Ponterio
SUNY Cortland
© 1997, 2000

 Flowcharts and Storyboards

Like an outline for a paper, flowcharts and storyboards save time and improve the quality of the
final product by assisting us in the planning and preparation stages of a project. They help us plan
what we are going to do so we know where a project is going. Then they keep us focused on the
final goal.

A flow chart is a graphical representation showing the flow of control among the steps in a
program, people in an organization, or pages of a presentation. The elements themselves are
represented by simple icons (circles, rectangles, diamonds) to allow the viewer to focus on the
way the user will move through the steps in a process. A flow chart indicates sequences and
decision points as well as starting and stopping points. It is easier to grasp relationships visually
in a flowchart than in a verbal description, so such diagrams help us avoid leaving out steps in a
process. For an introduction to production flowcharts, see the introduction to flowcharts from the
Studio 1151 Guidebook by Karen McNally and Alan Levine. The following simplified chart
illustrates a table of contents.

http://www.cortland.edu/FLTEACH/MM-COURSE/flowchart.html (1 of 2) [8/31/01 5:49:15 AM]

http://www.mcli.dist.maricopa.edu/authoring/studio/guidebook/flow.html
http://www.mcli.dist.maricopa.edu/authoring/studio/guidebook/flow.html

Flowcharts and Storyboards

Storyboardsare used primarily in film making to design individual shots before filming. They are
also common in comic strip, animation, TV commercials, and multimedia design, but can be used
for many other sorts of projects. Whereas a flowchart focuses on movement through a system, a
storyboard or "content flowchart" allows far more detailed illustration of the contents of each
element The storyboard should contain a sketch of the visual aspect of the screen, information
which will be present, descriptions of animations, interactions (e.g. dialog boxes), sounds, and any
other media. Although storyboards were originally linear, the addition of branching diagrams
from flowcharts makes them useful for non-linear multimedia development. For some examples,
see Tratoriaand some storyboards from the film, Twister. The Studio 1151 production storyboard
overviewand the multimedia storyboard examples from the Studio 1151 Guidebookshow how it's
done.

Return to Syllabus

http://www.cortland.edu/FLTEACH/MM-COURSE/flowchart.html (2 of 2) [8/31/01 5:49:15 AM]

http://www.trattoria.com/trattoria/processo/storyb_ing.html
http://www.movies.warnerbros.com/twister/cmp/storyboards.html
http://www.mcli.dist.maricopa.edu/authoring/studio/guidebook/storyboard.html
http://www.mcli.dist.maricopa.edu/authoring/studio/guidebook/storyboard.html
http://www.mcli.dist.maricopa.edu/authoring/studio/guidebook/storyboard_example.html

Integrating Technology in FL - Syllabus

Integrating Technology

in the Foreign Language Classroom
SUNY Cortland

FRE 529, ICC 523

Materials for this course were developed in part through Languages Across the Curriculum grant from
the SUNY Office of Educational Technology.

Dr. Bob Ponterio
Office: 225D Old Main
Office hours: M, W 10-12
Telephone: 753-2027 (office)
753-4303 (ICC dept.)
E-mail: ponterior@cortland.edu

T 4:20p.m. - 6:50 p.m.
Old Main 223 (Language Learning Center)
3 cr. hr.
Fall 2000

Important WWW links for this course will be found online.

Catalog description: Focus on learning how to use communications technologies and develop related
foreign language materials with an emphasis on pedagogically sound integration of these technologies
and materials in the foreign language curriculum. Technologies to be explored include: presentation
software, interactive multimedia, the World Wide Web, and real-time communication. Prerequisites:
Advanced grammar and compositin courses in the target language, CAP 100 or consent of the
department. (3 sem hr.)

This course will develop skills in using the tools of international communications for today's global
village. Students will learn to use these tools to create materials through projects directly related to the
student's individual language. An adequate competence in the target language is essential for success in
this class, and students will be expected to work with and create texts in languages other than English.
Examples of the communications technologies to be explored include: presentation software
(PowerPoint), the World Wide Web, real-time communication (voice and video conferencing), software

http://www.cortland.edu/FLTEACH/MM-COURSE/mm-syl.html (1 of 4) [8/31/01 5:49:39 AM]

http://www.cortland.edu/flteach/lac/
mailto:ponterior@cortland.edu
http://www.cortland.edu/FLTEACH/MM-COURSE/wwwlinks.html

Integrating Technology in FL - Syllabus

for digitizing media. The course is intended for language teachers wishing to incorporate electronic
communications technologies in their curriculum. Students should already know the basics of word
processing, email use, and WWW navigation.

Disability notice:
If you are a student with a disability and wish to request accommodations, please contact the Office of
Student Disability Services located in B-40 Van Hoesen Hall or call (607) 753-2066 for an appointment.
Information regarding your disability will be treated in a confidential manner. Because many
accommodations require early planning, requests for accommodations should be made as early as
possible.

Course Schedule in progress

29 August Introduction to course; assignment 1

5 September E-mail with accents; What's in a computer?; Internet browsers (Netscape);
WWW searching; Copyright, assignment 2

12 September Flowcharting and Storyboards; HTML introduction, and HTML resource guide;
Detailed instructions for creating first WWW page; Scanning; assignment 3

19 September Scanning (con't.); Clip-art; QuickCam; Sound recording; mini-project 1;
assignment 4

26 September Photoediting (Photoshop); presentations of mini-project #1; assignment 5

3 October Photoshop (con't.); Creating clip-art; Sound editing ; assignment 6

10 October no class
Class moved to :
Tues. Oct 17 or
Thurs. Oct 19

Powerpoint introduction; creating a PowerPoint presentation; Say it with Style;
Single shot video capture, crop and trim; media for large files; questions for
midterm project? assignment 7

17 October Fall break; no class

24 October Finish and give mini-project #2 presentation; Video camera recording; In-class
work on midterm projects; assignment 8

31 October compressing sound or video with RealProducer; In-class work on midterm
projects

7 November Midterm project presentations; Publishing your web pages - FTP; Pedagogical
considerations for presentation of authentic materials - Shrum and Glissen;
assignment 9

14 November More sound editing; Finish PowerPoint mini-project #3

http://www.cortland.edu/FLTEACH/MM-COURSE/mm-syl.html (2 of 4) [8/31/01 5:49:39 AM]

http://www.cortland.edu/FLTEACH/MM-COURSE/mm-assgn-1.html
http://www.cortland.edu/FLTEACH/MM-COURSE/characters.html
http://www.cortland.edu/FLTEACH/MM-COURSE/netscape.html
http://www.cortland.edu/FLTEACH/MM-COURSE/search.html
http://www.cortland.edu/FLTEACH/MM-COURSE/copyright.html
http://www.cortland.edu/FLTEACH/MM-COURSE/mm-assgn-2.html
http://www.cortland.edu/FLTEACH/MM-COURSE/www1.html
http://www.cortland.edu/FLTEACH/MM-COURSE/www-create.html
http://www.cortland.edu/FLTEACH/MM-COURSE/scanning.html
http://www.cortland.edu/FLTEACH/MM-COURSE/mm-assgn-3.html
http://www.cortland.edu/FLTEACH/MM-COURSE/clipart.html
http://www.cortland.edu/FLTEACH/MM-COURSE/quickcam.html
http://www.cortland.edu/FLTEACH/MM-COURSE/sound.html
http://www.cortland.edu/FLTEACH/MM-COURSE/mini-project1.html
http://www.cortland.edu/FLTEACH/MM-COURSE/mm-assgn-4.html
http://www.cortland.edu/FLTEACH/MM-COURSE/PHOTOSHOP.HTML
http://www.cortland.edu/FLTEACH/MM-COURSE/mm-assgn-5.html
http://www.cortland.edu/FLTEACH/MM-COURSE/clipart2.html
http://www.cortland.edu/FLTEACH/MM-COURSE/SOUND-2.HTML
http://www.cortland.edu/FLTEACH/MM-COURSE/mm-assgn-6.html
http://www.cortland.edu/FLTEACH/MM-COURSE/PPT.HTML
http://www.cortland.edu/FLTEACH/MM-COURSE/ppt-create.html
http://www.cortland.edu/FLTEACH/MM-COURSE/style.html
http://www.cortland.edu/FLTEACH/MM-COURSE/vid-cap.html
http://www.cortland.edu/FLTEACH/MM-COURSE/mdt-project.html
http://www.cortland.edu/FLTEACH/MM-COURSE/mm-assgn-7.html
http://www.cortland.edu/FLTEACH/MM-COURSE/mini-project2.html
http://www.cortland.edu/FLTEACH/MM-COURSE/vid-cam.html
http://www.cortland.edu/FLTEACH/MM-COURSE/mdt-project.html
http://www.cortland.edu/FLTEACH/MM-COURSE/mm-assgn-8.html
http://www.cortland.edu/FLTEACH/MM-COURSE/vid-dig.html
http://www.cortland.edu/FLTEACH/MM-COURSE/mdt-project.html
http://www.cortland.edu/FLTEACH/MM-COURSE/mdt-project.html
http://www.cortland.edu/FLTEACH/MM-COURSE/mdt-project.html
http://www.cortland.edu/FLTEACH/MM-COURSE/www-set.html
http://www.cortland.edu/FLTEACH/MM-COURSE/mm-assgn-9.html
http://www.cortland.edu/FLTEACH/MM-COURSE/sound-ed.html
http://www.cortland.edu/FLTEACH/MM-COURSE/mini-project3.html

Integrating Technology in FL - Syllabus

21 November Glossing texts 3 ways

28 November Adobe Premiere Projects; PowerPoint mini-presentations

5 December Forms and Text boxes for feedback; Cropping a movie in Premiere

12 December Digital portfolios; Desktop video conferencing;

Final Exam period: Final project presentations; Tuesday, December 19th, 4:20 - 6:50 p.m

Course Description and Class Attendance Policy

As electronic communication in an international marketplace continues to make the world seem
smaller, it behooves us to develop the skills needed to interact with people using these media
across cultural and linguistic divides. This class is designed to provide an introduction to and
hands-on experience with many computer and Internet applications that serve as adjuncts to
communication. Students will learn to use these communications technology tools to develop
materials and projects directly related to their individual areas of interest or major. The course
will be particularly useful for language teachers wishing to incorporate electronic communications
technologies in their curriculum.

Students are expected to attend all classes and to be punctual. Learning to use all of these
applications will involve much time, both in and out of class. For this reason, students will need to
make provision to work on assignments and projects outside of class in addition to the regular
activities planned during class hours. The course instructor will be available regularly for
consultation to assist students working on class assignments and projects. All students are urged
to use the ICC computer language lab or other lab facilities as well as home computers when
convenient.

Assignments and Projects

Students will be expected to complete weekly assignments, which will be announced in class and
also made available on a World Wide Web (WWW) page developed for this class. No text is
required for this class; however, several texts will be suggested by the instructors to serve as
valuable aids during project development. Some readings for the class will also be on reserve, and
others will be available on the WWW.

Students will also be required to complete at least four mini-projects using various
communications technologies and applications learned during the course. (Please see tentative
schedule above.) In addition, students will develop and present two major projects, one at mid-
semester and one as a final project. These projects can be expansions of previous mini-projects
and should certainly be culminating projects using many of the technologies learned to date.
Guidelines and evaluation rubrics for projects will be made available to students in class and on
the WWW page.

http://www.cortland.edu/FLTEACH/MM-COURSE/mm-syl.html (3 of 4) [8/31/01 5:49:39 AM]

http://www.cortland.edu/FLTEACH/MM-COURSE/glossing.html
http://www.cortland.edu/FLTEACH/MM-COURSE/prem-proj.html
http://www.cortland.edu/FLTEACH/MM-COURSE/forms-textbox.html
http://www.cortland.edu/FLTEACH/MM-COURSE/prem-clip.html
http://www.cortland.edu/FLTEACH/MM-COURSE/digital-portfolios.html
http://www.cortland.edu/FLTEACH/MM-COURSE/finalproject-4.html

Integrating Technology in FL - Syllabus

Evaluation: 1. Class attendance and participation 10%

2. Completion of weekly assignments 20%

3. Mini-projects 30%

4. Mid-term Project 20%

5. Final Project 20%

W3 page maintained by PonterioR@cortland.edu & LeLoupJ@cortland.edu.
Copyright © 1997, 2000 Jean W. LeLoup & Robert Ponterio

http://www.cortland.edu/FLTEACH/MM-COURSE/mm-syl.html (4 of 4) [8/31/01 5:49:39 AM]

First WWW page creation

Integrating Technology in the Foreign Language
Classroom

Jean LeLoup & Bob Ponterio
SUNY Cortland
© 1997, 2000

Making your first WWW page

Step 1

Before you start, you need to read the information contained in several of the links on the Beginning WWW
pages. If you have not done this, STOP! Do not pass go, do not collect $200, you are in BIG trouble. Go
back and do your homework by reading those pages; then return here.

Step 2

Before you begin construction, you also need to have a general idea of what you want your page to look like,
what it is intended to do, and, consequently, how you will oganize it. Below are some basic things to consider
when planning your first web page:

● What's the purpose of the page? Are you providing a service, a product, or entertainment?
● Who is your intended audience? Knowing your readers helps you shape the information content and pick

a consistent voice to address them.
● How do you intend to structure the information? For multiple page projects or sites, it is common to see at

least two levels of hierarchy: a top level index and second-level pages. Put as much content toward the
top of a hierarchy as possible. This way, even the casual reader can quickly grasp the sort of information
you're presenting, and that may be just the hook to keep the person interested. For your first page, this
will not be such an issue, but the principle still holds.

Step 3

Open up Netscape Communicator. Go to File/New/Blank page. Voilà: the bare bones of your first WWW
page! You are now in Netscape Composer, Netscape's user-friendly HTML editor. You also have a different set
of toolbars across the top, which will be very helpful to you in constructing your page. One is called the
Composition (or Command) Toolbar, and the other is the Formatting Toolbar. Let's look at them separately.

http://www.cortland.edu/FLTEACH/MM-COURSE/first-www.html (1 of 4) [8/31/01 5:50:36 AM]

http://www.cortland.edu/FLTEACH/MM-COURSE/WWW1.html
http://www.cortland.edu/FLTEACH/MM-COURSE/WWW1.html

First WWW page creation

Composition Toolbar

In addition to the pull-down menus across the top, which function just like regular computer menus, the
Composition Toolbar provides icon shortcuts to composition commands for your page. Moving across
horizontally, they are:

New: opens up a dialog box that lets you create a new page from a blank page, a template, the page wizard, or
from a local file on your disk.

Open: will let you search for and open a local HTML file.

Save: lets you save your work on the current page.

Publish: allows you to "publish" your page on the web, provided you have the proper connection and
configurations.

Preview: shows you how the edited page will look in the browser.

Cut: eliminates text, images, whatever you want to cut from the page.

Paste: puts in something you have copied from elsewhere, just as in your word processor.

Print: obvious, we hope.

Find: provides a dialog box where you can type the text you are looking for.

Target: allows you to insert targets in your page (don't worry about this now).

Image: allows you to insert an image into the page.

H. Line: inserts a horizontal rule line across the page.

Table: inserts a table and provides a dialog box that allows you to choose table properties (e.g., # of rows,
columns, etc.).

Spelling: checks the spelling in your document..

http://www.cortland.edu/FLTEACH/MM-COURSE/first-www.html (2 of 4) [8/31/01 5:50:36 AM]

First WWW page creation

 Formatting Toolbar

The icons on this toolbar are shortcuts for many of the pull-down menu formatting functions. Once you learn the
icons, you can quickly reformat your document and make changes that will enhance its appearance.

Moving across, the formatting options available on this toolbar are as follows:

 Normal: pull-down menu that offers various options for heading sizes

 Variable Width: pull-down menu that allows you to select from many different font
styles

 12: pull-down menu that allows variability of font size

 Color square: format text color with this pull-down menu

 A, A, A: hoice of bold, italics, and/or underlined, respectively

 A w/eraser: Removes all styles

 Bullet list: Emphasize listed items, with options for bullet symbols

 Numbered list: Number series of items

http://www.cortland.edu/FLTEACH/MM-COURSE/first-www.html (3 of 4) [8/31/01 5:50:36 AM]

First WWW page creation

 Indent control: Decreases or increases indent of selected text and/or images

 Alignment: Pull-down menu that allows right, left, or center alignment

Step 4

● Begin construction of your web page. This page is about YOU. Convey some basic information about
yourself to the reader: e.g., name, hometown, major, interests, email address.

● You will need a photo of yourself (if you did not bring one, take your picture w/the Quickcam or the
Flexcam and save the file as a jpg).

● If you want to place your picture on the page and have a description or introduction beside it, use the
Insert Table command to place these items on the page. Click here for an example. Notice the email
address is an active link. This is easily accomplished by highlighting your email address, choosing
"insert link" from one of the toolbars or pull-down menus, and typing mailto:youremailaddresshere
(example: mailto:leloupj@cortland.edu) in the dialog box where it asks for the link address.

● If you want to see the "man behind the curtain" aka the HTML source code, which are all the tags that
make your page look the way you want it to look, under the View pull-down menu choose Page Source.
When you become more acquainted with these source codes and wish to edit something on your page
from within this file, choose the Edit pull-down menu and then HTML Source. This will allow you to
edit the tags and, indeed, be the "man behind the curtain" yourself! **:-)

You might want to refer frequently to the following sites as you construct your web page:

● The Barebones Guide to HTML has an extensive listing of basic HTML tags, which you may need to
work with eventually.

● The Color center has a template where you can choose background, text, and link colors in different
combinations, experiment with these, and see the results instantly. It then gives you the respective
HTML tag numbers for these colors.

Return to Syllabus

http://www.cortland.edu/FLTEACH/MM-COURSE/first-www.html (4 of 4) [8/31/01 5:50:36 AM]

http://www.cortland.edu/FLTEACH/MM-COURSE/www1-ex.html
http://www.hidaho.com/colorcenter/cc.html

Bare Bones Guide to HTML -- download page

WHAT'S HERE

Bare Bones Guide to HTML
The award-winning resource.

Other resources
Useful information for Web
developers, organized by
subject.

HTML/WWW FAQ
Answers to common questions
about Web design.

The -k- Page
My personal home page.

Looking for a good
book on Web design?

Try:

Creating Web Pages for
Dummies by Bud Smith &
Arthur Beback (forword by
Kevin Werbach!)

HTML 4 Visual Quickstart
Guide by Elizabeth Castro

Creative Web Design by
Lynda and William Weinman

HTML Goodies by Joe Burns

Create your First Web Page
in a Weekend by Steven
Callihan

Before you go, please fill out the user survey to help me improve the Guide. If you provide your

email address I will send you announcements about updates and new versions.

English-Language Files

Plain Text (v. 4.0)
ASCII version designed for printing, or for
keeping open in a text editor while you
design Web pages.

Formatted (v. 4.0)
Better on-screen appearance. Also includes
links to introductory materials and notes.

Introduction
Explanatory material about how the Guide
is organized, which tags are included, and
the version history.

Zip File
One compressed file (24k) containing the
text version, HTML version, introductory
materials, and notes. When you click on the
link the file will be downloaded to your
computer.

Translations

LANGUAGE TRANSLATOR VERSION FILES AVAILABLE

Chinese (Big
5)

Iap Sin-Guan 3.0

Chinese (GB) Iap Sin-Guan 3.0

Danish Werner Knudsen 3.0

Dutch Irene Veerman 4.0

Estonian Henrik Veenpere 3.0

http://werbach.com/barebones/barebone.html (1 of 3) [8/31/01 5:53:14 AM]

http://service.bfast.com/bfast/click?bfmid=599904&siteid=31085886&bfpage=newlinks
http://werbach.com/barebones/download.html
http://werbach.com/barebones/wwwhelp.html
http://werbach.com/web/htmlfaq.html
http://werbach.com/home.html
http://www.amazon.com/exec/obidos/ASIN/0764505041/kevinwerbach
http://www.amazon.com/exec/obidos/ASIN/0764505041/kevinwerbach
http://www.amazon.com/exec/obidos/ASIN/0201354934/kevinwerbach
http://www.amazon.com/exec/obidos/ASIN/0201354934/kevinwerbach
http://www.amazon.com/exec/obidos/ASIN/1562057049/kevinwerbach
http://www.amazon.com/exec/obidos/ASIN/0789718235/kevinwerbach
http://www.amazon.com/exec/obidos/ASIN/0761524827/kevinwerbach
http://www.amazon.com/exec/obidos/ASIN/0761524827/kevinwerbach
http://werbach.com/barebones/survey.html
http://werbach.com/barebones/barebones.txt
http://werbach.com/barebones/barebones.txt
http://werbach.com/barebones/barebones.txt
http://werbach.com/barebones/intro.html#version
http://werbach.com/barebones/intro.html#version
http://werbach.com/barebones/intro.html
http://werbach.com/barebones/intro.html
http://werbach.com/barebones/barebone.zip
http://werbach.com/barebones/barebones.zip
mailto:iap@iis.sinica.edu.tw
http://werbach.com/barebones/intro.html#version
http://werbach.com/barebones/barebone_tw.txt
http://werbach.com/barebones/barebone_tw.html
http://werbach.com/barebones/barebone_introduction_tw.html
http://werbach.com/barebones/barebone_annotation_tw.html
mailto:iap@iis.sinica.edu.tw
http://werbach.com/barebones/intro.html#version
http://werbach.com/barebones/barebone_cn.txt
http://werbach.com/barebones/barebone_cn.html
http://werbach.com/barebones/barebone_introduction_cn.html
http://werbach.com/barebones/barebone_annotation_cn.html
mailto:werner@datashopper.dk
http://werbach.com/barebones/intro.html#version
http://werbach.com/barebones/dk_barebone.txt
http://werbach.com/barebones/dk_barebone.html
http://werbach.com/barebones/dk_intro.html
mailto:Irene.Veerman@ID.BIB.WAU.NL
http://werbach.com/barebones/intro.html#version
http://werbach.com/barebones/nl/barebone.html
http://werbach.com/barebones/nl/notes.html
http://werbach.com/barebones/nl/intro.html
http://werbach.com/barebones/nl/barebone.zip
mailto:henrik@kivi.tartu.ee
http://werbach.com/barebones/intro.html#version
http://werbach.com/barebones/est_bbg.txt

Bare Bones Guide to HTML -- download page

Other book suggestions...

Additional resources to
enhance your site:

Linkshare --Earn revenue

from your Website's traffic.

GIF Wizard -- Optimize your
site's graphics. Try the free
site survey first!

Commission Junction-- Put

affiliate program links on
your site!

Please visit one of our
partners for great Web-

based tools:

Gator -- A free tool that
utomates filling in passwords
and forms on sites you visit.

ThinkLink -- Free voice mail
and fax service.

 BigStep.com -- Create online
stores for free.

Ultimate Bulletin Board--
Put interactive discussion
boards on your site.

 XDrive -- Get up to 100MB
of free online storage!

Finnish Juhani Kantee 3.0

French
Fabien Gandon
Phillipe-
Alexandre Gilbert

4.0 (text) / 3.0
(HTML)

German Martin Weinelt 3.0

Hebrew Demian Glait 3.0

Icelandic
Arsaell
Benediktsson

3.0

Indonesian Kristianto Jahja 3.0

Italian
Kay Martha
Quittan

4.0

Japanese Hisashi Nishimura 4.0

Korean Kim Byounghak 2.0

Norwegian
Sondre Skaug
Bjørnebekk

4.0

Portuguese Mauricio Wolff 3.0

Romanian Marian Ene 3.0

Russian
(KO18)

Stanislav
Malyshev

3.0

Russian
(CP1251)

Stanislav
Malyshev

3.0

Russian
(CP866)

Stanislav
Malyshev

3.0

Slovenian Peter Hribar 3.0

Spanish
Hector Lecuanda
Ontiveros

3.0

Swedish Ola Jaensson 3.0

Turkish
Ahmet Tevfik
Inan

3.0

http://werbach.com/barebones/barebone.html (2 of 3) [8/31/01 5:53:14 AM]

http://werbach.com/barebones/books.html
http://click.linksynergy.com/fs-bin/stat?id=vM77sjWRxcE&offerid=4240.10000002&type=3&subid=0
http://www.gifwizard.com/pn=49518
http://www.commission-junction.com/track/track.dll?AID=10338&PID=304589&URL=http%3A%2F%2Fwww%2Ecj%2Ecom%2FAffiliate%2Findex%2Easp
http://service.bfast.com/bfast/click?bfmid=1291956&siteid=16638628&bfpage=internet
http://service.bfast.com/bfast/click?bfmid=1307357&siteid=26923758&bfpage=1
http://click.linksynergy.com/fs-bin/click?id=aZrmVUCYt08&offerid=15783.10000003&type=3&subid=0
http://service.bfast.com/bfast/click?bfmid=14514576&siteid=36314715&bfpage=home
http://www.commission-junction.com/track/track.dll?AID=10581&PID=304589&URL=http%3A%2F%2Fwww%2Einfopop%2Ecom%2Fservices%5Fubb%2Fservices%5Fubb%2Ehtml
http://service.bfast.com/bfast/click?bfmid=14524098&siteid=36295349&bfpage=text2
mailto:juhani.kantee@satama.com
http://werbach.com/barebones/intro.html#version
http://werbach.com/barebones/barebone30_fi.html
mailto:Fabien.Gandon@sophia.inria.fr
mailto:aaa001@agora.ulaval.ca
mailto:aaa001@agora.ulaval.ca
http://werbach.com/barebones/intro.html#version
http://werbach.com/barebones/intro.html#version
http://werbach.com/barebones/fr/fr_barebones.txt
http://werbach.com/barebones/fr_intro.html
mailto:Martin.Weinelt@kiel.netsurf.de
http://werbach.com/barebones/intro.html#version
http://werbach.com/barebones/BBG-text-dt.txt
http://werbach.com/barebones/BBG-form.html
mailto:demian@vipe.technion.ac.il
http://werbach.com/barebones/intro.html#version
http://werbach.com/barebones/barebone_hebrew3.txt
http://werbach.com/barebones/barebone_hebrew.html
mailto:arsaell@a.sol.no
mailto:arsaell@a.sol.no
http://werbach.com/barebones/intro.html#version
http://werbach.com/barebones/ice_barebone.txt
http://werbach.com/barebones/ice_barebone.html
mailto:kaizen@indosat.net.id
http://werbach.com/barebones/intro.html#version
http://werbach.com/barebones/barebone_id.txt
http://werbach.com/barebones/barebone_id.html
http://werbach.com/barebones/barebone_intro_id.html
http://werbach.com/barebones/barebone_annot_id.html
mailto:kay@kmq.inet.it
mailto:kay@kmq.inet.it
http://werbach.com/barebones/intro.html#version
http://werbach.com/barebones/it/it_barebone.txt
http://werbach.com/barebones/it/it_barebone.html
http://werbach.com/barebones/it/it_intro.html
http://werbach.com/barebones/it/it_notes.html
http://werbach.com/barebones/it/it_barebone.zip
mailto:hisashin@hotsync.co.jp
http://werbach.com/barebones/intro.html#version
http://werbach.com/barebones/jp/barebone-j.txt
http://werbach.com/barebones/jp/barebone-j.html
http://werbach.com/barebones/jp/intro-j.html
http://werbach.com/barebones/jp/notes-j.html
mailto:bhkim@cair.kaist.ac.kr
http://werbach.com/barebones/intro.html#version
http://werbach.com/barebones/barebone_kr.txt
http://werbach.com/barebones/barebone_html_kr.html
mailto:sondre@webmagi.no
mailto:sondre@webmagi.no
http://werbach.com/barebones/intro.html#version
http://werbach.com/barebones/no/barebones_no.txt
http://werbach.com/barebones/no/barebones_no.html
mailto:wolff@cyberdude.com
http://werbach.com/barebones/intro.html#version
http://werbach.com/barebones/barebone_port.html
mailto:mario@squash.lufo.sfos.ro
http://werbach.com/barebones/intro.html#version
http://werbach.com/barebones/ro_barebone.txt
http://werbach.com/barebones/ro_barebone.html
mailto:frodo@cs.huji.ac.il
mailto:frodo@cs.huji.ac.il
http://werbach.com/barebones/intro.html#version
http://werbach.com/barebones/ru_koi8_barebone.html
http://werbach.com/barebones/ru_koi8_intro.html
mailto:frodo@cs.huji.ac.il
mailto:frodo@cs.huji.ac.il
http://werbach.com/barebones/intro.html#version
http://werbach.com/barebones/ru_cp1251_barebone.html
http://werbach.com/barebones/ru_cp1251_intro.html
mailto:frodo@cs.huji.ac.il
mailto:frodo@cs.huji.ac.il
http://werbach.com/barebones/intro.html#version
http://werbach.com/barebones/ru_cp866_barebone.html
http://werbach.com/barebones/ru_cp866_intro.html
mailto:flamingo@eunet.si
http://werbach.com/barebones/intro.html#version
http://werbach.com/barebones/si_barebone.txt
http://werbach.com/barebones/si_barebone.html
mailto:lecuanda@www.mxl.cetys.mx
mailto:lecuanda@www.mxl.cetys.mx
http://werbach.com/barebones/intro.html#version
http://werbach.com/barebones/barebones_espanol.html
http://werbach.com/barebones/notas_barebones.html
mailto:ola@tomtit.se
http://werbach.com/barebones/intro.html#version
http://werbach.com/barebones/swe_barebone.html
http://werbach.com/barebones/swe_intro.html
http://werbach.com/barebones/swe_barebone_annotations.html
mailto:tevfik@vm4381.ce.yildiz.edu.tr
mailto:tevfik@vm4381.ce.yildiz.edu.tr
http://werbach.com/barebones/intro.html#version
http://werbach.com/barebones/TR_BBV30.TXT
http://werbach.com/barebones/TR_BBV30.HTM
http://werbach.com/barebones/TR_BBINT.HTM
http://werbach.com/barebones/TR_BBANN.HTM

Bare Bones Guide to HTML -- download page

You are welcome to redistribute the Bare Bones Guide to HTML for any noncommercial or
educational purpose, or to put a link to the Guide on your own page, but please do not modify it
in any way or place the files on your own server without permission. If you wish to include the

Guide in a commercial project such as a book, please contact me.

Copyright © 1995-2000 Kevin Werbach. Last modified December 16, 2000.

http://werbach.com/barebones/barebone.html (3 of 3) [8/31/01 5:53:14 AM]

http://www.commission-junction.com/track/track.dll?AID=346851&PID=304589&URL=http%3A%2F%2Fw%2Emoreover%2Ecom%2Fcgi%2Dlocal%2Fwizard%5Fclone%2Epl
mailto:barebones@werbach.com
http://leader.linkexchange.com/1/X934884/clickle
http://leader.linkexchange.com/1/X934884/clicklogo

Bare Bones Guide to HTML

Version 4.0 Formatted -- February 1999

The latest version of this document is available at http://werbach.com/barebones/, where you will also
find the text version, translations, and background materials.

The Bare Bones Guide to HTML lists all the tags that current browsers are likely to recognize. I have
included all the elements in the official HTML 4.0 recommendation with common attributes, as well as
Netscape and Microsoft extensions. This document is a quick reference, not a complete specification; for
official information about HTML and its development, see the World Wide Web Consortium site at
http://www.w3.org/MarkUp/.

The Guide is designed to be as concise as possible, and therefore it doesn't go into any detail about how
to use the various tags. A few tags link to notes that address frequently-asked questions. If you're looking
for more detailed step-by-step information, see my WWW Help Page.

Table of Contents

1. INTRODUCTORY MATERIAL
❍ What is unique about this guide
❍ Which HTML tags are included
❍ How this document is formatted (including a description of symbols and abbreviations)

2. HTML TAGS
❍ basic elements (all HTML documents should have these)
❍ structural definition (appearance controlled by the browser's preferences)
❍ presentation formatting (author specifies text appearance)
❍ links, graphics, and sounds
❍ positioning
❍ dividers
❍ lists
❍ backgrounds and colors
❍ special characters

http://werbach.com/barebones/barebones.html (1 of 13) [8/31/01 5:53:41 AM]

http://werbach.com/barebones/
http://www.w3.org/MarkUp/
http://werbach.com/web/wwwhelp.html
http://werbach.com/barebones/intro.html#unique
http://werbach.com/barebones/intro.html#included
http://werbach.com/barebones/intro.html#formatting

Bare Bones Guide to HTML

❍ forms
❍ tables
❍ frames
❍ scripts and java
❍ miscellaneous

Important: If you are not clear about the differences between the various versions of HTML, I
suggest that you read my discussion of the development of HTML, or the World Wide Web
Consortium HTML activity statement.

BASIC ELEMENTS
 Document Type <HTML></HTML> (beginning and end of file)

 Title <TITLE></TITLE> (must be in header)

 Header <HEAD></HEAD> (descriptive info, such as title)

 Body <BODY></BODY> (bulk of the page)

STRUCTURAL DEFINITION
 Heading <H?></H?> (the spec. defines 6 levels)

 Align Heading
<H?
ALIGN=LEFT|CENTER|RIGHT></H?>

 Division <DIV></DIV>

 Align Division <DIV ALIGN=LEFT|RIGHT|CENTER|JUSTIFY></DIV>

4.0 Defined Content

 Block Quote <BLOCKQUOTE></BLOCKQUOTE> (usually indented)

4.0 Quote <Q></Q> (for short quotations)

4.0 Citation <Q CITE="URL"></Q>

 Emphasis (usually displayed as italic)

 Strong Emphasis (usually displayed as bold)

 Citation <CITE></CITE> (usually italics)

 Code <CODE></CODE> (for source code listings)

 Sample Output <SAMP></SAMP>

 Keyboard Input <KBD></KBD>

http://werbach.com/barebones/barebones.html (2 of 13) [8/31/01 5:53:42 AM]

http://werbach.com/barebones/notes.html#HTML
http://www.w3.org/pub/WWW/MarkUp/Activity
http://www.w3.org/pub/WWW/MarkUp/Activity
http://werbach.com/barebones/notes.html#blockquote

Bare Bones Guide to HTML

 Variable <VAR></VAR>

 Definition <DFN></DFN> (not widely implemented)

 Author's Address <ADDRESS></ADDRESS>

 Large Font Size <BIG></BIG>

 Small Font Size <SMALL></SMALL>

4.0 Insert <INS></INS>
(marks additions in a new
version)

4.0 Time of Change <INS DATETIME=":::"></INS>

4.0 Comments <INS CITE="URL"></INS>

4.0 Delete
(marks deletions in a new
version)

4.0 Time of Change <DEL DATETIME=":::">

4.0 Comments <DEL CITE="URL">

4.0 Acronym <ACRONYM></ACRONYM>

4.0 Abbreviation <ABBR></ABBR>

PRESENTATION FORMATTING
 Bold

 Italic <I></I>

4.0* Underline <U></U> (not widely implemented)

 Strikeout <STRIKE></STRIKE> (not widely implemented)

4.0* Strikeout <S></S> (not widely implemented)

 Subscript

 Superscript

 Typewriter <TT></TT> (displays in a monospaced font)

 Preformatted <PRE></PRE> (display text spacing as-is)

 Width <PRE WIDTH=?></PRE> (in characters)

 Center <CENTER></CENTER> (for both text and images)

N1 Blinking <BLINK></BLINK> (the most derided tag ever)

 Font Size (ranges from 1-7)

 Change Font Size

 Font Color
<FONT
COLOR="#$$$$$$">

http://werbach.com/barebones/barebones.html (3 of 13) [8/31/01 5:53:42 AM]

http://werbach.com/barebones/notes.html#xmp
http://werbach.com/barebones/notes.html#align

Bare Bones Guide to HTML

4.0* Select Font

N4 Point size

N4 Weight

4.0* Base Font Size <BASEFONT SIZE=?> (from 1-7; default is 3)

MS Marquee <MARQUEE></MARQUEE>

POSITIONING
N3 Multi-Column <MULTICOL COLS=?></MULTICOL>

N3 Column Gutter <MULTICOL GUTTER=?></MULTICOL>

N3 Column Width <MULTICOL WIDTH=?></MULTICOL>

N3 Spacer <SPACER>

N3 Spacer Type
<SPACER
TYPE=HORIZONTAL|VERTICAL|BLOCK>

N3 Size <SPACER SIZE=?>

N3 Dimensions <SPACER WIDTH=? HEIGHT=?>

N3 Alignment
<SPACER
ALIGN=LEFT|RIGHT|CENTER>

N4 Layer <LAYER></LAYER>

N4 Name <LAYER ID="***"></LAYER>

N4 Location <LAYER LEFT=? TOP=?></LAYER>

N4 Rel. Position <LAYER PAGEX=? PAGEY=?></LAYER>

N4 Source File <LAYER SRC="***"></LAYER>

N4 Stacking <LAYER Z-INDEX=?></LAYER>

N4 Stack Position
<LAYER ABOVE="***"
BELOW="***"></LAYER>

N4 Dimensions
<LAYER HEIGHT=?
WIDTH=?></LAYER>

N4 Clipping Path <LAYER CLIP=,,,></LAYER>

N4 Visible? <LAYER VISIBILITY=SHOW|HIDDEN|INHERIT></LAYER>

N4 Background
<LAYER
BACKGROUND="$$$$$$"></LAYER>

N4 Color
<LAYER
BGCOLOR="$$$$$$"></LAYER>

http://werbach.com/barebones/barebones.html (4 of 13) [8/31/01 5:53:42 AM]

Bare Bones Guide to HTML

N4 Inline Layer <ILAYER></ILAYER>
(takes same attributes as
LAYER)

N4 Alt. Content <NOLAYER></NOLAYER>

LINKS, GRAPHICS, AND SOUNDS
 Link Something

 Link to Location (if in another document)

 (if in current document)

4.0* Target Window

4.0* Action on Click (Javascript)

4.0* Mouseover Action
<A HREF="URL"
ONMOUSEOVER="***">

(Javascript)

4.0* Mouse out Action
<A HREF="URL"
ONMOUSEOUT="***">

(Javascript)

 Link to Email

N, MS Specify Subject

(use a real question
mark)

 Define Location

 Display Image

 Alignment
<IMG SRC="URL"
ALIGN=TOP|BOTTOM|MIDDLE|LEFT|RIGHT>

N1 Alignment
<IMG SRC="URL"
ALIGN=TEXTTOP|ABSMIDDLE|BASELINE|ABSBOTTOM>

 Alternate (if image not displayed)

 Dimensions (in pixels)

(as percentage of page
width/height)

 Border (in pixels)

 Runaround Space
<IMG SRC="URL" HSPACE=?
VSPACE=?>

(in pixels)

N1 Low-Res Proxy

 Imagemap (requires a script)

 Imagemap

MS Movie Clip
<IMG DYNSRC="***" START="***"
LOOP=?>

http://werbach.com/barebones/barebones.html (5 of 13) [8/31/01 5:53:42 AM]

Bare Bones Guide to HTML

MS Background Sound
<BGSOUND SRC="***"
LOOP=?|INFINITE>

 Client-Side Map <MAP NAME="***"></MAP> (describes the map)

 Map Section
<AREA SHAPE="DEFAULT|RECT|CIRCLE|POLY"
COORDS=",,," HREF="URL"|NOHREF>

N1 Client Pull <META HTTP-EQUIV="Refresh" CONTENT="?; URL=URL">

N2 Embed Object <EMBED SRC="URL"> (insert object into page)

N2 Object Size
<EMBED SRC="URL" WIDTH=?
HEIGHT=?>

4.0 Object <OBJECT></OBJECT>

4.0 Parameters <PARAM>

DIVIDERS
 Paragraph <P></P> (closing tag often unnecessary)

 Align Text <P
ALIGN=LEFT|CENTER|RIGHT></P>

N Justify Text <P ALIGN=JUSTIFY></P>

 Line Break
 (a single carriage return)

 Clear Textwrap <BR CLEAR=LEFT|RIGHT|ALL>

 Horizontal Rule <HR>

 Alignment <HR ALIGN=LEFT|RIGHT|CENTER>

 Thickness <HR SIZE=?> (in pixels)

 Width <HR WIDTH=?> (in pixels)

 Width Percent <HR WIDTH="%"> (as a percentage of page width)

 Solid Line <HR NOSHADE> (without the 3D cutout look)

N1 No Break <NOBR></NOBR> (prevents line breaks)

N1 Word Break <WBR>
(where to break a line if
needed)

LISTS
 Unordered List (before each list item)

 Compact <UL COMPACT>

http://werbach.com/barebones/barebones.html (6 of 13) [8/31/01 5:53:42 AM]

http://werbach.com/barebones/notes.html#paragraph
http://werbach.com/barebones/notes.html#align

Bare Bones Guide to HTML

 Bullet Type
<UL
TYPE=DISC|CIRCLE|SQUARE>

(for the whole list)

 Bullet Type
<LI
TYPE=DISC|CIRCLE|SQUARE>

(this & subsequent)

 Ordered List (before each list item)

 Compact <OL COMPACT>

 Numbering Type <OL TYPE=A|a|I|i|1> (for the whole list)

 Numbering Type <LI TYPE=A|a|I|i|1> (this & subsequent)

 Starting Number <OL START=?> (for the whole list)

 Starting Number <LI VALUE=?> (this & subsequent)

 Definition List <DL><DT><DD></DL> (<DT>=term, <DD>=definition)

 Compact <DL COMPACT></DL>

 Menu List <MENU></MENU> (before each list item)

 Compact <MENU COMPACT></MENU>

 Directory List <DIR></DIR> (before each list item)

 Compact <DIR COMPACT></DIR>

BACKGROUNDS AND COLORS

 Tiled Bkground <BODY BACKGROUND="URL">

MS Watermark <BODY BGPROPERTIES="FIXED">

 Bkground Color <BODY BGCOLOR="#$$$$$$"> (order is red/green/blue)

 Text Color <BODY TEXT="#$$$$$$">

 Link Color <BODY LINK="#$$$$$$">

 Visited Link <BODY VLINK="#$$$$$$">

 Active Link <BODY ALINK="#$$$$$$">

 (More info at http://werbach.com/web/wwwhelp.html#color)

SPECIAL CHARACTERS
 Special Character &#?; (where ? is the ISO 8859-1 code)

 < <

 > >

http://werbach.com/barebones/barebones.html (7 of 13) [8/31/01 5:53:42 AM]

http://werbach.com/barebones/notes.html#color
http://werbach.com/web/wwwhelp.html#color

Bare Bones Guide to HTML

 & &

 " "

 Registered TM ®

 Registered TM ®

 Copyright ©

 Copyright ©

 Non-Breaking Space

 (Complete list at http://www.htmlhelp.com/reference/charset)

FORMS

 Define Form
<FORM ACTION="URL"
METHOD=GET|POST></FORM>

4.0* File Upload <FORM ENCTYPE="multipart/form-data"></FORM>

 Input Field
<INPUT TYPE="TEXT|PASSWORD|CHECKBOX|RADIO|
FILE|BUTTON|IMAGE|HIDDEN|SUBMIT|RESET">

 Field Name <INPUT NAME="***">

 Field Value <INPUT VALUE="***">

 Checked? <INPUT CHECKED> (checkboxes and radio boxes)

 Field Size <INPUT SIZE=?> (in characters)

 Max Length <INPUT MAXLENGTH=?> (in characters)

4.0 Button <BUTTON></BUTTON>

4.0 Button Name <BUTTON NAME="***"></BUTTON>

4.0 Button Type <BUTTON TYPE="SUBMIT|RESET|BUTTON"></BUTTON>

4.0 Default Value <BUTTON VALUE="***"></BUTTON>

4.0 Label <LABEL></LABEL>

4.0 Item Labelled <LABEL FOR="***"></LABEL>

 Selection List <SELECT></SELECT>

 Name of List <SELECT NAME="***"></SELECT>

 # of Options <SELECT SIZE=?></SELECT>

 Multiple Choice <SELECT MULTIPLE> (can select more than one)

 Option <OPTION> (items that can be selected)

 Default Option <OPTION SELECTED>

 Option Value <OPTION VALUE="***">

http://werbach.com/barebones/barebones.html (8 of 13) [8/31/01 5:53:42 AM]

http://www.htmlhelp.com/reference/charset

Bare Bones Guide to HTML

4.0 Option Group
<OPTGROUP
LABEL="***"></OPTGROUP>

 Input Box Size
<TEXTAREA ROWS=?
COLS=?></TEXTAREA>

 Name of Box
<TEXTAREA
NAME="***"></TEXTAREA>

N2 Wrap Text <TEXTAREA WRAP=OFF|HARD|SOFT></TEXTAREA>

4.0 Group elements <FIELDSET></FIELDSET>

4.0 Legend <LEGEND></LEGEND> (caption for fieldsets)

4.0 Alignment <LEGEND ALIGN="TOP|BOTTOM|LEFT|RIGHT"></LEGEND>

TABLES
 Define Table <TABLE></TABLE>

4.0* Table Alignment <TABLE ALIGN=LEFT|RIGHT|CENTER>

 Table Border <TABLE BORDER></TABLE> (either on or off)

 Table Border <TABLE BORDER=?></TABLE> (you can set the value)

 Cell Spacing <TABLE CELLSPACING=?>

 Cell Padding <TABLE CELLPADDING=?>

 Desired Width <TABLE WIDTH=?> (in pixels)

 Width Percent <TABLE WIDTH=%> (percentage of page)

4.0* Table Color <TABLE BGCOLOR="$$$$$$"></TABLE>

4.0 Table Frame
<TABLE FRAME=VOID|ABOVE|BELOW|HSIDES|LHS|RHS|
VSIDES|BOX|BORDER></TABLE>

4.0 Table Rules <TABLE RULES=NONE|GROUPS|ROWS|COLS|ALL></TABLE>

MS Border Color
<TABLE
BORDERCOLOR="$$$$$$"></TABLE>

MS Dark Border
<TABLE
BORDERCOLORDARK="$$$$$$"></TABLE>

MS Light Border
<TABLE
BORDERCOLORLIGHT="$$$$$$"></TABLE>

 Table Row <TR></TR>

 Alignment <TR ALIGN=LEFT|RIGHT|CENTER|MIDDLE|BOTTOM>

 Table Cell <TD></TD>
(must appear within
table rows)

http://werbach.com/barebones/barebones.html (9 of 13) [8/31/01 5:53:42 AM]

Bare Bones Guide to HTML

 Alignment
<TD ALIGN=LEFT|RIGHT|CENTER
VALIGN=TOP|MIDDLE|BOTTOM>

 No linebreaks <TD NOWRAP>

 Columns to Span <TD COLSPAN=?>

 Rows to Span <TD ROWSPAN=?>

4.0* Desired Width <TD WIDTH=?> (in pixels)

N3 Width Percent <TD WIDTH="%"> (percentage of table)

4.0* Cell Color <TD BGCOLOR="#$$$$$$">

 Header Cell <TH></TH>
(same as data, except
bold centered)

 Alignment <TH ALIGN=LEFT|RIGHT|CENTER|MIDDLE|BOTTOM>

 No Linebreaks <TH NOWRAP>

 Columns to Span <TH COLSPAN=?>

 Rows to Span <TH ROWSPAN=?>

4.0* Desired Width <TH WIDTH=?> (in pixels)

N3 Width Percent <TH WIDTH="%"> (percentage of table)

4.0* Cell Color <TH BGCOLOR="#$$$$$$">

4.0 Table Body <TBODY>

4.0 Table Footer <TFOOT></TFOOT>
(must come before
THEAD>

4.0 Table Header <THEAD></THEAD>

 Table Caption <CAPTION></CAPTION>

 Alignment
<CAPTION
ALIGN=TOP|BOTTOM|LEFT|RIGHT>

4.0 Column <COL></COL>
(groups column
attributes)

4.0 Columns Spanned <COL SPAN=?></COL>

4.0 Column Width <COL WIDTH=?></COL>

4.0 Width Percent <COL WIDTH="%"></COL>

4.0 Group columns <COLGROUP></COLGROUP>
(groups column
structure)

4.0 Columns Spanned <COLGROUP SPAN=?></COLGROUP>

4.0 Group Width <COLGROUP WIDTH=?></COLGROUP>

4.0 Width Percent <COLGROUP WIDTH="%"></COLGROUP>

http://werbach.com/barebones/barebones.html (10 of 13) [8/31/01 5:53:42 AM]

Bare Bones Guide to HTML

FRAMES
4.0* Frame Document <FRAMESET></FRAMESET> (instead of <BODY>)

4.0* Row Heights
<FRAMESET
ROWS=,,,></FRAMESET>

(pixels or %)

4.0* Row Heights
<FRAMESET
ROWS=*></FRAMESET>

(* = relative size)

4.0* Column Widths
<FRAMESET
COLS=,,,></FRAMESET>

(pixels or %)

4.0* Column Widths
<FRAMESET
COLS=*></FRAMESET>

(* = relative size)

4.0* Borders <FRAMESET FRAMEBORDER="yes|no"></FRAMESET>

4.0* Border Width
<FRAMESET
BORDER=?></FRAMESET>

4.0* Border Color <FRAMESET BORDERCOLOR="#$$$$$$"></FRAMESET>

N3 Frame Spacing
<FRAMESET
FRAMESPACING=?></FRAMESET>

4.0* Define Frame <FRAME> (contents of an individual frame)

4.0* Display Document <FRAME SRC="URL">

4.0* Frame Name <FRAME NAME="***"|_blank|_self|_parent|_top>

4.0* Margin Width <FRAME MARGINWIDTH=?> (left and right margins)

4.0* Margin Height <FRAME MARGINHEIGHT=?> (top and bottom margins)

4.0* Scrollbar?
<FRAME
SCROLLING="YES|NO|AUTO">

4.0* Not Resizable <FRAME NORESIZE>

4.0* Borders
<FRAME
FRAMEBORDER="yes|no">

4.0* Border Color
<FRAME
BORDERCOLOR="#$$$$$$">

4.0* Unframed Content <NOFRAMES></NOFRAMES> (for non-frames browsers)

4.0 Inline Frame <IFRAME></IFRAME> (takes same attributes as FRAME)

4.0 Dimensions
<IFRAME WIDTH=?
HEIGHT=?></IFRAME>

4.0 Dimensions
<IFRAME WIDTH="%"
HEIGHT="%"></IFRAME>

http://werbach.com/barebones/barebones.html (11 of 13) [8/31/01 5:53:42 AM]

Bare Bones Guide to HTML

SCRIPTS AND JAVA
 Script <SCRIPT></SCRIPT>

 Location <SCRIPT SRC="URL"></SCRIPT>

 Type <SCRIPT TYPE="***"></SCRIPT>

 Language <SCRIPT LANGUAGE="***"></SCRIPT>

4.0* Other Content <NOSCRIPT></NOSCRIPT> (if scripts not supported)

 Applet <APPLET></APPLET>

 File Name <APPLET CODE="***">

 Parameters <APPLET PARAM NAME="***">

 Location <APPLET CODEBASE="URL">

 Identifier <APPLET NAME="***"> (for references)

 Alt Text <APPLET ALT="***"> (for non-Java browsers)

 Alignment
<APPLET
ALIGN="LEFT|RIGHT|CENTER">

 Size <APPLET WIDTH=? HEIGHT=?> (in pixels)

 Spacing <APPLET HSPACE=? VSPACE=?> (in pixels)

N4 Server Script <SERVER></SERVER>

MISCELLANEOUS
 Comment <!-- *** --> (not displayed by the browser)

 Prologue <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

 Searchable <ISINDEX> (indicates a searchable index)

 Prompt <ISINDEX PROMPT="***"> (text to prompt input)

 Send Search (use a real question mark)

 URL of This File <BASE HREF="URL"> (must be in header)

4.0* Base Window Name <BASE TARGET="***"> (must be in header)

 Relationship
<LINK REV="***" REL="***"
HREF="URL">

(in header)

N4 Linked File
<LINK TYPE="***"
SRC="***"></LINK>

 Meta Information <META> (must be in header)

 Style Sheets <STYLE></STYLE> (implementations vary)

http://werbach.com/barebones/barebones.html (12 of 13) [8/31/01 5:53:42 AM]

http://werbach.com/barebones/notes.html#prologue

Bare Bones Guide to HTML

4.0 Bidirect Off <BDO DIR=LTR|RTL></BDO> (for certain character sets)

Copyright ©1995-2001 Kevin Werbach. Redistribution is permitted, so long as there is no charge and
this document is included without alteration in its entirety. This Guide is not a product of Bare Bones

Software. More information is available at http://werbach.com/barebones.

http://werbach.com/barebones/barebones.html (13 of 13) [8/31/01 5:53:42 AM]

http://werbach.com/barebones
http://werbach.com/barebones
http://validator.w3.org/

Guide du langage HTML

LE GUIDE RAPIDE DU LANGAGE HTML
par Kevin Werbach

Version 3.0f Formattée -- 21 juillet, 1996

La dernière version de ce document est disponible à
<http://werbach.com/barebones/>.

Le guide rapide du langage HTML établie la liste de toutes les étiquettes que les
versions courantes des navigateurs W3 sont capables de reconnaître. J'y ai inclus
toutes les étiquettes de la spécification du langage HTML 3.2, en plus des
extensions Netscape inclues dans les versions du navigateur Netscape jusqu'à la
version 3.0b5. Ce guide a été conçue pour être le plus concis possible, et par ce
fait ne comprend pas de détails disant comment utiliser ces étiquettes. Il existe
plusieurs guides HTML sur l'Internet, j'ai plusieurs liens disponibles dans ma
page d'aide W3; Les commentaires et suggestions sont toujours le bienvenue.

Table des matières

1. MATÉRIEL D'INTRODUCTION
❍ Qu'est ce qui est unique à propos de ce guide
❍ < B>Quelles sont les étiquettes HTML qui y sont incluses
❍ Comment le document est conçu (incluant une description des symboles et

abbréviations)

2. ÉTIQUETTES HTML
❍ Éléments de base (tous les documents HTML devraient les contenir)
❍ Définition structurale (apparence controlée par les spécifications du navigateur)
❍ Formattage de la présentation (l'auteur spécifie l'apparence du texte)
❍ Liens et graphiques
❍ Séparateurs
❍ Listes
❍ Arrières-plans et couleurs

http://werbach.com/barebones/fr_barebone.html (1 of 14) [8/31/01 5:55:20 AM]

mailto:barebones@werbach.com
http://werbach.com/barebones/
http://www.w3.org/pub/WWW/MarkUp/Wilbur/
http://werbach.com/web/wwwhelp.html#guides
http://werbach.com/barebones/fr_barebone_introduction.html#unique
http://werbach.com/barebones/fr_barebone_introduction.html#included
http://werbach.com/barebones/fr_barebone_introduction.html#formatting

Guide du langage HTML

❍ Caractères spéciaux
❍ Formulaires
❍ Tableaux
❍ Cadres
❍ Java
❍ Divers

Important: Pour plus d'informations à propos des différences entre le langage HTML 2.0, HTML
3.0, HTML 3.2, et les extensions Netscape, Je vous suggère de lire la déclaration W3C sur le
développement du HTML.

GÉNÉRAL

 Type de document <HTML></HTML> (a u début et à la fin du document)

Titre <TITLE></TITLE> (nom du fichier; doit être dans l'en-tête)

En-tête <HEAD></HEAD> (titre de description)

Corps <BODY></BODY> (corps du document)

DÉFINITION STRUCTURALE

 En-tête <H?></H? > (6 niveaux d'en-
têtes)

 En-tête alignée <H? ALIGN=LEFT|CENTER|RIGHT></H?> [*]

 Division <DIV></DIV>

 Division alignée <DIV
ALIGN=LEFT|CENTER|RIGHT|JUSTIFY></DIV>

Bloc en retrait <BLOCKQUOTE></BLOCKQUOTE>[*]

http://werbach.com/barebones/fr_barebone.html (2 of 14) [8/31/01 5:55:20 AM]

http://www.w3.org/pub/WWW/MarkUp/Activity
http://werbach.com/barebones/fr_barebone_annotation.html#align
http://werbach.com/barebones/fr_barebone_annotation.html#blockquote

Guide du langage HTML

 Emphase (habituellement
présenté en
italique)

 Forte emphase (habituellement
présenté en
gras)

 Citation <CITE></CITE> (habituellement
en italique)

 Code <CODE></CODE> (pour
l'affichage de
fichier de
programmation)

 Échantillon de
sortie

<SAMP></SAMP>

 Entrée au clavier <KBD></KBD>

 Variable <VAR></VAR>

 Définition <DFN></DFN> (non officiel)

Adresse de
l'auteur(e)

<ADDRESS></ADDRESS>

 Grande police de
caractères

<BIG></BIG>

 Petite police de
caractères

<SMALL></SMALL>

FORMAT DE PRÉSENTATION

 Gras

 Italique <I></I>

N3.0b Souligné <U></U> (non officiel)

 Rayé <STRIKE></STRIKE> (non officiel)

http://werbach.com/barebones/fr_barebone.html (3 of 14) [8/31/01 5:55:20 AM]

Guide du langage HTML

N3.0b Rayé <S></S> (non officiel)

 Indice

 Exposant

 Imprimé <TT></TT> (présenté dans une police
de caractères à simple
espacement)

 Préformaté <PRE></PRE> (affiche le texte dans son
format original)

 Largeur <PRE WIDTH=?></PRE> (s'applique aux caractères)

 Centré < CENTER></CENTER> [*] (pour le texte et les images)

N1.0 Clignotement <BLINK>< /BLINK> (étiquette tournée en
dérision)

 Grandeur de la police (entre 1-7)

 Changement de la
grandeur de la police

<FONTSIZE=+|-?>

N1.0 Grandeur de la police
de base

<BASEFONT SIZE=?> (entre 1-7; par défaut 3)

 Couleur de la police <FONT
COLOR="#$$$$$$">

N3.0b Sélection de fonte

N3.0b Texte en multi-
colonnes

<MULTICOL
COLS=?></MULTICOL>

N3.0b Longueur de la
colonne

<MULTICOL
GUTTER=?></MULTICOL>

(défaut est 10 pixels)

N3.0b Largeur de la colonne <MULTICOL
WIDTH=?></MULTICOL>

N3.0b Espaceur <SPACER>

N3.0b Type d'espaceur <SPACER TYPE=horizontal|
vertical|block>

N3.0b Grandeur d'espaceur <SPACER SIZE=?>

N3.0b Dimensions de
l'espaceur

<SPACER WIDTH=? HEIGHT=?>

http://werbach.com/barebones/fr_barebone.html (4 of 14) [8/31/01 5:55:20 AM]

http://werbach.com/barebones/fr_barebone_annotation.html#align

Guide du langage HTML

N3.0b Alignement de
l'espaceur

<SPACER
ALIGN=left|right|center>

LIENS ET IMAGES

 Lier quelque
chose

 Lier un
pointeur

 (si c'est
dans un
autre
document)

 < /A> (si c'est
dans le
même
document)

N2.0 Fenêtre cible <A HREF="URL" TARGET="***|
|_blank|_self|_parent|_top">

 Définition du
pointeur

 Relation (pas
largement
implanté)

 Relation
inverse

 (pas
largement
implanté)

Afficher une
image

 Alignement <IMG
SRC="URL"ALIGN=TOP|BOTTOM|MIDDLE|LEFT|RIGHT>

N1.0 Alignement <IMG SRC="URL" ALIGN=LEFT|RIGHT|TEXTTOP|
ABSMIDDLE|BASELINE|ABSBOTTOM>

http://werbach.com/barebones/fr_barebone.html (5 of 14) [8/31/01 5:55:20 AM]

Guide du langage HTML

 Alternative (si l'image
n'est pas
affichée)

 Carte-image (requiert
un
exécutable)

 Carte-image
client

 (requiert
un
exécutable)

 Nom de la carte <MAP NAME="***"></MAP> (décrit la
carte)

 Sections de la
carte

<AREA SHAPE="RECT" COORDS=",,,"
HREF="URL"|NOHREF>

 Dimensions (en pixels)

 Bordure (en pixels)

 Espace
environnant

 (en pixels)

N1.0 Low-Res Proxy

N1.1 Appel client <META HTTP-EQUIV="Refresh" CONTENT="?;
URL=URL">

N2.0 Objet encastré <EMBED SRC="URL"> (insert un
objet dans
la page)

N2.0 Dimension de
l'objet

<EMBED SRC="URL" WIDTH=? HEIGHT=?>

SÉPARATEURS

 Paragraphe <P></P> [*] (étiquette de fin
souvent pas
nécessaire)

http://werbach.com/barebones/fr_barebone.html (6 of 14) [8/31/01 5:55:20 AM]

http://werbach.com/barebones/fr_barebone_annotation.html#paragraph

Guide du langage HTML

 Alignement du texte <P ALIGN=LEFT|CENTER|RIGHT></P> [*] (double retour)

 Fin de ligne
 (simple retour)

 Alignement forcé <BR CLEAR=LEFT|RIGHT|ALL>

 Ligne horizontale <HR>

 Alignement <HR ALIGN=LEFT|RIGHT|CENTER>

 Épaisseur <HR SIZE=?> (en pixels)

 Largeur <HR WIDTH=?> (en pixels)

N1.0 Largeur <HR WIDTH=%> (en tant que
pourcentage de la
largeur de la page)

 Ligne pleine <HR NOSHADE> (sans l'effet 3D)

N1.0 Sans-coupure <NOBR></NOBR> (prévient la coupure
des lignes)

N1.0 Coupure de mot <WBR> (endroit où couper
une ligne si
nécessaire)

LISTES

 Liste non-ordonnée (avant chaque
item de la liste)

 Compacte <UL COMPACT>

N1.0 Type d'indicateur <UL TYPE=DISC|CIRCLE|SQUARE> (pour la liste entière)

 <LI TYPE=DISC|CIRCLE|SQUARE> (celui-ci &
subséquent)

 Liste ordonnée (avant chaque
item de la liste)

 Compacte <OL COMPACT>

N1.0 Type de nombres <OL TYPE=A|a|I|i|1> (pour la liste entière)

http://werbach.com/barebones/fr_barebone.html (7 of 14) [8/31/01 5:55:20 AM]

http://werbach.com/barebones/fr_barebone_annotation.html#align

Guide du langage HTML

 <LI TYPE=A|a|I|i|1> (celui-ci &
subséquent)

N1.0 Nombre de départ <OL START=?> (pour la liste entière)

 <LI VALUE=?> (celui-ci &
subséquent)

 Liste de définitions <DL><DT><DD></DL> (<DT>=terme,
<DD>=définition)

 Compacte <DL COMPACT></DL>

 Liste de menus <MENU></MENU> (avant chaque
item de la liste)

 Compacte <MENU COMPACT></MENU>

 Liste de répertoires <DIR></DIR> (< LI> avant chaque
item de la liste)

 Compacte <DIR COMPACT></DIR>

ARRIÈRE-PLAN ET COULEURS

N1.1 Couleur d'arrière-plan <BODY BGCOLOR="#$$$$$$"> [*] (ordre est
rouge/vert/bleu)

 Texture <BODY BACKGROUND="URL"> [*]

N1.1 Couleur du texte <BODY TEXT="#$$$"> [*]

N1.1 Couleur des liens <BODY LINK="#$$$"> [*]

 Couleur des liens
visités

<BODY VLINK="#$$$"> [*]

N1.1 Liens actifs <BODY ALINK="#$$$">

(plus d'informations à http://werbach.com/web/wwwh elp.html#color)

http://werbach.com/barebones/fr_barebone.html (8 of 14) [8/31/01 5:55:20 AM]

http://werbach.com/barebones/fr_barebone_annotation.html#color
http://werbach.com/barebones/fr_barebone_annotation.html#color
http://werbach.com/barebones/fr_barebone_annotation.html#color
http://werbach.com/barebones/fr_barebone_annotation.html#color
http://werbach.com/barebones/fr_barebone_annotation.html#color
http://werbach.com/web/wwwhelp.html#color

Guide du langage HTML

CARACTÈRES SPÉCIAUX

 code ISO &#?; (où le ? représente le code ISO8859-1)

 < <

 > >

 & &

 " "

 Registered TM ®

 Copyright ©

 Espace

(Une liste complète est disponible à http://www.uni-passau.de/%7Eramsch/iso8859-1.html)

FORMULAIRES

 Formulaire <FORM ACTION="URL" METHOD=GET|POST></FORM>

N2.0 Transfert de
fichier

<FORM ENCTYPE="multipart/form-
data></FORM>

 Champ d'entrée de
données

<INPUT
TYPE="TEXT|PASSWORD|CHECKBOX|RADIO|IMAGE|HIDDEN|
SUBMIT|RESET">

 Nom du champ <INPUT NAME="***">

 Valeur du champ <INPUT VALUE="***">

 Vérifié? <INPUT CHECKED> (boutons de
vérification et
boutons radio)

 Grandeur du
champ

<INPUT SIZE=?> (en caractères)

http://werbach.com/barebones/fr_barebone.html (9 of 14) [8/31/01 5:55:20 AM]

http://www.uni-passau.de/%7Eramsch/iso8859-1.htm
l

Guide du langage HTML

 Longueur
maximum

<INPUT MAXLENGTH=?> (en caractères)

 Liste de sélection <SELECT></SELECT>

Nom d'une liste <SELECT NAME="***"></SELECT>

 Nombre d'options <SELECT SIZE=?></SELECT>

 Choix multiples <SELECT MULTIPLE> (permet une
sélection
multiple)

 Option < OPTION> (items qui
peuvent être
sélectionnés)

 Option par défaut <OPTION SELECTED>

 Grandeur de la
boîte d'entrée de
données

<TEXTAREA ROWS=? COLS=?>
</TEXTAREA>

 Nom de la boîte <TEXTAREA NAME="***">
</TEXTARE A>

 "Wrap Text" <TEXTAREA
WRAP=OFF|VIRTUAL|PHYSICAL>
</TEXTAREA>

TABLEAUX

 Définition d'un tableau <TABLE></TABLE> [*]

 Bordure du tableau <TABLE BORDER=?></TABLE>

 Espace des cellules <TABLE CELLSPACING=?>

 Espace de la bordure
des cellules

<TABLE CELLPADDING=?>

 Largeur <TABLE WIDTH=?> (en pixels)

 Largeur <TABLE WIDTH=%> (pourcentage de la page)

http://werbach.com/barebones/fr_barebone.html (10 of 14) [8/31/01 5:55:20 AM]

http://werbach.com/barebones/fr_barebone_annotation.html#tables

Guide du langage HTML

 Lignes du tableau <TR></TR>

 Alignement <TR ALIGN=LEFT|RIGHT|CENTER
VALIGN=TOP|MIDDLE|BOTTOM>

 Cellules du tableau <TD></TD> (doit apparaître à
l'intérieur des lignes
d'un tableau)

 Alignement <TD ALIGN=LEFT|RIGHT|CENTER
VALIGN=TOP|MIDDLE|BOTTOM>

 Sans-coupure <TD NOWRAP>

 Débordement d'une
colonne

<TD COLSPAN=?>

 Débordement des
lignes

<TD ROWSPAN=?>

N1.1 Largeur <TD WIDTH=?> (en pixels)

N1.1 Largeur <TD WIDTH=%> (en pourcentage du
tableau)

N3.0b Couleur de cellule <TD BGCOLOR="#$$$$$$">

 En-tête du tableau <TH></TH> (semblable aux
données, centré et gras)

 Alignement <TH ALIGN=LEFT|RIGHT|CENTER|MIDDLE|BOTTOM>

 Sans-retour <TH NOWRAP>

 Débordement de
colonnes

<TH COLSPAN=?>

 Débordement de lignes <TH ROWSPAN=?>

N1.1 Largeur <TH WIDTH=?> (en pixels)

N1.1 Largeur <TH WIDTH=%> (en pourcentage du
tableau)

N3.0b Couleur de cellule <TH BGCOLOR="#$$$$$$">

 Légende du tableau <CAPTION></CAPTION>

 Alignement <CAPTION ALIGN=TOP|BOTTOM> (sur ou sous le tableau)

http://werbach.com/barebones/fr_barebone.html (11 of 14) [8/31/01 5:55:20 AM]

Guide du langage HTML

CADRES

N2.0 Cadre du document <FRAMESET></FRAMESET> (au lieu de
<BODY>)

N2.0 Hauteur des lignes <FRAMESET ROWS=,,,></FRAMESET> (en pixels ou
pourcentage)

N2.0 Hauteur des lignes <FRAMESET ROWS=*></FRAMESET> (* = grandeur
relative)

N2.0 Largeur des colonnes <FRAMESET COLS=,,,></FRAMESET> (en pixels ou
pourcentage)

N2.0 Largeur des colonnes <FRAMESET COLS=*></FRAMESET> (* = grandeur
relative)

N3.0b Lageur de la bordure <FRAMESET BORDER=?>

N3.0b Bordures <FRAMESET FRAMEBORDER="yes|no">

N3.0b Couleur de la
bordure

<FRAMESET BORDERCOLOR="#$$$$$$">

N2.0 Définition d'un cadre <FRAME> (items d'un
cadre
individuel)

N2.0 Afficher le document <FRAME SRC="URL">

N2.0 Nom du cadre <FRAME
NAME="***"|_blank|_self|_parent|_top>

N2.0 Largeur de la marge <FRAME MARGINWIDTH=?> (marges à
gauche et à
droite)

N2.0 Hauteur de la marge <FRAME MARGINHEIGHT=?> (marges en
haut et en
bas)

N2.0 Défilement du texte <FRAME SCROLLING="YES|NO|AUTO">

N2.0 Défilement du texte <FRAME NORESIZE>

N3.0b Bordures <FRAME FRAMEBORDER="yes|no">

http://werbach.com/barebones/fr_barebone.html (12 of 14) [8/31/01 5:55:20 AM]

Guide du langage HTML

N3.0b Couleur de la
bordure

<FRAME BORDERCOLOR="#$$$$$$">

N2.0 Contenu non-encadré <NOFRAMES></NOFRAMES> (pour les
lecteurs
WWW
incapables
d'utiliser les
cadres)

JAVA

 Applet <APPLET></APPLET>

 Nom de fichier applet <APPLET CODE="***">

 Paramètres <APPLET PARAM NAME="***">

 Position de l'applet <APPLET CODEBASE="URL">

 Identificateur Applet <APPLET NAME="***"> (pour faire référence
ailleurs dans une page)

 Alternative en texte <APPLET ALT="***"> (pour les navigateurs
non-java)

 Alignement <APPLET
ALIGN="LEFT|RIGHT|CENTER">

 Grandeur <APPLET WIDTH=? HEIGHT=?> (en pixels)

 Espacement <APPLET HSPACE=? VSPACE=?> (en pixels)

DIVERS

http://werbach.com/barebones/fr_barebone.html (13 of 14) [8/31/01 5:55:20 AM]

Guide du langage HTML

 Commentaires <!--***--> (n'est pas affiché par le
lecteur WWW)

 Prologue HTML 3.2 <!DOCTYPE HTML PUBLIC "-//W3C//DTD W3 HTML
3.2//EN"> [*]

 Indicateur de
recherche

<ISINDEX> (indique un index de
recherche)

N1.0 Ligne de commande <ISINDEX PROMPT="***"> (texte pour indiquer
l'entrée de données)

 Envoie de la recherche (utiliser un point
d'interrogation)

 URL de ce fichier <BASE HREF="URL"> (doit être dans l'en-tête
du document)

 Nom de base de la
fenêtre

<BASE TARGET="***"> (doit être dans l'en-tête
du document)

 Relation <LINK REV="***" REL="***"
HREF="URL">

(dans l'en-tête du
document)

 Information META <META> (dans l'en-tête du
document)

 Feuilles de styles <STYLE></STYLE> (pas supporté
largement)

 Scripts <SCRIPT></SCRIPT> (pas supporté
largement)

Copyright ©1995-1997 Kevin Werbach. Toute distribution non-commerciale est permise. Ce guide
n'est pas un produit de Bare Bones Software; la similarité des noms est une pure coincidence.

Menu | LISTE DES ÉTIQUETTES | Version texte | Page d'acceuil de Kevin

http://werbach.com/barebones/fr_barebone.html (14 of 14) [8/31/01 5:55:20 AM]

http://werbach.com/barebones/fr_barebone_annotation.html#prologue
mailto:barebones@werbach.com
http://www.barebones.com/
http://werbach.com/barebones/fr_barebone.txt
http://werbach.com/home.html

http://www.pearsoncustom.com/link/visualbasic/visualbasic.html

Visual Basic: A version of basic that was written to incorporate
object-oriented programming into basic, and to allow easy
development of Windows applications.

PUBLIC SITES:

VB Programming: An Introduction
Click through these onlines slides for an introductory overview of Visual Basic, hosted at
the University of Souh Florida.

Programming
Several links to discussions of visual basic programming, from beginning level to
advanced. Site managed by Study Web.

VB World
Web site dedicated to visual basic articles, books, and resources. Site managed by VB
World.

Tutorials & Articles
Several links to information, tutorials, and articles written about visual basic. Site managed
by About.com.

Visual Basic
Carl & Gary's Visual Basic Home Page containing information about visual basic
programming and add-on products.

Copyright © 1999 - 2001 by Pearson Custom Publishing. All rights reserved. This copyright material may not be
published, broadcast or redistributed in any manner.

Contact Us

http://www.pearsoncustom.com/link/visualbasic/visualbasic.html [8/31/01 6:00:26 AM]

http://www.pearsoncustom.com/link/citationstyles.html
http://www.pearsoncustom.com/allpages/visualbasic_bot.html
http://www.studyweb.com/links/1169.html
http://www.vb-world.net/
http://visualbasic.about.com/compute/visualbasic/?once=true&
http://www.cgvb.com/
mailto:Debbie.Coniglio@pearsoned.com

Visual Basic Programming

http://www.csee.usf.edu/~maurer/vbasic/sld001.htm [8/31/01 6:00:45 AM]

http://www.csee.usf.edu/~maurer/vbasic/index.htm
http://www.csee.usf.edu/~maurer/vbasic/tsld001.htm

Why Visual Basic?

http://www.csee.usf.edu/~maurer/vbasic/sld002.htm [8/31/01 6:01:16 AM]

http://www.csee.usf.edu/~maurer/vbasic/index.htm
http://www.csee.usf.edu/~maurer/vbasic/tsld002.htm

What Visual Basic is not

http://www.csee.usf.edu/~maurer/vbasic/sld003.htm [8/31/01 6:01:49 AM]

http://www.csee.usf.edu/~maurer/vbasic/index.htm
http://www.csee.usf.edu/~maurer/vbasic/tsld003.htm

When You Program in VB:

http://www.csee.usf.edu/~maurer/vbasic/sld004.htm [8/31/01 6:02:13 AM]

http://www.csee.usf.edu/~maurer/vbasic/index.htm
http://www.csee.usf.edu/~maurer/vbasic/tsld004.htm

The Visual Basic Interface

http://www.csee.usf.edu/~maurer/vbasic/sld005.htm [8/31/01 6:02:44 AM]

http://www.csee.usf.edu/~maurer/vbasic/index.htm
http://www.csee.usf.edu/~maurer/vbasic/tsld005.htm

Drawing The Program

http://www.csee.usf.edu/~maurer/vbasic/sld006.htm [8/31/01 6:03:00 AM]

http://www.csee.usf.edu/~maurer/vbasic/index.htm
http://www.csee.usf.edu/~maurer/vbasic/tsld006.htm

Types of Controls

http://www.csee.usf.edu/~maurer/vbasic/sld007.htm [8/31/01 6:03:11 AM]

http://www.csee.usf.edu/~maurer/vbasic/index.htm
http://www.csee.usf.edu/~maurer/vbasic/tsld007.htm

A Simple Program

http://www.csee.usf.edu/~maurer/vbasic/sld008.htm [8/31/01 6:03:36 AM]

http://www.csee.usf.edu/~maurer/vbasic/index.htm
http://www.csee.usf.edu/~maurer/vbasic/tsld008.htm

The Properties Window

http://www.csee.usf.edu/~maurer/vbasic/sld009.htm [8/31/01 6:04:01 AM]

http://www.csee.usf.edu/~maurer/vbasic/index.htm
http://www.csee.usf.edu/~maurer/vbasic/tsld009.htm

Adding Code

http://www.csee.usf.edu/~maurer/vbasic/sld010.htm [8/31/01 6:04:15 AM]

http://www.csee.usf.edu/~maurer/vbasic/index.htm
http://www.csee.usf.edu/~maurer/vbasic/tsld010.htm

More Complex Controls

http://www.csee.usf.edu/~maurer/vbasic/sld011.htm [8/31/01 6:04:42 AM]

http://www.csee.usf.edu/~maurer/vbasic/index.htm
http://www.csee.usf.edu/~maurer/vbasic/tsld011.htm

Using C Code

http://www.csee.usf.edu/~maurer/vbasic/sld012.htm [8/31/01 6:05:03 AM]

http://www.csee.usf.edu/~maurer/vbasic/index.htm
http://www.csee.usf.edu/~maurer/vbasic/tsld012.htm

C Definition vs. VB Definition

http://www.csee.usf.edu/~maurer/vbasic/sld013.htm [8/31/01 6:05:31 AM]

http://www.csee.usf.edu/~maurer/vbasic/index.htm
http://www.csee.usf.edu/~maurer/vbasic/tsld013.htm

A (Very Annoying) Problem

http://www.csee.usf.edu/~maurer/vbasic/sld014.htm [8/31/01 6:05:43 AM]

http://www.csee.usf.edu/~maurer/vbasic/index.htm
http://www.csee.usf.edu/~maurer/vbasic/tsld014.htm

Alternative Methods

http://www.csee.usf.edu/~maurer/vbasic/sld015.htm [8/31/01 6:06:12 AM]

http://www.csee.usf.edu/~maurer/vbasic/index.htm
http://www.csee.usf.edu/~maurer/vbasic/tsld015.htm

Syntax Considerations

http://www.csee.usf.edu/~maurer/vbasic/sld016.htm [8/31/01 6:06:35 AM]

http://www.csee.usf.edu/~maurer/vbasic/index.htm
http://www.csee.usf.edu/~maurer/vbasic/tsld016.htm

More VB Syntax

http://www.csee.usf.edu/~maurer/vbasic/sld017.htm [8/31/01 6:06:58 AM]

http://www.csee.usf.edu/~maurer/vbasic/index.htm
http://www.csee.usf.edu/~maurer/vbasic/tsld017.htm

VB Statements

http://www.csee.usf.edu/~maurer/vbasic/sld018.htm [8/31/01 6:07:10 AM]

http://www.csee.usf.edu/~maurer/vbasic/index.htm
http://www.csee.usf.edu/~maurer/vbasic/tsld018.htm

VB IF Statements

http://www.csee.usf.edu/~maurer/vbasic/sld019.htm [8/31/01 6:07:39 AM]

http://www.csee.usf.edu/~maurer/vbasic/index.htm
http://www.csee.usf.edu/~maurer/vbasic/tsld019.htm

VB While Statements

http://www.csee.usf.edu/~maurer/vbasic/sld020.htm [8/31/01 6:07:50 AM]

http://www.csee.usf.edu/~maurer/vbasic/index.htm
http://www.csee.usf.edu/~maurer/vbasic/tsld020.htm

VB For Statements

http://www.csee.usf.edu/~maurer/vbasic/sld021.htm [8/31/01 6:07:57 AM]

http://www.csee.usf.edu/~maurer/vbasic/index.htm
http://www.csee.usf.edu/~maurer/vbasic/tsld021.htm

VB Arrays

http://www.csee.usf.edu/~maurer/vbasic/sld022.htm [8/31/01 6:08:09 AM]

http://www.csee.usf.edu/~maurer/vbasic/index.htm
http://www.csee.usf.edu/~maurer/vbasic/tsld022.htm

VB Strings

http://www.csee.usf.edu/~maurer/vbasic/sld023.htm [8/31/01 6:08:24 AM]

http://www.csee.usf.edu/~maurer/vbasic/index.htm
http://www.csee.usf.edu/~maurer/vbasic/tsld023.htm

And in Conclusion ...

http://www.csee.usf.edu/~maurer/vbasic/sld024.htm [8/31/01 6:08:48 AM]

http://www.csee.usf.edu/~maurer/vbasic/index.htm

And in Conclusion ...

And in Conclusion ...

And in Conclusion ...

Go

Have

Fun!

Previous slide Back to the first slide View Graphic Version

http://www.csee.usf.edu/~maurer/vbasic/tsld024.htm [8/31/01 6:08:54 AM]

http://www.csee.usf.edu/~maurer/vbasic/tsld023.htm
http://www.csee.usf.edu/~maurer/vbasic/index.htm

	CONTENTS
	SECTION 1 PROBLEM SOLVING
	1.1 PROGRAM DEVELOPMENT CYCLE
	PERFORMING A TASK ON THE COMPUTER
	PROGRAM PLANNING

	1.2 PROGRAMMING TOOLS
	FLOWCHARTS
	PSEUDOCODE
	HIERARCHY CHART
	DIRECTION OF NUMBERED NYC STREETS ALGORITHM
	CLASS AVERAGE ALGORITHM

	SECTION 2 FUNDAMENTALS OF PROGRAMMING IN VISUAL BASIC
	2.1 VISUAL BASIC OBJECTS
	A TEXT BOX WALKTHROUGH
	A COMMAND BUTTON WALKTHROUGH
	A LABEL WALKTHROUGH
	A PICTURE BOX WALKTHROUGH

	2.2 VISUAL BASIC EVENTS
	AN EVENT PROCEDURE WALKTHROUGH

	2.3 NUMBERS
	ARITHMETIC OPERATIONS
	SCIENTIFIC NOTATION
	VARIABLES
	PRINT METHOD

	2.4 STRINGS
	VARIABLES AND STRINGS
	CONCATENATION
	DECLARING VARIABLE TYPES
	USING TEXT BOXES FOR INPUT AND OUTPUT
	ANSI CHARACER SET
	THE KEYPRESS EVENT PROCEDURE

	2.5 INPUT AND OUTPUT
	READING DATA FROM FILES
	IINPUT FROM AN INPUT BOX
	FORMATTING OUTPUT WITH PRINT ZONES
	TAB FUNCTION
	USING A MESSAGE BOX FOR OUTPUT
	LINE CONTINUATION CHARACTER
	OUTPUT TO THE PRINTER
	INTERNAL DOCUMENTATION

	2.6 BUILT-IN FUNCTIONS
	NUMERIC FUNCTIONS: SQR, INT, ROUND
	STRING FUNCTIONS: LEFT, MID, RIGHT, UCASE, TRIM
	STRING-RELATED NUMERIC FUNCTIONS: LEN, INSTR
	FORMAT FUNCTIONS
	GENERATING RANDOM NUMBERS: RND

	SECTION 3 GENERAL PROCEDURES
	3.1 SUB PROCEDURES, PART I
	VARIABLES AND EXPRESSIONS AS ARGUMENTS

	3.2 SUB PROCEDURES, PART II
	PASSING VLAUES BACK FROM SUB PROCEDURES
	PASSING BY VALUE
	LOCAL VARIABLES
	FORM-LEVEL VARIABLES

	3.3 FUNCTION PROCEDURES
	3.4 MODULAR DESIGN
	TOP-DOWN DESIGN
	STRUCTURED PROGRAMMING
	ADVANTAGES OF STRUCTURES PROGRAMMING

	SECTION 4 DECISIONS
	4.1 RELATIONAL AND LOGICAL OPERATORS
	LOGICAL OPERATORS

	4.2 IF BLOCKS
	4.3 SELECT CASE BLOCKS
	4.4 A CASE STUDY: WEEKLY PAYROLL
	DESIGNING THE WEEKLY PAYROLL PROGRAM
	PSEUDOCODE FOR THE DISPLAY PAYROLL EVENT
	WRITING THE WEEKLY PAYROLL PROGRAM
	THE USER INTERFACE

	SECTION 5 REPETITION
	5.1 DO LOOPS
	5.2 PROCESSING LISTS OF DATA WITH DO LOOPS
	EOF FUNCTION
	COUNTERS AND ACCUMULATORS
	FLAGS
	NESTED LOOPS

	5.3 FOR...NEXT LOOPS
	5.4 A CASE STUDY: ANALYZE A LOAN
	DESIGNING THE ANALYZE-A-LOAN PROGRAM
	THE USER INTERFACE
	WRITING THE ANALYZE-A-LOAN PROGRAM
	PSEUDOCODE FOR THE ANALYZE-A-LOAN PROGRAM

	SECTION 6 ARRAYS
	6.1 CREATING AND ACCESSING ARRAYS
	6.2 USING ARRAYS
	ORDERED ARRAYS
	USING PART OF AN ARRAY
	PASSING ARRAYS BETWEEN PROCEDURES

	6.3 CONTROL ARRAYS
	CONTROL ARRAY EVENT PROCEDURES
	CREATING CONTROL ARRAYS AT RUN TIME

	6.4 SORTING AND SEARCHING
	BUBBLE SORT
	SHELL SORT
	SEARCHING

	6.5 TWO-DIMENSIONAL ARRAYS
	6.6 A CASE STUDY: CALCULATING WITH A SPREADSHEET
	THE DESIGN OF THE PROGRAM
	THE USER INTERFACE
	CODING THE PROGRAM

	SECTION 7 SEQUENTIAL FILES
	7.1 SEQUENTIAL FILES
	CREATING A SEQUENTIAL FILES
	ADDING ITEMS TO A SEQUENTIAL FILE
	ERROR TRAPPING

	7.2 USING SEQUENTIAL FILES
	SORTING SEQUENTIAL FILES
	MERGING SEQUENTIAL FILES
	CONTROL BREAK PROCESSING

	7.3 A CASE STUDY: RECORDING CHECKS AND DEPOSITS
	THE DESIGN OF THE PROGRAM
	THE USER INTERFACE
	CODING THE PROGRAM

	SECTION 8 RANDOM-ACCESS FILES
	8.1 USER-DEFINED DATA TYPES
	FIXED-LENTH STRINGS
	RECORDS

	8.2 RANDOM-ACCESS FILES

	SECTION 9 THE GRAPHICAL DISPLAY OF DATA
	9.1 INTRODUCTION TO GRAPHICS
	SPECIFYING A COORDINATE SYSTEM
	GRAPHICS METHODS FOR DRAWING LINES, POINTS, AND CIRCLES
	POSITIONING TEXT

	9.2 LINE CHARTS
	LINE STYLING

	9.3 BAR CHARTS
	9.4 PIE CHARTS

	SECTION 10 ADDITIONAL CONTROLS AND OBJECTS
	10.1 LIST BOXES AND COMBO BOXES
	THE LIST BOX CONTROL
	THE COMBO BOX CONTROL
	DRIVE, DIRECTORY, AND FILE LIST BOX CONTROLS

	10.2 NINE ELEMENTARY CONTROLS
	THE FRAME CONTROL
	THE CHECK BOX CONTROL
	THE OPTION BUTTON CONTROL
	THE HORIZONTAL AND VERTICAL SCROLL BAR CONTROLS
	THE TIMER CONTROL
	THE SHAPE CONTROL
	THE LINE CONTROL
	THE IMAGE CONTROL

	10.3 FIVE ADDITIONAL OBJECTS
	THE MICROSOFT FLEXGRID CONTROL
	THE MENU CONTROL
	THE CLIPBOARD OBJECT
	MULTIPLE FORMS
	THE COMMON DIALOG CONTROL

	SECTION 11 DATABASE MANAGEMENT
	11.1 AN INTRODUCTION TO DATABASES
	THE DATA CONTROL
	A DATA CONTROL WALKTHROUGH
	USING CODE WITH A DATA CONTROL
	THE VALIDATION EVENT

	11.2 RELATIONAL DATABASES AND SQL
	PRIMARY AND FOREIGN KEYS
	SQL
	FOUR SQL REQUESTS
	FIND METHODS

	11.3 THREE ADDITIONAL DATA-BOUND CONTROLS; CREATING AND DESIGNING DATABASES
	USING THE FLEXGRID CONTROL
	USING THE DATA-BOUND LIST BOX AND COMBO BOX CONTROLS
	CREATING A DATABASE WITH VISUAL DATA MANAGER
	CREATING A DATABASE IN CODE
	PRINCIPLES OF DATABASE DESIGN

	SECTION 12 OBJECT-ORIENTED PROGRAMMING
	12.1 CLASSES AND OBJECTS
	THE INITIALIZE EVENT PROCEDURE

	12.2 COLLECTIONS AND EVENTS
	COLLECTIONS
	KEYS
	EVENTS

	12.3 CLASS RELATIONSHIPS

	SECTION 13 COMMUNICATING WITH OTHER APPLICATIONS
	13.1 OLE
	OLE AUTOMATION
	THE OLE CONTAINER CONTROL
	AN EMBEDDING WALKTHROUGH USING EXCEL
	A LINKING WALKTHROUGH USING WORD

	13.2 ACCESSING THE INTERNET WITH VISUAL BASIC
	WHAT IS THE INTERNET?
	A WEB BROWSER WALKTHOUGH

	13.3 WEB PAGE PROGRAMMING WITH VBSCRIPT
	HTML
	PLACING ACTIVEX CONTROLS IN HTML DOCUMENTS
	ACTIVATING A WEB PAGE WITH VBSCRIPT

	APPENDICES
	APPENDIX A ANSI VALUES
	APPENDIX B HOW TO
	HOW TO: INSTALL, INVOKE, AND EXIT VISUAL BASIC
	HOW TO: MANAGE PROGRAMS
	HOW TO: USE THE EDITOR
	HOW TO: GET HELP
	HOW TO: MANIPULATE A DIALOG BOX
	HOW TO: MANAGE MENUS
	HOW TO: Utilize the Windows Environment
	HOW TO: DESIGN A FORM
	HOW TO: WORK WITH THE PROPERTIES OF AN OBJECT
	HOW TO: MANAGE PROCEDURES
	HOW TO: MANAGE WINDOWS
	HOW TO: USE THE PRINTER
	HOW TO: USE THE DEBUGGER

	APPENDIX C VISUAL BASIC STATEMENTS, FUNCTIONS, METHODS, PROPERTIES, EVENTS, DATA TYPES, AND OPERATORS
	APPENDIX D VISUAL BASIC DEBUGGING TOOLS

	INDEX
	ACCOMANYING CD FOR MICROSOFT VISUAL BASIC 6.0, WORKING EDITION
	pearsoncustom.com
	http://www.pearsoncustom.com/link/visualbasic/collections.html
	http://www.pearsoncustom.com/link/visualbasic/pseudocode.html
	http://www.pearsoncustom.com/link/visualbasic/flowcharts.html
	http://www.pearsoncustom.com/link/visualbasic/visualbasic.html

	freevbcode.com
	FreeVBCode.Com - Lists, Collections, and Arrays
	FreeVBCode.com -- Free, High-Quality Visual Basic Source Code: Best Code
	Adjust Brightness/Contrast Level of Images
	Editable Grid Control With Support for Combo Boxes and Check Boxes Version 2.0
	FreeVBCode.com -- Free, High-Quality Visual Basic Samples and Code
	FreeVBCode.Com -
	FreeVBCode.Com -

	avdf.com
	Visual Basic Collections [AVDF Article]
	May/June 96 [AVDF Contents]
	Cool Things in SQL Server 6.0 [AVDF Article]

	barnesandnoble.com
	Barnes & Noble.com - Microsoft Visual Basic 6.0: Programmer's Guide
	Barnes & Noble.com - Visual Basic Graphics Programming: Hands-on Applications and Advanced Color Development with Cdrom

	www.newman.wa.edu.au
	Visual Basic - Chapter 1

	cortland.edu
	Flowcharts and Storyboards
	Integrating Technology in FL - Syllabus
	First WWW page creation

	werbach.com
	Bare Bones Guide to HTML -- download page
	Bare Bones Guide to HTML
	Guide du langage HTML

	usf.edu
	Visual Basic Programming
	Why Visual Basic?
	What Visual Basic is not
	When You Program in VB:
	The Visual Basic Interface
	Drawing The Program
	Types of Controls
	A Simple Program
	The Properties Window
	Adding Code
	More Complex Controls
	Using C Code
	C Definition vs. VB Definition
	A (Very Annoying) Problem
	Alternative Methods
	Syntax Considerations
	More VB Syntax
	VB Statements
	VB IF Statements
	VB While Statements
	VB For Statements
	VB Arrays
	VB Strings
	And in Conclusion ...
	And in Conclusion ...

	JLFBJPOKAKBDMANFLOOGADOAKBNBLOAB:
	form1:
	x:
	f1:
	f4: All

	f2: Search
	f3:

	IKNEGNDOPKPCJMHPNLNINNFDMBEMFACE:
	form1:
	x:
	f1: 0HYC1A0FGI
	f2:
	f3: 00176940494055492178
	f4: 08%2D30%2D2001+07%3A28%3A59
	f5: Ifreevbcode.com/listcode.asp
	f6: [K]
	f7:

	f8:

	form2:
	x:
	f1: Add
	f2: 1572318635
	f3: web
	f4: /index.asp

	f5:

	form3:
	x:
	f1: WLAdd
	f2: 1572318635
	f3: BK
	f4: Microsoft

	f5:

	form4:
	x:
	f1: Off
	f2:
	f4: 3

	f3:

	NMHOBIMKENMHJMPLKPHNMGLJMCMDPMPD:
	form1:
	x:
	f1:

	f2: Search
	f3:

	EPLELJCFBLKNNKIKIEGGLMBMMDKGPIBM:
	form1:
	x:
	f1:

	f2: Search
	f3:

	JOEIAHKGHNAKGEALCPCLGOHALFBAHKOP:
	form1:
	x:
	f1: 0HYC1A0FGI
	f2:
	f3: 00176940494076199703
	f4: 08%2D30%2D2001+07%3A33%3A00
	f5: [K]
	f6:

	f7:

	form2:
	x:
	f1: Add
	f2: 0471355992
	f3: web
	f4: /index.asp

	f5:

	form3:
	x:
	f1: WLAdd
	f2: 0471355992
	f3: BK
	f4: Visual Bas

	f5:

	form4:
	x:
	f1: Off
	f2:
	f4: 3

	f3:

	DIFCMGLHBMLCDHNFCMEDNDKFHADANLFI:
	form1:
	x:
	f1:

	f2: Search
	f3:

	MBKJBNOHOHLAJJPOJFKJJMOIKENEPMBN:
	form1:
	x:
	f1:

	f2: Search
	f3:

	FMAHCCLHAKECDMJJOEBCIMLINOJCFLINMC:
	form1:
	x:
	f1:

	f2: Search
	f3:

	ICNBFGNOFJAKLFPINGCLIBJIBPOCBJKN:
	form1:
	x:
	f1:

	f2: Search
	f3:

	MLJPHLIOGOCHNGLJBBPJGOCFDMAIKMLN:
	form1:
	x:
	f1: sitescanps
	f2: 49518
	f3: http://

	f4:

